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Abstract
The lower bound of the GDOP is an important parameter to benchmark satellite selection algorithms. Existing GDOP lower 
bound formulations do not consider the satellite azimuth and elevation angle constraints with respect to the user for Geosta-
tionary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO)-based regional navigation constellations. A GDOP 
lower bound formulation considering the azimuth and elevation angle constraints is formulated for GEO- and IGSO-based 
navigation constellations. Using numerical simulation, it is demonstrated that the GDOP lower bound for using the Naviga-
tion Indian Constellation (NavIC) is significantly higher than the Global Positioning System (GPS), whereas the existing 
GDOP lower bound formulation provides comparable GDOP lower bound for the GPS and NavIC. It also indicates that 
one or more navigation constellations should be used with the NavIC to achieve better position accuracy. In this context, an 
unsupervised learning-based satellite selection (ULiSeS) algorithm is also proposed and the effectiveness of the algorithm 
is demonstrated through numerical simulation for the GPS and the NavIC constellations. A meta-cognitive component is 
also introduced to enable the ULiSeS algorithm to decide when to learn and when to use the available model. The ULiSeS 
algorithm selects a better set of satellites than the Quasi-optimal selection algorithm and requires 89.12% less processing 
time than the fast satellite selection algorithm.
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Introduction

Optimal selection of navigation satellites for position esti-
mation is a crucial problem in navigation. The problem has 
become more complicated with the development of multi-
ple global and regional navigation satellite constellations. 
In addition to GPS and GLONASS, the Galileo and BeiDou 
navigation systems are currently offering full operational 
capability. In addition, Regional Navigation Satellite Sys-
tems (RNSS) such as using Navigation Indian Constellation 
(NavIC) and Quasi-Zenith Satellite System (QZSS) are also 
operational. For most multi-constellation receivers, the num-
ber of channels is limited due to cost, complexity and power 
constraints (Chi et al. 2020). As a result, it is not always pos-
sible to use all in view navigation satellites for positioning 
solutions. With the increased number of navigation satellites 

residing in the Medium Earth Orbits (MEO) as well as Geo-
stationary Earth Orbits (GEO) and Inclined Geosynchronous 
Orbits (IGSO), efficient selection of the best set of naviga-
tion satellites has become very crucial.

The Geometric Dilution of Precision (GDOP) is an indi-
cator of the expected accuracy of the position solution. A 
smaller GDOP value indicates better positioning accuracy. 
Hence, the minimization of the GDOP is the primary goal 
of the satellite selection problem. In other words, the con-
ventional satellite selection algorithms aim to select a set of 
satellites that results in the minimum GDOP. One can use 
the brute force method, i.e., searching all possible combina-
tions of navigation satellites to find the set with the lowest 
GDOP. This is a simple method but comes at a cost. The 
processing time for calculating the GDOP for all possible 
combinations at a single epoch is very high and not suitable 
for real-time applications. However, this method results in 
the optimal satellite selection solution (Park and How 2001). 
Evolutionary algorithms such as Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO) were proposed to 
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reduce the number of searches required to obtain the opti-
mal set of satellites (Mosavi and Divband 2010; Wang et al. 
2018).

One popular satellite selection method is the highest 
elevation method, which selects satellites with the high-
est elevation angle. However, this method does not always 
result in low GDOP and thus a good accuracy (Park and 
How 2001). Another approach is to associate a cost function 
with a visible satellite indicating collinearity with all other 
visible satellites and select satellites with the lowest cost 
functions (Liu et al. 2009; Park and How 2001). Satellite 
selection based on contribution to the GDOP increase has 
also been considered (Chi et al. 2020; Phatak 2001). How-
ever, these methods do not guarantee an optimal solution 
and often return a locally optimal set of satellites (Huang 
et al. 2018).

It should be noted that the most computationally intensive 
step in the satellite selection algorithm is the computation 
of the GDOP using matrix inversion. In the presence of m 
visible satellites, the selection of n satellites ( m > n ) using 
brute force optimization requires m!

n!(m−n)!
 matrix inversions. 

Various closed-form formulations of GDOP were proposed 
to avoid the matrix inversion (Doong 2009; Teng and Wang 
2016). Satellite selection by maximizing the volume of the 
polyhedron comprised by the unit vectors from the user to 
satellites has also been proposed (Kihara and Okada 1984). 
The relation between the GDOP and the polyhedron volume 
has been explored in Blanco-Delgado et al. (2017). However, 
the geometric distribution of the satellites comprising of the 
maximum volume also needs to be considered. Zhang and 
Zhang (2009) proposed an algorithm to select satellites 
based on how close the geometric distribution of a subset is 
with respect to optimal geometry for a given number of sat-
ellites. This algorithm provides a solution that is close to the 
optimal solution. However, the computation cost remains 
high.

Various machine learning (ML)-based approaches 
have also been explored to train an input–output relation 
for GDOP (Wu et al. 2011). Some ML-based approaches 
consider satellite selection problems as segmentation or 
a classification problem and train a model that can either 
classify (Zarei 2014) or segment satellites in selected and 
not selected categories (Huang et al. 2018). Various neu-
ral networks with improved back-propagation approaches 
have been explored to improve the training time (Jwo and 
Lai 2006). It should be noted that these models can only be 
applicable near the location from where the training data 
are collected. Using an ML model trained using data from a 
certain location to calculate the GDOP at a different location 
may result in a large error. It is difficult to develop a global 
ML model that can be applied to any location.

Having discussed various satellite selection algorithms 
which try to select satellites with the minimum GDOP, it 
is important to discuss the lower bound of the GDOP for 
various constellations. The GDOP for MEO constellation 
has been well studied, and the lower bound of the GDOP 
has been examined for single (Swaszek et al. 2017; Zhang 
and Zhang 2009) and multiple constellations (Swaszek et al. 
2016, 2017). This lower bound is often used to benchmark 
the satellite selection algorithms. It is worth mentioning 
that the existing GDOP lower bound formulation does not 
include any constraints on the azimuth and elevation angles 
of the navigation satellites from the user location. As a 
result, this lower bound formulation cannot be generalized 
for the GEO and IGSO-based constellations for which the 
azimuth and elevation angles from the user are constrained 
to certain ranges depending on the user location. Hence, 
computation of the GDOP lower bound for a GEO- and 
IGSO-based constellation should be done considering the 
azimuth and elevation angle constraints to better assess sat-
ellite selection algorithms involving these constellations.

We formulate the GDOP lower bound problem consider-
ing the azimuth and elevation constraints for GEO/IGSO-
based navigation constellations and numerically compute the 
lower bound of GDOP for the NavIC. It is demonstrated that 
the constrained GDOP lower bound for the NavIC is signifi-
cantly higher than the GDOP lower bound for the GPS. Con-
sequently, the position accuracy provided by a standalone 
NavIC receiver is less than that provided by a GPS receiver 
for comparable numbers of visible satellites in each constel-
lation. An efficient satellite selection algorithm is necessary 
to utilize multiple navigation constellations effectively. We 
propose an ML-based multi-constellation satellite selection 
algorithm suitable for real-time operations.

We address the training time and location constraints 
of ML-based satellite selection algorithms by posing the 
satellite selection problem as a clustering problem in the 
azimuth-elevation domain. As a result, the satellite selec-
tion algorithm transforms to an unsupervised learning-based 
method in contrast to the supervised learning-based meth-
ods mentioned earlier. We also incorporate a meta-cognitive 
component to automatically enable the algorithm to decide 
when to learn and when to proceed with the available model 
by introducing two threshold parameters in this clustering 
problem. Using a numerical simulation of the GPS and 
NavIC constellation, we demonstrate that the proposed 
algorithm can select satellites without the requirement of 
any training dataset and thus is not location constrained. In 
addition, the processing time is significantly lower than the 
conventional satellite selection algorithms.

The next section describes the GDOP formulation and 
the constrained GDOP lower bound formulation for GEO/
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IGSO-based navigation constellations. We introduce the 
unsupervised learning-based satellite selection algorithm 
in the subsequent section. Then the simulation experiment 
design is described. The results are presented in the subse-
quent section. The key findings are summarized, and the 
future work is outlined in the conclusion.

Performance indicator of navigation satellite 
constellations

The positioning performance, i.e., accuracy provided by a 
GNSS or RNSS depends on various factors, such as geo-
metric distribution of navigation satellites in space, quality 
of navigation messages, satellite clock stability, and atmos-
pheric delays. Among these factors, the geometric distribu-
tion of navigation satellites significantly affects the posi-
tioning accuracy. With all other sources of error mitigated 
properly, the position accuracy can still be inadequate due 
to satellite geometry. The Geometric Dilution of Precision 
(GDOP) is an indicator of this satellite geometry and thus 
also indicates the positioning accuracy performance. Using 
the Least Square Estimation (LSE), the position error covari-
ance can be expressed as (Kaplan and Hegarty 2006)

where the user position vector X =
[
xu yu zu

]
 , �R is the 

User Range Error (URE), and

where ri =
[
xi yi zi

]
, (i = 1, 2, 3,… , n) is the position 

vector of the ith navigation satellite. The GDOP is defined as

Evidently, the GDOP, a scalar quantity, is a function of 
the geometrical distribution of visible navigation satellites 

(1)E

[(
X − X̂

)(
X − X̂

)T
]
=
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H

T
H
)−1
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(3)GDOP =

√
trace

((
H

T
H
)−1)

in 3-dimensional space. Equation (3) also implies that all 
observations are equally weighted. A lower GDOP value 
results in a lower error covariance, resulting in lower uncer-
tainty in position estimation. The converse is also true. The 
position error covariance increases monotonically with 
GDOP in sequential estimator-based position solution as 
well. However, the relation is hyperbolic (Biswas et al. 
2017).

Currently, the number of navigation satellites visible is 
often more than the available channels in a GNSS receiver 
due to the availability of multiple navigation satellite con-
stellations. Hence, choosing a combination of satellites with 
low GDOP to ensure less uncertainty in position solutions 
is essential.

Benchmarking of satellite selection algorithms can be 
done against the lower bound on GDOP for all available 
satellites. A generalized GDOP lower bound formulation 
for multiple constellations is available in the literature. 
However, this formulation is inadequate for RNSS, which 
in most cases comprises GEO and IGSO satellites. In the 
subsequent sections, we have described the GDOP lower 
bound formulation for GNSS and a new lower bound for-
mulation for RNSS.

GDOP lower bounds for GNSS

The lower bound of GDOP for a single GNSS constellation 
is (Swaszek et al. 2017)

where m is the number of satellites used for position esti-
mation. This relation can be established by finding mini-
mum possible GDOP over azimuth range of 0 ≤ 𝛼 < 360◦ 
and elevation range 0 ≤ 𝛽 < 90◦ . However, this formulation 
results in a loose bound for RNSS constellations because the 
azimuth and elevation range for these navigation satellites 
are much smaller.

GDOP lower bounds for geostationary 
and geosynchronous constellation

If the azimuth and elevation angles from the user receiver 
for the ith satellite is �i and �i, respectively, then, from (2) 
and (3),

(4)GDOP ≥
11.89

m
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 Considering

 one can write

 For geostationary satellites, the azimuth and elevation 
angles are constant for a particular location on the earth, and 
for IGSO satellites, these angles change over time but repeat 
every 24 h. Consequently, for the ith satellite in an RNSS 
�imin

≤ �i ≤ �imax
 and �imin

≤ �i ≤ �imax
 where 𝛼imin

, 𝛽imin
> 0 , 

𝛼imax
< 360◦ and 𝛽imax

< 90◦ . The minimum and maximum 
azimuth and elevation angles depend on the location of the 
user. From (6), one can conclude that
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(7)GDOP = f
(
�1, �1, �2, �2,… , �n, �n

)

 Subject to the constraints

and

for i = 1, 2, 3,… , n.
The GDOP map for the NavIC constellation on Septem-

ber 11, 2020 at 10:22 h Indian Standard Time (IST) is shown 
in Fig. 1. It can be observed that the GDOP varies from 3 
to 3.8 within India. The number of visible NavIC and GPS 
satellites at the location 28.632° N, 77.219° E at New Delhi 
on September 11, 2020 for 24 h is shown in Fig. 2.

(8)GDOP ≥ min f
(
�1, �1, �2, �2,… , �n, �n

)

(9)�imin
≤ �i ≤ �imax

(10)�imin
≤ �i ≤ �imax

Fig. 1   NavIC constellation and 
GDOP map
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With the number of visible satellites, the minimum 
GDOP for each constellation from the location specified 
above can be calculated using (4). The calculated minimum 
GDOP for both the NavIC and GPS and the actual variation 
of GDOP considering all visible satellites from each constel-
lation over 24 h are shown in Fig. 3. It can be observed that 
the difference in the minimum GDOP calculated using (4) 
and the actual GDOP for the NavIC is very high, whereas 
the same for the GPS is low.

For the NavIC, one can compute the minimum GDOP 
by solving the minimization problem stated in (8) subject 
to constraints (9) and (10). Since this calculation considers 
the actual azimuth and elevation range rather than the entire 
range of 0°–360° for azimuth and 0°–90° for elevation, this 
method provides a more accurate bound for the NavIC. It can 
be observed that the minimum GDOP calculated by solv-
ing the minimization problem with appropriate constraints 
is 2.89, which is significantly higher than that calculated 
using (4). From Fig. 3, it can be concluded that the GDOP 
provided by the NavIC is always higher than that of the GPS 
for a comparable number of visible satellites for both con-
stellations. It implies that the position accuracy provided by 
a standalone NavIC receiver is less than that provided by a 
GPS receiver.

Satellite selection using unsupervised 
learning

It can be observed from Fig. 2 that the maximum number of 
visible navigation satellites combining the NavIC and GPS 
constellations can be 22 at New Delhi and the minimum 

number is 11. Choosing a smaller subset of satellites that 
will provide the lowest GDOP is of extreme importance for 
a receiver with a limited number of channels. As discussed 
earlier, various algorithms employ techniques ranging from 
quasi-optimal to supervised learning-based methods. As the 
name suggests, the quasi-optimal satellite selection algo-
rithm (Liu et al. 2009; Park and How 2001) provides a sub-
optimal satellite set in terms of the GDOP. The so-called 
“fast” selection algorithm tries to select a subset of satel-
lites that closely resembles the optimal satellite distribution 
(Zhang and Zhang 2009). In addition, the algorithm requires 
selecting a satellite set at every step. The supervised learn-
ing-based satellite selection proposed by Huang et al. (2018) 
provides a satellite set that is very close to the optimal set of 
satellites. As discussed earlier, this method requires train-
ing using a labeled training dataset and the performance is 
locally correlated. However, the requirement of training data 
and the correlation of performance with the receiver can be 
avoided using an unsupervised learning-based method.

It is hypothesized that an unsupervised learning-based 
satellite selection algorithm can be designed, which is more 
computationally efficient than the algorithms mentioned 
above as well as can be applied globally.

The proposed unsupervised learning-based satellite 
selection (ULiSeS) algorithm uses the K-means cluster-
ing method to form clusters of all visible satellites in the 
azimuth-elevation space. The number of clusters is set to 
the number of channels available to the receiver. Once the 
cluster is formed, one satellite from each cluster is selected 
to obtain the set of selected satellites for navigation. Algo-
rithm 1 describes the ULiSeS algorithm.

Fig. 2   NavIC and GPS satellite visibility from New Delhi Fig. 3   NavIC and GPS GDOP lower bounds at New Delhi
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is not performed. Another parameter � is also introduced, 
which can be used to adjust the threshold GDOP for using 
the previous K-mean clustering model.

The satellite selection from each cluster is performed con-
sidering the number of channels, i.e., the number of satellites 
that can be used for navigation. Zhang and Zhang (2009) 
summarized the optimal satellite distribution geometry for 
a given number of satellites that require a particular number 
of satellites at the zenith. The rest of the satellites should be 
near the horizon. Their Table IV can be used to select the 

It should be noted that the processing time would be 
unnecessarily high if the clustering is performed at every 
epoch when pseudorange observations are available. This 
can be avoided by incorporating a meta-cognitive compo-
nent within the satellite selection algorithm to decide when 
to perform clustering, use the available cluster model, and 
learn and use previously selected satellites. This is imple-
mented in the ULiSeS algorithm by introducing a threshold 
GDOP value Tth . If the previously selected satellites are vis-
ible and the current GDOP is less than Tth , the new selection 
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number of satellites zs required at zenith for a given number 
of channels. However, practically it is not possible to obtain 
zs satellites at zenith at an epoch and hence zs satellites with 
highest elevation angles must be selected. Similarly, select-
ing the rest of the satellites with the lowest elevation angles 
will ensure the geometric distribution of the selected set is 
close to the optimal distribution.

To achieve this condition, zs clusters with centroid eleva-
tions above certain threshold elevation Eth can be selected. 
Selecting the satellite with maximum elevation from each 
of these clusters will ensure the selection of zs satellites with 
the highest elevation angles.

Once the number of satellites zs is selected, for remaining 
clusters the satellite with the lowest elevation can be selected 
from each cluster. The satellite selection algorithm for each 
cluster is given by Algorithm 2. Fig. 4   Comparison of GDOP for optimal, Quasi-optimal and Fast 

selection methods
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Fig. 5   Cluster formation in 
ULiSeS algorithm. The figure 
shows skyplots at various 
epochs, cluster boundaries 
that are formed by the ULiSeS 
algorithm and satellites within 
each cluster during the satellite 
selection process

Fig. 6   Comparison of GDOP for ULiSeS and Fast selection method 
with optimal selection

The K-means clustering groups the satellites so that the 
sum of the distance of each satellite from the cluster centroid 
in the azimuth-elevation domain is minimized within each 
cluster. As a result, satellites with direction cosine vectors 
close to each other will be in the same cluster. Hence, the 
optimality of the K-means clustering ensures that the selec-
tion of satellites using Algorithm 2 will result in the selec-
tion of the closest set to the optimal distribution.

Simulation experiment design

The effectiveness of the ULiSeS algorithm was verified 
using a System Tool Kit simulation. In the simulation, all the 
7 NavIC and 31 GPS satellites were added, and the azimuth 
and elevation angles of these satellites from location 28.632° 
N, 77.219° E at New Delhi was recorded on September 11, 
2020 for 24 h at every minute. This geometric information 
was used to select 8 satellites out of all visible satellites 
of both the NavIC and GPS constellations at every epoch 
using Python implementation of various satellite selection 
algorithms.
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Results and discussion

The geometric information recorded from the STK is used 
to select 8 satellites at every minute of the 24 h using the 
optimal, quasi-optimal, and fast selection algorithms. The 
optimal selection is performed by searching all possible 

combinations of 8 satellites out of all visible satellites at 
every epoch. Evidently, this is a time and resource-consum-
ing process and cannot be used for real-time applications. 
The calculated GDOP using 8 satellites selected by the opti-
mal, quasi-optimal and fast selection algorithms are com-
pared in Fig. 4. Clearly, the GDOP calculated using satel-
lites selected by the quasi-optimal algorithm is substantially 
higher than the fast selection algorithm.

The simulated geometric data are also used in the ULiSeS 
algorithm to select 8 satellites. The ULiSeS algorithm is 

Fig. 7   Histograms of GDOPs 
for ULiSeS and other satellite 
selection algorithms

Fig. 8   Comparison of Cumulative Probability Distribution of ULiSeS 
and other selection algorithms

Table 1   GDOP comparison

Mean Median � Max Min

ULiSeS (GPS) 1.834 1.696 0.368 3.215 1.39
ULiSeS (GPS + NavIC) 2.116 2.057 0.535 6.843 1.402
Random (GPS) 2.121 1.965 0.545 4.526 1.442
Random (GPS + NavIC) 3.017 2.863 0.738 6.24 1.877
Optimal (GPS) 1.675 1.597 0.289 3.215 1.348
Optimal (GPS + NavIC) 1.632 1.596 0.207 2.573 1.348
Quasi-optimal (GPS) 2.006 1.898 0.428 6.234 1.446
Quasi-optimal 

(GPS + NavIC)
2.582 2.341 0.94 11.931 1.502

Fast (GPS) 2.256 1.92 0.997 9.266 1.323
Fast (GPS + NavIC) 1.947 1.822 0.405 4.141 1.398
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used in two cases to select only 8 GPS satellites and to select 
8 satellites from both the NavIC and GPS constellations. Tth 
and � values are set to 3 and 0.5, respectively. The formation 
of the cluster in the azimuth-elevation domain at an epoch 
for selecting satellites from two above-mentioned constel-
lations is shown in Fig. 5. The areas marked with differ-
ent colors denote various clusters and the dots are satellites 
within each cluster.

Figure  6 compares the GDOP calculated using the 
ULiSeS algorithm, the fast selection algorithm and the opti-
mal selection for various cases. The GDOP for randomly 
selected 8 satellites from the NavIC and GPS constellations 
is also shown in Fig. 6. As expected, random selection does 
not result in low GDOP. It should also be noted that the 
GDOP calculated by selecting 8 satellites from only GPS 
constellation using the ULiSeS algorithm is much closer to 
the optimal GDOP and the calculated GDOP using the fast 
algorithm using both the constellations, whereas the GDOP 
calculated using the ULiSeS algorithm for the multi-con-
stellation case slightly degrades. It should be noted that the 
NavIC is a regional constellation. As discussed earlier, the 
NavIC provides higher GDOP than GPS due to the distribu-
tion of the satellites in space. As a result, although the inclu-
sion of NavIC with GPS increases the number of satellites, 
it does not necessarily improve the GDOP. However, for all 
the cases, the performance of the ULiSeS algorithm is sig-
nificantly better than the quasi-optimal methods.

For further analysis, the histogram of the optimal GDOP, 
the GDOPs obtained using the quasi-optimal algorithm, the 
fast selection algorithm for the multi-constellation case, and 
the GDOP computed using the ULiSeS algorithm for sin-
gle constellation and multi-constellation cases are shown in 
Fig. 7. The cumulative distribution of the GDOP for the vari-
ous algorithms is shown in Fig. 8. The statistical summary 
of the computed GDOP over the 24 h for various algorithms 
is provided in Table 1. The mean GDOP obtained using the 
ULiSeS algorithm for the multi-constellation case is 2.116 
and for the GPS only case is 1.834. The mean GDOP for the 
fast algorithm is 1.898 and the optimal mean GDOP is 1.632 
for the multi-constellation case. The mean GDOP for the fast 
algorithm is 2.256 and the optimal mean GDOP is 1.675 for 
the GPS only case. Evidently, the ULiSeS algorithm is com-
parable to the fast selection method in terms of the GDOP 
for both single and multi-constellation conditions.

The execution time for the quasi-optimal, fast and ULiSeS 
algorithms are compared in Fig. 9. It can be observed that 
the execution time of the so-called fast selection algorithm 
lies within 80–160  ms, whereas the ULiSeS algorithm 
requires less than 80 ms at any epoch. It should be noted that 
the execution time of the ULiSeS algorithm is near 80 ms 
only when there is a requirement of re-clustering. For most 
of the epochs, the execution time is less than 10 ms. This can 
be observed clearly from the histogram of execution time at 
each epoch shown in Fig. 10.

The mean, median, maximum, and minimum execu-
tion times for the 24 h for various algorithms are shown 
in Table 2. The mean execution time for the ULiSeS algo-
rithm in the multi-constellation case is 12.141 ms, for GPS 
only case 6.777 ms, whereas the fast algorithm requires 
111.684 ms of mean execution time for the multi-constel-
lation case.

Fig. 9   Execution time comparison for various satellite selection algo-
rithms

Fig. 10   Histogram of execution times for various satellite selection 
algorithms

Table 2   Execution time comparison

Mean (ms) Median (ms) Max (ms) Min (ms)

ULiSeS 
(GPS + NavIC)

12.522 9.473 74.259 6.4

ULiSeS (GPS) 6.964 4.316 67.415 4.082
Quasi-optimal 15.77 15.639 24.264 10.792
Fast 107.928 106.003 154.422 73.212
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The results presented above implicate that although the 
ULiSeS algorithm degrades the GDOP by 8.7% on aver-
age compared to the fast selection algorithm documented in 
Zhang and Zhang (2009), it reduces the execution time by 
88.40% in the multi-constellation case.

Conclusion

We proposed a constrained GDOP lower bound formulation 
suitable for GEO- and IGSO-based navigation constellation 
and demonstrated that one or more navigation constellations 
are required in addition to the NavIC to achieve a better posi-
tion accuracy. In this context, we proposed an unsupervised 
learning-based satellite selection algorithm for a multi-con-
stellation navigation scenario. Using numerical simulation, we 
demonstrated the ULiSeS algorithm does not require any prior 
training dataset and thus is not location constrained. In addi-
tion, it is computationally efficient than the quasi-optimal and 
fast satellite selection algorithms. We also introduced the meta-
cognitive concept within the proposed ULiSeS algorithm, 
which controls the learning process, i.e., helps decide when 
to learn and when to use the previously learned model. This is 
implemented by introducing two threshold parameters Tth and 
� . These parameters are selected through trial and error in the 
current implementation. Further research is required to refine 
this meta-cognitive process within the ULiSeS framework.
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