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Abstract
The ionospheric responses over China during the geomagnetic storm on September 7–8, 2017 are investigated by using the 
Global Positioning System (GPS) observations from the Crustal Movement Observation Network of China (CMONOC), 
the geostationary earth orbit (GEO) satellite observations of BeiDou Navigation Satellite System (BDS) from the IGS 
Multi-GNSS experiment (MGEX), ionosonde data and Swarm satellite observations. We analyze the vertical TEC (VTEC) 
variation with a time resolution of 30 s and find that the daytime VTEC shows an enhancement and a positive ionospheric 
response during the first storm on September 8 over low mid-latitude regions. The critical frequency ( foF

2
 ) also presents 

positive deviations during the first storm over mid-latitude areas. In addition, the intense perturbations of the foF
2
 from sta-

tion SANY and the GEO VTEC from stations LHAZ and CMUM effectively detect the presence of the traveling ionospheric 
disturbances (TIDs) during the second storm period. Also, a dense station network observed both equatorward and poleward 
large-scale TIDs in the southwest of China on the night of September 8. The variation of the electron density Ne from the 
Swarm A and C satellites verifies the occurrence of these LSTIDs over China. In addition, the auroral oval boundary from 
DMSP/SSUSI data and the horizontal component of the earth’s magnetic field from magnetometers are used to analyze the 
possible links with these LSTIDs during this geomagnetic storm.

Keywords  GPS/BDS observations · Ionospheric response · TEC · Large-scale traveling ionospheric disturbance (LSTID)

Introduction

The coupling of solar wind, magnetosphere, and iono-
sphere can cause intense disturbance of the ionosphere dur-
ing geomagnetic storms (Gonzalez et al. 1994). Thus, the 
ionospheric response during geomagnetic storm has drawn 
much attention in the space weather field. In addition, the 
factors, such as local time, sunlit region, storm duration, and 
secondary excited perturbation, seasonal variation, as well 
as meteorological conditions, are also associated with the 
global and regional ionospheric responses (Tang et al. 2015; 
Yao et al. 2016; Jin et al. 2018; Cherniak and Zakharenkova 

2018b; Jonah et al. 2018; Liu et al. 2020a). The ionosphere 
can respond differently to a storm. One of the responses is 
the positive or negative ionospheric responses from the vari-
ation of TEC or electron density (Matamba et al. 2015; Lei 
et al. 2018). A wave-like perturbation in ionospheric TEC 
and electron density is another kind of ionospheric response 
to the geomagnetic storm. The large-scale traveling iono-
spheric disturbances (LSTIDs) and medium-scale traveling 
ionospheric disturbances (MSTIDs) are different kinds of 
TIDs in terms of propagated period and wavelength (Ding 
et al. 2011; Huang et al. 2018; Liu et al. 2019). Studying 
the physical mechanism of ionospheric disturbances and 
detecting the variations of ionospheric responses to the geo-
magnetic storm can help us understand the temporal–spatial 
changes of the ionosphere.

Two consecutive magnetic storms occur during Septem-
ber 7–8, 2017 (Yasyukevich et al. 2018; Zhang et al. 2019a, 
b). The shock wave of the coronal mass ejection (CME) 
and the CME’s material arrival at the earth are regarded as 
the main causes to induce these two geomagnetic storms 
(Blagoveshchensky et al. 2019). Jiang et al. (2020) have 
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observed the large-scale ionospheric irregularities over the 
south of China on September 8, 2017, by ionosonde data 
and demonstrated that an eastward electric field stimulated 
these low-latitude irregularities. Kumar and Kumar (2020) 
have investigated ionospheric scintillations over equatorial 
regions under the space weather in September 2017, and 
results showed that the positive ionospheric response was 
associated with joint effects of prompt penetration electric 
fields (PPEF) and suddenly increasing extreme ultraviolet 
(EUV) radiations from solar wind. Habarulema et al. (2020) 
have focused on the ionospheric response over Europe and 
South Africa regions during a geomagnetic storm on Sep-
tember 7–8, and found that the positive deviations of iono-
spheric TEC in southern hemisphere mid-latitudes were 
much larger than the response level in the northern hemi-
sphere on September 8. Alfonsi et al. (2021) have observed 
the occurrence of equatorial plasma bubbles (EPB) over the 
India sector and the northward movement of EPB was likely 
triggered by an enhancement of equatorial electrojet (EEJ) 
during storm period on September 8. Liu et al. (2020b) have 
investigated the MSTIDs and large-scale plasma depletions 
induced by the geomagnetic storm on September 8, 2017 
over America; the PPEF and poleward neutral wind were 
the main reasons to cause the plasma depletions in USA. 
Akala et al. (2020) observed the longitudinal dependence 
of ionospheric responses over ocean regions to the storm 
on September 8. They found a comparative dominance of 
TEC intensities over the oceans than the landlocked areas. 
Ferreira et al. (2020) have observed more frequent LSTIDs 
with higher amplitude during periods of enhanced auroral 
activity at high latitudes. Lei et al. (2018) have used multiple 
observations to study the ionospheric disturbances in the 
Asian–Australian sectors in September 2017 and found that 

the presence of long-duration daytime TEC increases during 
the storm main phase and recovery phase. Li et al. (2018) 
found that the storm-enhanced equatorial plasma bubbles 
(EPBs) irregularities extended to dip latitudes of 30°N and 
46°N along with rapid sunset F layer height rises during two 
strong storm periods. Most studies have only focused on a 
single type of ionospheric response during this storm. The 
two geomagnetic storms occur at day and night respectively 
in local time over China, which would cause different types 
of ionospheric responses in these periods. This present work 
aims to analyze the diverse ionospheric responses and the 
results of multiple types of observations performed at low- 
and mid-latitude areas of China during this geomagnetic 
storm on September 7–8, 2017.

Data and methods

The GPS observation data from nearly 250 stations of 
the Crustal Movement Observation Network of China 
(CMONOC), the geostationary earth orbit (GEO) satellite 
data of BeiDou Navigation Satellite System (BDS), the iono-
sonde and magnetometer data collected from 4 stations in 
China are used to investigate the ionospheric responses over 
China. Figure 1 shows the locations of CMONOC stations 
(blue circles), the IGS Multi-GNSS experiment (MGEX) 
stations (red triangles), ionosonde and magnetometer sta-
tions (green squares) over China and surrounding areas. 
Based on the observation data from CMONOC stations, we 
calculate the ionospheric delay by the geometry-free com-
bination used in double-frequency GNSS receivers for pre-
cise point positioning (PPP) method and convert the slant 
TEC (STEC) to the vertical TEC (VTEC) on all ionospheric 

Fig. 1   Locations of CMONOC, 
MGEX stations, ionosonde and 
magnetometer stations
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pierce points (IPPs) based on the ionospheric single-layer 
model. Considering the influence of TEC background trend, 
we filter it to obtain actual TEC perturbation named de-
trended TEC (DTEC) by regarding the background trend 
as a second-order function of universal time and latitude 
referring to the previous studies (Ding et al. 2012; Tang et al. 
2016). The DTEC can be given as:

where VTEC , VTEC represent the measured VTEC from 
GPS observations and the TEC background trend, respec-
tively; � , t  are the geographic latitude and universal time, 
respectively; represents the universal time at the minimum 
of the zenith distance at the ionospheric pierce point (IPP); 
is the latitude of the IPP at time; C0 ∼ C4 are the coefficients 
of the function.

The BDS GEO VTEC data from the MGEX stations and 
the critical frequency ( foF2 ) of the ionospheric F2 layer 
from ionosonde stations are used to analyze the variation 
and disturbance of the ionosphere. The day-to-day variabil-
ity threshold of the ionospheric VTEC can be defined as 
(Jin et al. 2017):

where rTEC represents the regular variability threshold of 
the TEC; TECmedian is the median values of 5 days GEO 
VTEC before the storm time; std is the standard deviation 
of 5 days VTEC values. Therefore, the outside parts of the 
regular variability threshold can be seen as the ionospheric 
response. The relative deviation of foF2 is used to measure 
the disturbance intensity of the ionospheric F2 layer. It can 
be given as follows:

where foF2 is the measurement from ionosonde station dur-
ing storm time; foF2(median) represent the median values 
in 5 days measurements before storm time (Wen and Mei 
2020).

The horizontal intensity of the magnetic field variation 
observed from the magnetometers with latitude intervals are 
used to characterize the disturbance response of the earth’s 
magnetic field to the storm. In addition, the electron density 
Ne of the ionosphere from the Swarm A and C satellites is 
introduced to analyze the latitude variation of the electron 
density Ne over China and verify the results of the iono-
spheric response during storm time. The Swarm is a constel-
lation mission for earth observation launched by European 
Space Agency (ESA). The mission consists of two lower 

(1)
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0
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4
(t − t

0
)2),

(2)rTEC =TECmedian ± 1.5std,

(3)DfoF2 =
foF2 − foF2 (median)

foF2(median)
,

pair of satellites A, C flying side by side at 470 km altitude 
and one higher satellite B flying at 520 km altitude (Akala 
et al. 2020).

Geomagnetic conditions of the storm in September 
2017

Many studies have discussed the geomagnetic activity condi-
tion on September 7–8, 2017 (Curto et al. 2018; Habarulema 
et al. 2020; Kumar and Kumar 2020). We briefly describe 
the evolution of the storm and the main factors that cause 
geomagnetic disturbance. Figure 2 shows the variations 
of the Bz component of the interplanetary magnetic field 
(IMF Bz), the auroral electrojet index (AE), the geomag-
netic indexes SYM-H and Kp during September 5–11, 2017. 
The first storm starts at 20:00UT on September 7 with a 
rapidly southward turning of IMF Bz and a sudden decline 
of SYM-H index. The IMF Bz and SYM-H index reach the 
minimum values of − 31.0 nT and − 144 nT at 01:00 UT 
on September 8, which is generally attributed to the coronal 
mass ejection (CME) (Blagoveshchensky et al. 2019). The 
AE and Kp indexes also reached the peak value of 2063 
nT and 8. The IMF Bz and SYM-H index turn to the mini-
mum values again of − 17.4 nT and − 107 nT respectively 
at 13:50 UT on September 8, which characterizes the second 
geomagnetic storm as a result of the CME’s material arrival 
(Blagoveshchensky and Sergeeva 2019). The AE and Kp 
index also display the second peak values of 2351 nT and 8 
at that moment. Then the second storm has gradually recov-
ered the regular condition on September 9–11. 

Fluctuation of ionospheric TEC

Figure 3 shows the variation of VTEC with a temporal inter-
val of 2 h observing from nearly 250 CMONOC stations 
on September 8, 2017. The ionospheric VTEC displays a 
prominent enhancement and reaches the maximum value 
of 47 TECU at 03:00 UT at mid-latitudes, while VTEC val-
ues reach the maximum value of 66 TECU at 05:00 UT at 
the low-latitude regions. After 13:00 UT on September 8, 
the VTEC shows a significant depletion and decreases to 
the minimum at low and mid-latitude regions. Considering 
the variation of geomagnetic conditions on September 8, 
the ionospheric VTEC enhanced during the first storm over 
China regions. After that, the VTEC generates a rapid deple-
tion during the second storm.

Figure 4 shows the latitude variations of VTEC along 
geographical longitudes (100°E, 110°E) during Septem-
ber 6–10, 2017. The lower panel presents the variation of 
SYM-H index and black dashed lines represent the time of 
the first storm and the second storm. Figure 5 shows the 
longitude variations of VTEC along geographical latitudes 
(25°N, 30°N) during September 6–10, 2017. The lower 
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panel and black dashed lines in Fig. 5 are the same as Fig. 4. 
From Fig. 4, VTEC values decrease with the increase of lati-
tude, and its variation over geographical longitudes (100°E, 
110°E) has a similar identity during September 6–10. Dur-
ing the first storm on September 8, the mid-latitude VTEC 
displays a prominent increase compared to the value on 
September 6–7. By contrast, the low-latitude VTEC has an 
unusual variation that shows a persistent enhancement of 
VTEC values at daytime on September 8–10 during this 
geomagnetic storm. In Fig. 5, the longitude variations of 
VTEC show considerable disparities over different latitudes 
(25°N, 30°N). The VTEC values over latitude 30°N increase 
to the maximum during the first storm and then display a 
rapid depletion during the second storm. We observe a dif-
ferent change of VTEC over latitude 25°N. The VTEC val-
ues reach the peak value on September 7 before the storm 
time, whereas its values present a moderate decrease during 
the first storm on September 8. During September 9–10, the 
VTEC over 25°N shows a persistent enhancement compared 
to the values over latitude 30°N.  

Figure  6 shows the variations of VTEC observed 
from BDS GEO satellites over 5 MGEX stations during 

September 6–10, 2017. The dark and light blue dashed lines 
represent the regular variability threshold calculated from 
(2). The part that is larger (smaller) than the regular thresh-
old is defined as the positive (negative) response, respec-
tively. As shown in Fig. 6, the daytime VTEC values from 
stations GAMG and JFNG present a marked increase to 47 
TECU at 05:00 UT (13:00 LT) on September 8 and display 
distinct positive responses with disturbances up to 15–20 
TECU during the first storm. The VTEC values over these 
two stations all show slightly negative responses at nighttime 
on September 9–10, consistent with Lei et al. (2018). At 
station LHAZ, TEC displays a unique variation feature that 
the maximum of VTEC values occurs on September 7 before 
the storm time, which is similar to the result in Fig. 5. Dur-
ing the first storm, the daytime VTEC from station LHAZ 
showed no obvious disturbance compared to September 7. 
From the result of stations NCKU and CMUM, the daytime 
VTEC values present moderate positive responses during 
the first storm, but the VTEC values from station CMUM 
show a distinct positive response on September 9 after the 
second storm. In addition, we discover the nighttime VTEC 
values generate some intensive perturbations observed from 

Fig. 2   Variations of Bz compo-
nent of interplanetary magnetic 
field (IMF), auroral electrojet 
(AE), geomagnetic indexes 
SYM-H and Kp on September 
5–11, 2017. The vertical dotted 
lines represent the time of the 
first storm and the second storm
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stations LHAZ and CMUM during the second storm time 
on September 8, which means that the ionosphere in this 
area might generate a different response during the night-
time compared to the regular variation of VTEC from other 
stations.

Figure 7 shows the variations of foF2 and their median 
values in the 5 days measurements before the storm time at 
stations BEIJ, WHAN, and SANY. Figure 8 displays the var-
iations of DfoF2 at three stations marked by different colors. 
During the first storm, the variations of foF2 observed from 

Fig. 3   TEC maps calculated 
from CMONOC stations from 
01:00 UT to 23:00 UT on Sep-
tember 8, 2017

Fig. 4   Latitude variations of 
VTEC along geographical 
longitudes (100°E, 110°E) 
during September 6–10, 2017. 
The lower panel presents the 
variation of SYM-H index
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stations BEIJ and WHAN show distinct enhancement up to 
nearly 8 MHz and 11 MHz, respectively in Fig. 7, and the 
DfoF2 of them present positive deviations compared to the 
normal state marked by green and blue lines in Fig. 8. The 
results from stations BEIJ and WHAN are similar to the 
variations of VTEC values from stations GAMG and JFNG, 
demonstrating that positive ionospheric response occurs at 
mid-latitude areas during the first storm time September 7–8, 
2017. The foF2 from station SANY has a similar variation 
with the median value and the DfoF2 from it has no clear 
disturbance deviations during the first storm time. But the 
DfoF2 display a moderate positive deviation during the sec-
ond storm on September 9 as shown in Fig. 8. We suggest 
that the low-latitude ionosphere has no distinct response dur-
ing the first storm time compared to the mid-latitude areas, 
while it has a positive response after the second storm on 
September 9, 2017 from the results of stations CMUM and 
SANY.

During the second storm time on September 8, the foF2 
from stations SANY also presents intensive perturbations 
that are the same as the variations of VTEC from stations 
LHAZ and CMUM. According to the locations of these sta-
tions, we speculate that this anomaly perturbation mainly 
occurs in the southwest of China. Therefore, the DTEC from 
dense CMONOC stations are used to study this anomaly in 
the following text.

Large‑scale traveling ionospheric disturbances

From the characteristic disturbance of the VTEC and foF2 
during the second storm period, we further plot two-dimen-
sional de-trended TEC maps to investigate the occurrence 
of the LSTIDs over China by eliminating TEC background 
trends. Figure 9 shows the variations of Detrended TEC 
(DTEC) maps over China from 14:00 UT to 17:00 UT on 
September 8. The four black dotted lines setting along the 
meridional and zonal lines as 100°E(a), 105°E(b), 35°N(c) 
and 25°N(d) are used to specifically investigate the meridi-
onal and zonal variations of DTEC on these four axes with 
universal time during the storm period. As shown in Fig. 9, 
we find a drastic LSTID event lasting for more than 3 h on 
September 8. The propagation scope mainly covers the most 
southwest regions of China, ranging from 90°E to 115°E, 
20°N to 40°N. Considering the irregular changes of the 
LSTID, we think that this irregular characteristic possibly 
is attributed to the joint effect of multiple LSTID groups.

Figure 10 presents the DTEC variations in the time-latitude 
along 100°E, 105°E longitude axes. The time axes are presented 
by universal time (UT) and local time (LT = UT + 8 h). Fig-
ure 11 shows the DTEC variations in the time longitude along 
35°N and 25°N latitude axes. The black dashed lines mark the 
LSTID front trajectory in Figs. 10 and 11. We have observed 
two kinds of LSTID groups on September 8. In particular, the 
first group of LSTID occurs at about 13:30 UT (21:30 LT) and 

Fig. 5   Longitude variations 
of VTEC along geographical 
latitudes (25°N, 30°N) during 
September 6–10, 2017
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lasts for more than 3 h until 17:00 UT (01:00 LT). This kind of 
LSTID propagates equatorward from 42 to 28°N accompanied 
by a positive and a negative propagation front. The zonal veloc-
ity of this LSTID reaches about 132.3 m/s. Another LSTID 
marked group 2 in Fig. 10 starts at nearly 16:30 UT (00:30 
LT) and lasts until 19:00 UT (03:00 LT), which propagates 
with a period of 2.5 h. The propagated direction of the second 
LSTID is poleward from 15 to 26°N with one negative and two 
positive propagation fronts. The zonal velocity of this LSTID is 
about 149.7 m/s. We have also observed the longitude propaga-
tion features of corresponding two LSTID groups along 35°N 

and 25°N latitude axes in Fig. 11. The propagated directions of 
these two LSTIDs along 35°N and 25°N latitude axes are both 
westward. The first one propagates from 107 to 96°E with a 
meridional velocity of 103.9 m/s, and the other propagates from 
115 to 98°E with a meridional velocity of 224.9 m/s.

Considering the propagation velocity of LSTID fronts in 
Figs. 10, 11 is not the real velocity movement of LSTID. 
According to the geometric structure, the zonal and merid-
ional velocities are viewed as the vertical and horizontal 
components of actual movement vectors of LSTID propaga-
tion (Chen et al. 2020). The propagation azimuth � of actual 

Fig. 6   Variations of VTEC from 
GEO satellites on September 
6–10, 2017. The red lines 
represent the GEO VTEC from 
5 MGEX stations in the order 
of the IPPs from north to south. 
The dark and light blue dashed 
lines represent the regular vari-
ability threshold
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LSTID velocity can be regarded as the arctan function of 
vertical and horizontal components. Therefore, the actual 
LSTID velocity and the propagation azimuth can be given 
as follows:

(4)

⎧⎪⎨⎪⎩

VTID = Vvertical × Vhorizontal∕

�
V2

vertical
+ V2

horizontal

� = arctan(Vvertical∕Vhorizontal)

where VTID , � represent the actual velocity and propaga-
tion azimuth of LSTID, respectively. Based on the above 
method, the actual velocity and propagation azimuth of the 
first LSTID group that occurs at 13:30 UT is 81.7 m/s and 
231.8°, respectively. The propagation parameters of the sec-
ond LSTID group over the low-latitude areas are 124.6 m/s 
and 326.3°, respectively.

Figure 12 presents the variations of the electron density 
Ne observed from the Swarm A and C satellites in the even-
ing sector on September 6 and 8, 2017. The Ne of September 

Fig. 7   Variations of foF
2
 from 

three ionosonde stations BEIJ 
(40.3°N, 116.2°E), WHAN 
(30.5°N, 114.4°E), SANY 
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6 is regarded as the regular level reference to analyze the 
disturbed variation of Ne from Swarm A and C during storm 
time. It can notice that the low-latitude Ne from Swarm A 
and C both present prominent perturbations at 15:28 UT 
on September 8 compared to the values at 15:12 UT on 
September 6. At 16:59 UT on September 8, the intensity 
of the Ne perturbations along longitude about 75°E decays 
clearly with time compared to the values along longitude 
about 100°E. Based on the above results, the perturbations 
of the low-latitude Ne mainly occur in the southwest of 
China during the second storm time, which is almost con-
sistent with the scope and time of the LSTID in Fig. 9. The 
in situ electron density Ne measured by the Swarm A and 
C satellites verifies the presence of the nighttime LSTID in 
the southwest of China during the second storm period on 
September 8.

Based on de-trended TEC maps calculated from 
CMONOC stations, we can observe the propagated features 
of the LSTIDs in detail over China. In Figs. 9, 10, 11, the 
first group of LSTID propagates with equatorward direction 
and the second group of LSTID with poleward direction. 
The sources of equatorward LSTIDs have been widely dis-
cussed in previous studies (Tang et al. 2016; Zakharenkova 
et al. 2016; Cherniak and Zakharenkova 2018a, b; Jonah 
et al. 2018; Zhang et al. 2019a, b; Chen et al. 2020). It has 
been accepted that the enhancement of auroral electrojet, 
movement of the auroral oval, particle precipitation in the 
auroral areas are mainly physical sources of the equatorward 
LSTID propagation during the geomagnetic storm (Ding 
et al. 2007; Lyons et al. 2019). In the auroral region during 
storm time, the joule heating and Loren drag force stimulate 

the presence of atmospheric gravity waves (AGW), which 
contributes to the large-scale TIDs from high latitudes to 
lower latitudes (Chimonas and Hines 1970; Cherniak and 
Zakharenkova 2018a). Figure 13 shows the positions of the 
equatorward auroral oval boundary in the northern hemi-
sphere on September 8 from DMSP/SSUSI data. Different 
colors represent the positions of the auroral oval at differ-
ent time period. It can notice that the auroral oval bound-
ary gradually moves equatorward from 12:20 to 14:46 UT 
on September 8, which is clearly observed in the north of 
China. The equatorward LSTID at 13:30 UT is also observed 
along with an equatorward propagation. The features of this 
LSTID are well consistent with the variation of the auroral 
oval boundary from 12:20 to 14:46 UT in Fig. 13. The above 
results demonstrate that the movement of the auroral oval 
possibly induces the equatorward LSTID during the second 
storm on September 8.

Compared to the equatorward LSTID, studies on pole-
ward LSTID are relatively less than equatorward and the 
physical mechanism of poleward LSTID is also complicated. 
Chen et al. (2020) have investigated some poleward LSTIDs 
occurring in June 2015 over China and discovered that only 
one of the poleward LSTIDs is excited in the auroral oval 
directly according to the movement of the auroral oval dur-
ing storm time. The sources of other poleward LSTIDs are 
not sure due to a lack of observational data. Jonah et al. 
(2018) have observed both equatorward and poleward 
medium-scale TIDs over North America in May 2017 and 
they believed that the poleward-propagating TID possibly 
was attributed to local atmospheric gravity wave generating 
from convection activities. Habarulema et al. (2015) have 

Fig. 9   Variations of de-trended 
TEC (DTEC) maps from 14:00 
UT to 17:00 UT on September 
8, 2017. The four axes are the 
meridional and zonal lines of 
100°E (a), 105°E (b), 35°N (c) 
and 25°N (d)
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first observed poleward traveling ionospheric disturbances 
during the geomagnetic storm over African sectors and they 
thought the poleward-propagating LSTIDs were associated 
with the equatorial electrojet and the expansion of equatorial 
ionization anomaly (EIA).

The geomagnetic indices in Fig. 2 are the averaged val-
ues by data from stations located at different regions. But 
the local magnetometers can effectively observe their own 
characteristic features of the magnetic field variations. Fig-
ure 14 presents the variations of the H component of the 
earth’s magnetic field variations over three magnetometers 
during September 7–9. The data sets are available for sta-
tions MOHE, BEIJ and SANY. It can be seen that the H 
components of the three stations all decrease to the mini-
mum at 01:00 UT on September 8 during the first storm 
period, which is almost synchronous with the variations of 
the geomagnetic indices in Fig. 2. During the second storm 
period, the disturbance intensity of the H component at 

SANY magnetometer is equivalent to the intensity during 
the first storm. The disturbance intensity of three magnetom-
eters gradually weakens from low to high latitude compared 
to the first storm period. Based on the results from the H 
component, we demonstrate that the magnetic field at the 
low-latitude area had a more intense disturbance during the 
second storm on September 8, which possibly interconnects 
with the occurrence of the poleward LSTID.
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Fig. 10   Variations of de-trended TEC (DTEC) maps in the time-lati-
tude along 100°E, 105°E longitude axes. The black dashed lines rep-
resent the propagation of different LSTIDs
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Conclusion

We investigate the different ionospheric responses over 
China during the two consecutive geomagnetic storms on 
September 7–8, 2017 by combining GPS, GEO, Swarm 
satellites, ionosonde and magnetometer observations. The 
results show that the low- and mid-latitude VTEC present 
an enhancement and positive disturbance responses during 
the first storm period. The intensity of the positive response 
weakens with the latitude decrease. The foF2 only presents 
positive deviations over mid-latitude areas during the first 
storm. During the second storm, the pronounced perturba-
tions observed from the VTEC and foF2 in the southwest of 
China are regarded as the signature of the TID event. The 
occurrences of both equatorward and poleward LSTIDs are 
observed during the second storm period on the night of 
September 8. The corresponding duration of equatorward 
and poleward LSTIDs is about 3.5 h and 2.5 h, respectively, 
and these LSTIDs observed from GPS are consistent with 
the period of the perturbations from GEO VTEC and foF2 . 
The electron density Ne along longitude 100°E observed 
from Swarm A and C satellites also presents comparative 
perturbations like the VTEC and foF2 during the second 
storm period, which verifies the presence of the LSTIDs 
over China. Additionally, the variation of the auroral oval 
boundary from DMSP/SSUSI data presents an equatorward 
expansion that is similar to the feature of the equatorward 
LSTID observed. The horizontal component of the earth’s 

Fig. 12   Electron density Ne 
from the Swarm A (top) and 
Swarm C (bottom) satellites on 
September 6, 8 at different time
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magnetic field at SANY magnetometer has an equivalent 
disturbance intensity compared to the first storm during the 
second storm, which possibly interconnects with the pres-
ence of the poleward LSTID during the second storm period. 
From the results of these multiple observations, we dem-
onstrate that the ionospheric responses over China during 
this peculiar geomagnetic storm performs differently in local 
time. It mainly performs a positive disturbance response in 
the daytime during the first storm and two LSTIDs with dif-
ferent propagation directions in the nighttime during the 
second storm.
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