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Abstract
The corrections needed to realize integer ambiguity resolution-enabled precise point positioning (PPP-RTK) at a single-
receiver user are often treated as if they are deterministic quantities. The present contribution aims to study and analyze the 
effect the neglected uncertainty of these corrections, which are subject to time delay, has on the PPP-RTK user ambiguity 
resolution and positioning performance. Next to the analyses of the estimation results, we emphasize their quality informa-
tion and show to what extent the assumed positioning precision that the user is provided with differs from the minimum-
variance counterpart under an incorrectly specified user stochastic model. We develop and present two alternatives to the 
fully populated error variance matrix of the PPP-RTK corrections that the user can reconstruct with limited information 
from the provider so as to properly weigh his corrected data and achieve close-to-optimal performance for high latencies. 
Supported by numerical results, our study demonstrates that the alternative variance matrices are sufficient enough for the 
user to obtain improved instantaneous PPP-RTK performance and a realistic precision description in the positioning domain.

Keywords Global navigation satellite systems (GNSS) · PPP-RTK correctional uncertainty · Best linear unbiased 
estimation (BLUE) · Precision description · Latency · Integer ambiguity resolution (IAR)

Introduction

Integer ambiguity resolution-enabled precise point posi-
tioning (PPP-RTK) is the global navigation satellite sys-
tem (GNSS) positioning mode that delivers single-receiver 
ambiguity-resolved parameter solutions. Its realization 
relies, next to satellite orbit and clock corrections, on the 
provision of satellite bias corrections which are often deter-
mined by a network of reference receivers (Wubbena et al. 
2005; Ge et al. 2005; Collins 2008; Teunissen et al. 2010; 
Geng et al. 2012; Odijk et al. 2016). Such corrections can 
also be computed and provided to positioning users via only 
one single reference receiver, the so-called provider. With 
such single-receiver PPP-RTK corrections (Khodabandeh 
and Teunissen 2015), nearby positioning users are able to 

correct their code and phase data, recovering the integerness 
of their phase ambiguities, thereby achieving high-precision 
positioning solutions.

Despite their random nature, the PPP-RTK corrections 
are often treated as nonrandom (deterministic) quantities 
either for implementation simplicity or because of the vast 
amount of information that needs to be transmitted to the 
user (Odijk et al. 2014). The justification behind this ran-
domness is that the provider data used to generate these 
corrections are accompanied by an amount of uncertainty. 
Would the user, therefore, want to obtain minimum-variance 
positioning solutions, he needs to involve the true stochastic 
model of his corrected data so as to correctly incorporate 
their quality description into his estimation process. When 
the latter is characterized solely by the user data uncertainty, 
the weight matrices underlying the user model do not rep-
resent the inverse of the actual variance matrices. In such 
cases, the user’s parameter solutions may lose their ‘mini-
mum-variance’ property and become sub-optimal.

This becomes even more pronounced when one considers 
that, in real-time GNSS applications, the PPP corrections 
are not usually provided at an instant to the user but with a 
certain time delay or latency. Therefore, the users have to 
predict the corrections in time, based on the information 
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and methodology given by the provider, see (IGS 2020), 
in order to bridge the gap between the correction genera-
tion time and the user positioning time, with a penalty on 
the achieved positioning accuracy as shown for PPP (Yang 
et al. 2017) and PPP-RTK (Wang et al. 2017). Similar cor-
rection prediction approaches have been earlier developed 
for standard differential positioning applications (Teunissen 
1991). A far more serious problem than the accuracy degra-
dation is that the provided quality description of the user’s 
parameters fails to represent the actual one since the amount 
of uncertainty that lies in the corrections may get amplified 
as the time delay increases.

Based on a single-station framework for the generation 
and time-prediction of multi-epoch PPP-RTK corrections, 
Khodabandeh (2021) showed the effect of high latency on 
the PPP-RTK user ambiguity resolution performance. The 
uncertainty involved in the time-predicted corrections is also 
expected to impact the user’s ambiguity-resolved position-
ing performance and its accompanied precision description, 
for which an analysis is missing. This becomes especially 
relevant for peer-to-peer positioning applications that are 
enabled in such a single-station setup, without the need for 
instantaneous exchange of information, and are of great 
interest in light of the rapid development and utilization of 
low-cost GNSS devices (Banville et al. 2019; Psychas et al. 
2019; Wang et al. 2021).

In this contribution, we aim to demonstrate and analyze 
the user ambiguity resolution and positioning performance 
in case one neglects the uncertainty of the time-predicted 
single-station PPP-RTK corrections, and to show to what 
extent his performance gets different from its true coun-
terpart. Next to the user positioning estimation results, 
particular emphasis is given to the quality description that 
accompanies them. We develop and present two alternatives 
to the fully populated variance matrix of the PPP-RTK cor-
rections that the user optimally requires. While such alter-
native variance matrices can be fully structured at the user 
side via a limited amount of information from the provider, 
they are proven to be sufficient enough for the user to weigh 
his corrected data and achieve close-to-optimal results for 
high latencies.

This contribution is organized as follows. We first present 
our underlying observation model and estimable parame-
ters for both the single-station provider and the user setups. 
Further, we describe our processing strategy and show the 
importance of conducting a quality judgment on the com-
bined rather than the individual corrections. By consider-
ing various latencies and different strategies regarding the 
uncertainty of single-station PPP-RTK corrections, the sin-
gle-epoch ambiguity resolution performance is then inves-
tigated based on GPS and Galileo dual-frequency observa-
tions through a formal and empirical success rate analysis. 
Afterward, the corresponding positioning performance is 

analyzed for the ambiguity-float and -fixed cases, in terms 
of both the positioning accuracies and the precision descrip-
tion that goes along with them. The results are discussed, 
and concluding remarks are presented.

Observation model

In this section, we first present the estimable parameters of 
the PPP-RTK provider and user models based on uncom-
bined GNSS observation equations. Then, we introduce how 
the user obtains the time-predicted combined corrections 
along with their variance matrix.

Single‑station provider

Let us commence with the linearized observation equations 
of the observed-minus-computed, single-epoch, uncombined 
phase ( Δ�s

r,j
 ) and code ( Δps

r,j
 ) observables of a satellite 

s (s = 1,… ,m) on frequency j (j = 1,… , f ) that are col-
lected by the provider r:

where m and f  denote the number of satellites and frequen-
cies, respectively. Here and in the following, the observed-
minus-computed observations are assumed to include the 
precise orbital corrections. The position increment Δxr is 
linked to the observations through the receiver-satellite 
direction vector gs

r
 . The common receiver and satellite clock 

parameters are denoted with dtr and dts , respectively. The 
zenith tropospheric delay (ZTD) for receiver r , after remov-
ing the a priori (dry) value, and its mapping function for 
receiver r and satellite s are represented by �r and ms

r
 , respec-

tively. The first-order slant ionospheric delay experienced 
between the receiver r and satellite s on the first frequency 
is denoted by �s

r
 , and its linkage to the observations is done 

through the coefficient �j = �2
j
∕�2

1
 that depends on the wave-

length �j . �r,j and �s
,j
 stand for the receiver and satellite phase 

biases, respectively, while dr,j and ds
,j
 denote those for the 

code observations, respectively. The integer phase ambiguity 
is represented by as

r,j
 . All parameters are expressed in units 

of range, apart from �r,j , �s,j and as
r,j

 that are expressed in units 
of cycles. E(⋅) denotes the expectation operator. Note that, 
the receiver position is precisely known for the provider and 
therefore absent from (1), but unknown for the user receiver.

However, the lack of information content in the above 
system of GNSS observation equations does not allow us 
to unbiasedly determine all the individual parameters. By 
applying the S - system theory (Baarda 1973; Teunissen 

(1)

E(Δ�s
r,j
) = gs

T

r
Δxr + dtr − dts + ms

r
�r − �j�

s
r
+ �j(�r,j − �s

,j
+ as

r,j
)

E(Δps
r,j
) = gs

T

r
Δxr + dtr − dts + ms

r
�r + �j�

s
r
+ (dr,j − ds

,j
)
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1985) and by constraining a minimum set of parameters, 
namely the S - basis , we can remove the underlying model 
rank deficiencies and determine, instead of the original, esti-
mable functions of the original parameters.

As the S - basis is dependent not only on the measurement 
model but also on the assumptions regarding the dynamic 
model of the involved parameters, we need to make such 
models explicit. Some of the above parameters are known 
to behave constant in time, e.g., the phase ambiguities, while 
others may rapidly change in time, such as the satellite 
clocks. Therefore, to provide the user with the capability to 
time-predict the delayed corrections, one may take recourse 
to a minimum-mean-squared-error filtering technique such 
as the Kalman filter (Kalman 1960).

In this study, we choose a constant-state process for mod-
eling the temporal behavior of the ionospheric delays, ambi-
guities and code/phase biases:

 and a constant-velocity process to describe the temporal 
behavior of the satellite clocks:

 where � and � denote parameters the temporal behavior 
of which is modeled with a constant-state (random-walk) 
and a constant-velocity process, respectively. �� denotes the 
first-order time derivative of � . i, k and Δt denote the epoch 
index, the total number of epochs and the sampling period, 
respectively. The system noises n� , n� and n�� are assumed 
to be zero mean (Teunissen 2001).

(2)�(i) = �(i − 1) + n�(i), i = 2,… , k

(3)
�(i) = �(i − 1) + Δt��(i − 1) + n�(i),

��(i) = ��(i − 1) + n��(i), i = 2,… , k

The reason behind the selection of the above processes 
for the time variations of the parameters is justified as fol-
lows. The phase ambiguities are assumed to be time con-
stant unless cycle slips occur, while the receiver and satel-
lite biases are reported to behave rather stable over time 
(Komjathy et al. 2005; Zhang et al. 2018). Thus, their system 
noises are set to be identically zero. As for the ionospheric 
delays, it is known that they do not show significant time 
variations in short time spans, indicating that a constant-state 
process can sufficiently describe their temporal behavior. 
Such a process, though, seems not adequate to capture the 
temporal variation of the satellite clocks due to their rapid 
changes in time (Wang et al. 2017). Finally, the receiver 
clocks are assumed to be completely unlinked in time.

Based on the above assumptions, the full-rank version 
of the provider’s model can be expressed as (Khodabandeh 
2021):

where the estimability and interpretation of the param-
eters, along with the S - basis , are listed in Table 1. Set I 

(4)

I ∶

�
E(Δ𝜙s

r,j
(i)) = dt̃r(i) − dt̃s(i) − 𝜇j �̃�

s
r
(i) + 𝜆j(𝛿r,j(i) − 𝛿s

,j
(i))

E(Δps
r,j
(i)) = dt̃r(i) − dt̃s(i) + 𝜇j �̃�

s
r
(i) + (d̃r,j(i) − d̃s

,j
(i))

II ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dt̃s(i) = dt̃s(i − 1) + Δt𝜕dt̃s(i − 1) + ndts(i)

𝜕dt̃s(i) = 𝜕dt̃s(i − 1) + n𝜕dts (i)

�̃�s
r
(i) = �̃�s

r
(i − 1) + n𝜄s

r
(i)

𝛿r,j(i) = 𝛿r,j(i − 1) + n𝛿r,j(i)

d̃r,j(i) = d̃r,j(i − 1) + ndr,j(i)

𝛿s
,j
(i) = 𝛿s

,j
(i − 1) + n𝛿s

,j
(i)

d̃s
,j
(i) = d̃s

,j
(i − 1) + nds

,j
(i)

Table 1  Estimable parameters and S - basis parameters of the single-system, multi-frequency, single-station provider model, in case of the con-
stant-velocity setup for the satellite clocks

(⋅),IF =
1

�2−�1

[
�2(⋅),1 − �1(⋅),2

]
; (⋅),GF = −

1

�2−�1

[
(⋅),1 − (⋅),2

]

Parameter Interpretation

Rec. clocks dt̃r(i) = dtr(i) − dtr(1) − [i − 1]Δt𝜕dtr(2)

Sat. clocks dt̃s(i) = dts(i) + ds
,IF
(1) − dtr(1) − dr,IF(1) − [i − 1]Δt𝜕dtr(2) − 𝜏s

r
(i)

Ionospheric delays �̃�s
r
(i) = 𝜄s

r
(i) + dr,GF(1) − ds

,GF
(1)

Rec. phase biases 𝛿r,j(i) = 𝛿r,j(i) − 𝛿r,j(1)

Sat. phase biases 𝛿s
,j
(i) = 𝛿s

,j
(i) +

1

𝜆j

(
𝜇j

[
ds
,GF

(1) − dr,GF(1)
]
−
[
ds
,IF
(1) − dr,IF(1)

])
− 𝛿r,j(1) − as

r,j

Rec. code biases d̃r,j(i) = dr,j(i) − dr,j(1)

Sat. code biases

d̃s
,j
(i) =

⎧⎪⎨⎪⎩

ds
,j
(i) − ds

,j
(1); j = 1, 2

�
ds
,j
(i) −

�
ds
,IF
(1) + 𝜇jd

s
,GF

(1)
��

−
�
dr,j(1) −

�
dr,IF(1) + 𝜇jdr,GF(1)

��
; j > 2

Sat. clock velocities 𝜕dt̃s(i) = 𝜕dts(i) − 𝜕dtr(2)

S - basis parameters dtr(1), dr,j(1), �r,j(1), d
s
,j=1,2

(1), as
r,j
, dtr(2)
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and II consist of the measurement and dynamic models, 
respectively.

The inclusion of the satellite clock velocity parameter 
𝜕dt̃s(i) as unknown in the dynamic model brought an extra 
rank-deficiency, which was removed by considering the 
receiver clock at the second epoch as part of the S - basis . 
This is the reason why the receiver clock, the satellite clocks 
and their velocities are biased by the receiver clock velocity 
�dtr(2) . As a consequence, two epochs of data are required 
to initialize the filter.

The stochastic model, as encapsulated in the vari-
ance–covariance (vc-) matrix of the phase and code meas-
urements, is given as

where yr =
[
Δ�T

r
(i), ΔpT

r
(i)
]T and Δ�

r
(i) =

[
Δ�1

r,1
(i),… ,

Δ�m

r,1
(i),…Δ�1

r,f
(i),…Δ�m

r,f
(i)
]T

 is the fm − vector contain-
ing the provider’s phase measurements at epoch i . Similarly, 
Δpr(i) stands for the code measurements vector. The f × f  
matrices C�� and Cpp are, respectively, the covariance matri-
ces of the phase and code observables at zenith. The m × m 
matrix Wr(i) = diag(w1

r
(i),… ,wm

r
(i)) contains the weights for 

every receiver-satellite link at epoch i . D(⋅) denotes the dis-
persion operator and ⊗ the Kronecker product. The notations 
diag and blkdiag represent a ‘diagonal’ and a ‘block-diago-
nal’ matrix, respectively.

In case of the dynamic model, the receiver and satellite 
biases are assumed constant in time, and thus their system 
noises are set to be identically zero. As stated previously, 
the temporal behavior of the satellite clocks and slant ion-
ospheric delays is modeled by a constant-velocity and a 
constant-state process, respectively. Therefore, the result-
ing covariance matrix S of their associated system noises, 
linking the parameters at two successive epochs, read as 
(Wang et al. 2017):

where q2
dts

 and q2
�s
r

 denote the spectral density (in units of 
m2/s ) of the clock and ionosphere velocity parameters, 
respectively. Im denotes an m × m unit matrix.

PPP‑RTK user

Given that the correction generation time, say k , differs 
from the user positioning time, say l (l > k) , the user needs 
to time-predict the PPP-RTK corrections using the 

(5)Qyryr
= D

([
Δ𝜙r(i)

Δpr(i)

])
= blkdiag(C𝜙𝜙,Cpp)⊗W−1

r
(i)

(6)

S = D

⎛⎜⎜⎝

⎡⎢⎢⎣

ndts

n𝜕dts

n𝜄s
r

⎤⎥⎥⎦

⎞⎟⎟⎠
= blkdiag

�
q2
dts

�
Δt

2
0

0
1

2Δt

�
, q2

𝜄s
r

Δt

�
⊗ Im

individual corrections d̂̃ts(k), 𝜕d̂̃ts(k), ̂̃𝜄s
r
(k), ̂̃𝛿s

,j
(k), ̂̃ds

,j
(k) . 

Although the provided satellite code and phase biases are 
characterized by higher time stability than the other 
parameters and could be provided with a lower transmis-
sion rate, we assume here that all the PPP-RTK corrections 
are provided at the same epoch k for notational conveni-
ence. The time-prediction of the corrections at the user 
positioning time follows as:

where [l − k] Δt is referred to hereafter as latency. Collecting 
the corrections at epoch k in a vector, ĉ

k
=

[
d̂̃t1(k),… d̂̃tm(k),

𝜕d̂̃t1(k),… , 𝜕d̂̃tm(k), ̂̃𝜄1
r
(k),… , ̂̃𝜄m

r
(k), ̂̃𝛿1

,j
(k),… , ̂̃𝛿m

,j
(k), ̂̃d1

,j
(k),

… , ̂̃dm
,j
(k)

]T
 , and their corresponding variance matrix Qckck

 , 
the time-prediction of the corrections in matrix–vector nota-
tion reads as follows:

where Sl is the system noise variance matrix after replac-
ing Δt with [l − k] Δt in (6), and Φl|k is the state transition 
matrix:

It is reasonably implied here that the provider’s dynamic 
model settings are given to the user either in real time or 
through an offline accessible database. The user is then 
able to obtain the applicable PPP-RTK corrections in their 
c o m b i n e d  fo r m  ĉu,l =

[
ĉT
𝜙,l
, ĉT

p,l

]T
=

[
ĉT
𝜙,1,l

,… ĉT
𝜙,f ,l

,

ĉT
p,1,l

,… , ĉT
p,f ,l

]T
 as follows:

with

where Λ is an f × f  diagonal matrix holding the frequency-
specific wavelengths as its entries, � is an f − vector with 
the ionospheric coefficients as its entries, and Ef  is an f × f  
identity matrix with its first two columns removed. Note that, 
Ef  is structured in this way because the satellite code biases 
are estimable only from the third frequency onward in the 
S - basis choice given here (see Table 1).

(7)

d̂̃ts(l) = d̂̃ts(k) + [l − k]Δt𝜕d̂̃ts(k)

̂̃𝜄s
r
(l) = ̂̃𝜄s

r
(k)

̂̃𝛿s
,j
(l) = ̂̃𝛿s

,j
(k)

̂̃ds
,j
(l) = ̂̃ds

,j
(k)

(8)ĉl = Φl|k ĉk, Qclcl
= Φl|k Qckck

ΦT
l|k + Sl

(9)Φl|k = blkdiag

([
1 [l − k] Δt

0 1

]
, 1, If , If−2

)
⊗ Im

(10)ĉu,l = H ĉl, Qu
clcl

= HQclcl
HT

(11)H =

[
ef 0 +𝜇 Λ 0

ef 0 −𝜇 0 Ef

]
⊗ Im
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Given the correction component (10), the user’s single-
epoch, corrected phase and code observation equations are 
expressed as follows:

with the interpretation of the user’s estimable parameters 
shown in Table 2. In this study, we focus on the impact of 
time-predicted corrections on the user positioning perfor-
mance. We confine our study to a single-epoch user setup 
as it is the ultimate goal of real-time applications and, at the 
same time, provides a lower bound for the precision of the 
corresponding user’s multi-epoch solutions. It is worth men-
tioning that the user ambiguities are of double-differenced 
form, and therefore integer-valued.

Similar to the provider’s stochastic model, the vc-
matrix of the user’s phase and code measurements is given 
as follows:

where Δ�u(l) and Δpu(l) are the fm − vectors containing the 
user’s phase and code measurements at epoch l , respectively. 
We remark here that the phase C�� and code Cpp covariance 
matrices are not necessarily the same for the provider and 
the user but depend on the employed receivers. Note that, 
the user’s measurement vc-matrix (13) takes into account 
the uncertainty of the time-predicted PPP-RTK corrections. 
This is usually ignored in most PPP-RTK studies since the 
corrections are assumed to be sufficiently precise so that 
they can be treated as if they are deterministic. An additional 
reason is that the provider needs to transmit, apart from the 
correction estimates, their associated vc-matrix, the vast 
information of which makes it impossible to transmit due to 

(12)

E(Δ𝜙s
u,j
(l) + ĉs

𝜙,j,l
) = gs

T

u
Δxu(l) + dt̃u(l) − 𝜇j �̃�

s
u
(l) + 𝜆j (𝛿u,j(l) + ãs

u,j
(l))

E(Δps
u,j
(l) + ĉs

p,j,l
) = gs

T

u
Δxu(l) + dt̃u(l) + 𝜇j �̃�

s
u
(l) + d̃u,j(l)

(13)

Qyuyu
= D

([
Δ𝜙u(l)

Δpu(l)

])
= blkdiag(C𝜙𝜙, Cpp)⊗W−1

u
(l)

���������������������������������������
Q0

yuyu

+Qu
clcl

the large bandwidth required and neglects the whole purpose 
of the state-space-representation (SSR).

Experimental results and analysis

In this section, we first introduce the experimental setup 
and processing strategy followed at both the provider and 
user components. We then analyze why one should conduct 
a quality judgment of the combined PPP-RTK corrections 
rather than the individual ones. In the following, we numeri-
cally demonstrate and analyze the user instantaneous ambi-
guity resolution and positioning performance.

Data selection and processing strategy

In this study, 1 Hz GPS L1/L2 and Galileo E1/E5a code 
and phase data were collected at the stations CUBS and 
UWA0 (Perth, Australia) on DOY 218 of 2018. The 8 km 
distance between the stations allows to reasonably assume 
that the ionospheric delays experienced at both receivers 
are almost identical. Both stations are equipped with Sep-
tentrio PolaRx5 receivers. The cutoff elevation mask for 
the data analysis in this work is set to be 10°, with 8 GPS 
and 6 Galileo satellites being tracked on average.

In our numerical analysis, the Multi-GNSS Experiment 
(MGEX; Montenbruck et al. 2017) GPS and Galileo satel-
lite orbits calculated by the Centre for Orbit Determina-
tion in Europe (CODE) were utilized as known param-
eters for both the provider and the user. The ground-truth 
coordinates of the stations were a priori precisely known 
and were used as known parameters in the single-station 
correction generation, while in the user processing, they 
served only for the evaluation of the positioning errors. 
Moreover, the Saastamoinen model (Saastamoinen 1972) 
with the Ifadis tropospheric mapping function (Ifadis 
1986) was used to obtain a priori tropospheric corrections. 
It has also been assumed that the residual troposphere has 

Table 2  Estimable parameters and S - basis parameters of the single-system, multi-frequency user model, in case of single-station provider cor-
rections

(⋅),IF =
1

�2−�1

[
�2(⋅),1 − �1(⋅),2

]
; (⋅),GF = −

1

�2−�1

[
(⋅),1 − (⋅),2

]
; (⋅)ij = (⋅)j − (⋅)i

Parameter Interpretation

Rec. clock dt̃u(l) = dtu(l) + du,IF(l) − dtr(1) − dr,IF(1) − [l − 1]Δt𝜕dtr(2)

Ionospheric delays
�̃�s
u
(l) =

{
𝜄s
ru
(l) + dru,GF(1), if 𝜄s

u
≠ 𝜄s

r

dru,GF(1), if 𝜄s
u
= 𝜄s

r

Rec. phase biases 𝛿u,j(l) = 𝛿u,j(l) − 𝛿r,j(1) +
1

𝜆j

(
𝜇j

[
du,GF(l) − dr,GF(1)

]
−
[
du,IF(l) − dr,IF(1)

])
+ a1

ru,j

Rec. code biases d̃u,j(l) = du,j(l) − dr,j(1) −
[
du,IF(l) − dr,IF(1)

]
− 𝜇j

[
du,GF(l) − dr,GF(1)

]
; j > 2

Ambiguities ãs
u,j

= as
ru,j

− a1
ru,j

; s ≠ 1

S - basis parameters du,j=1,2(l), a1
u,j
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been lumped to the generated satellite clock offset and, 
due to the short distance between the employed stations, 
the differential tropospheric delays have been neglected, 
i.e., �u ≈ �r . The receiver and satellite phase center offsets 
and variations, tidal and ocean loading effects, phase win-
dup, relativistic effects have been corrected with standard 
models (Kouba 2015).

To estimate the zenith referenced code and phase stand-
ard deviations (STDs), we applied the least-squares vari-
ance component estimation (LS-VCE) method (Teunissen 
and Amiri-Simkooei 2008) to the code and phase residuals 
computed for the baseline CUBS-UWA0 with fixed coordi-
nates. Table 3 lists the estimated zenith-referenced STDs for 
both GPS and Galileo frequencies. The observation weights 
were computed based on the elevation-dependent exponen-
tial function (Euler and Goad 1991).

In carrying out our analysis, we considered the station 
CUBS as the provider and computed the single-station PPP-
RTK corrections under the multi-epoch full-rank model (4) 
based on a Kalman filter. To initialize the filter, we per-
formed a standard least-squares estimation based on two 
epochs of data. For the clock and ionospheric system noise 
standard deviations, we used the following values (Wang 
et al. 2017; Khodabandeh et al. 2019): qG

dts
= 1mm /

√
s , 

qE
dts

= 0.3mm /
√
s and q�s

r
= 0.5mm /

√
s . We empirically 

selected a system-specific clock system noise as it is known 
that Galileo, due to the use of very precise passive hydrogen 
maser clocks in the majority of the constellation, has a larger 
percentage of satellites with smaller clock noise compared to 
GPS (Carlin et al. 2021), which has also been shown through 
signal-in-space clock error analysis (Hauschild and Mon-
tenbruck 2021).

The recursively estimated corrections were then pro-
vided to the user station UWA0 with a latency of 10 and 
15 s. Then, the user time-predicted the corrections based 
on (8) and (10) and performed single-epoch positioning on 
the basis of (12) using about 10,000 epochs of data. The 
user’s double-differenced float-estimated ambiguities were 
decorrelated and fixed to their integers with the integer least-
squares (ILS) estimator, which is efficiently mechanized in 
the LAMBDA (Least-squares AMBiguity Decorrelation 
Adjustment) method (Teunissen 1995). In this case, we did 
not make use of any ambiguity validation method to evaluate 

the empirical success rate and also the impact of both the 
latency and the correction uncertainty on it.

Quality of individual and combined corrections

In the attempt to evaluate the quality of the estimated 
corrections, one is usually inclined to inspect the for-
mal standard deviations of the individual PPP-RTK cor-
rections, see Zhang et al. (2013). However, it has to be 
reminded that the high correlation existing between them 
dictates that such a quality judgment should only be based 
on the combined version of these corrections (Khodaban-
deh and Teunissen 2015).

To highlight the role of the stated correlation, we show 
the time series of the formal standard deviation (STD) of 
both the individual and the combined PPP-RTK correc-
tions during the first 3600 epochs for latencies up to 15 s 
in Fig. 1. Since the PPP-RTK corrections are effective at 
the between-satellite level for user positioning (Khoda-
bandeh and Teunissen 2015), the aforementioned values 
are expressed for a representative satellite pair. One can 
observe from the figure that, even though the individual 
corrections are characterized by a code-precision level, 
especially at the beginning, the precision of the combined 
phase corrections is at the phase-noise level.

PPP‑RTK user performance

This section presents and analyzes the user single-epoch 
ambiguity resolution and positioning performance for vari-
ous cases regarding the error vc-matrix of the time-predicted 
corrections.

Let us first distinguish the assumptions that these cases 
are based on, for which a summarizing flowchart is given 
at Fig. 2. As a starting point, we take the ‘correct variance 
matrix’ case (case I) where the user takes the uncertainty 
of the single-station PPP-RTK corrections into account 
and performs a best linear unbiased estimation (BLUE). 
Although this is a stringent assumption because it means 
that the error vc-matrix of the corrections ( Qckck

 ) is made 
available to the user, this result will serve later on in ana-
lyzing the performance loss due to the inconsideration of 
the correctional uncertainty.

Then, we have the ‘incorrect variance matrix’ case 
(case II) which is the one used in practice, since the error 
vc-matrix of the corrections is often not provided to the 
users (Odijk et al. 2014). In this case, the user assumes that 
the corrections may be precise enough to be considered 
deterministic and, thus, weighs his corrected data based 
only on the uncertainty of his un-corrected data ( Q0

yuyu
 ). As 

a consequence, his weighted least squares parameter 

Table 3  Estimated zenith referenced standard deviations of the code 
(cm) and phase (mm) observables for GPS L1/L2 and Galileo E1/E5a 
for the baseline CUBS-UWA0

Code [cm] Phase [mm]

GPS 19.2/15.2 2.0/2.0
Galileo 16.4/13.5 2.0/2.0
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solutions may lose their minimum-variance property, 
although he assumes that he performs BLUE-estimation. 
This will have an effect not only on the parameter solutions 
but also on their quality description. In fact, the variance 
matrices reported by the incorrectly assumed BLUE 
become incorrect and fail to provide the actual quality of 
the estimates. In such a case, we assume that an analyzer 
(e.g., the provider) exists who, given that the user’s data 

uncertainty and the provider’s correction uncertainty are 
known, can perform a variance propagation law to obtain 
the actual quality of the user’s positioning solutions.

As a first solution to mimic the information con-
tent within the fully populated error vc-matrix of the 
corrections, we consider the ‘sub-optimal variance 
matrix’ case (case III). In this case, the user attempts 
to approximate the stated error vc-matrix based only on 

Fig. 1  Formal standard devia-
tions of the estimated between-
satellite clocks (top-left), slant 
ionospheric delays (top-right), 
phase biases (bottom-left), and 
combined code/phase PPP-
RTK corrections (bottom-right) 
with a latency of 0 (green), 10 
(blue) and 15 (red) seconds. The 
results correspond to the E1 
data of a Galileo satellite pair 
(PRNs 5 and 30)
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Fig. 2  Flowchart of the steps for obtaining the weighted least-squares 
user parameter solutions x̂ based on the strategy employed for the 
corrections’ error vc-matrix Qckck

 . yu is the vector of corrected obser-
vations, Q0

yuyu
 is the user’s data vc-matrix, Qyuyu

 is the user’s corrected 
data vc-matrix, A is the user design matrix, A+ is the least-squares 

inverse, Qu
clcl

 is the error vc-matrix of the time-predicted combined 
corrections, Sk and Sl are the system noise vc-matrices at epochs k and 
l . The steps inside the green box are optionally performed by an ana-
lyzer (e.g., the provider)
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the system-noise-variance part ( H Sl H
T ) of the error vc-

matrix of the corrections. The realization of this approxi-
mation is based on the fact that the provider’s dynamic 
model settings have been made available to the user either 
in real time or through an external database the user has 
access to. Even though the user is still not in a position 
to obtain BLUE solutions, we investigate whether this 
approximation is sufficient enough so that the PPP-RTK 
user achieves close-to-optimal results. Also in this case, 
we consider an analyzer who, given the user’s data uncer-
tainty is known, is able to apply the variance propagation 
law and obtain the actual precision description.

Finally, we have the ‘reconstructed variance matrix’ 
case (case IV), in which we propose a second solution to 
the aforementioned issue. Although the error vc-matrix 
of the time-predicted PPP-RTK corrections is not made 
available to the user, he attempts to fully reconstruct it 
based on a model-driven recursive engine he is equipped 
with. Given that the provider shares with the user infor-
mation about the dynamic model settings, measurement 
precision, filter starting time and the approximate receiver 
location, the user is able to mimic the correctional error 
vc-matrix by recursively estimating it as if he would be 
the provider. Having such a tool available, which runs in 
parallel to the user’s single-epoch processing, we inves-
tigate whether he is able to achieve (almost) identical 
results as if the error vc-matrix of the corrections would 
be made available directly by the provider.

Ambiguity resolution results

As a measure to analyze the instantaneous user ambigu-
ity resolution performance for the selected cases, we uti-
lize the easy-to-compute integer-bootstrapped (IB) success 
rate, which lower bounds that of the optimal ILS estimator 
(Teunissen 1999). The formal IB success rate is computed 
as (Teunissen 1998) follows:

with Φ(x) = ∫
x

−∞

1√
2π
exp

�
−

1

2
x2
�
dx ; P(⌣zILS) and P(⌣zIB) are 

the ILS and IB success rates of the decorrelated ambiguities 
z , respectively. 𝜎ẑi|I denotes the conditional standard devia-
tions of the i  th decorrelated ambiguities, with 
i = 1,… , f (m − 1) and I = 1,… , i − 1 , which are given as 
the square roots of the entries of the diagonal matrix D after 
and LTDL-decomposition of the user’s decorrelated ambigu-
ity vc-matrix.

Table 4 presents the user empirical and formal ambiguity 
success rates for all cases and for latencies of 0, 5 and 15 s. 
The formal values are computed by taking an average of the 
formal success rates of all the processing epochs, while the 
empirical success rate is given as the ratio of the number of 
processing epochs with correctly fixed ambiguities to the 
total number of the processing epochs. To validate whether 
the double-difference ambiguities are correctly fixed, we 
compared their ILS solution with the reference integer ambi-
guities computed from a geometry-fixed multi-epoch model.

The results in Table 4 show that, when the corrections 
are provided at an instant, the user achieves a 100% success 

(14)

P(
⌣
aILS = a) = P(

⌣
zILS = z) ≥ P(

⌣
zIB = z) =

f (m−1)∏
i=1

(
2Φ

(
1

2 𝜎ẑi|I

)
− 1

)

Table 4  Instantaneous empirical 
and formal success rate (%) 
at station UWA0 for the four 
precision description cases (I, 
II, III, IV) as a function of the 
latency. The results refer to the 
GPS-only L1/L2, Galileo-only 
E1/E5a and GPS-plus-Galileo 
L1/L2 + E1/E5a solutions 
obtained with 1 Hz data 
collected on DOY 218 of 2018

Systems/Case Δ = 0 s Δ = 10 s Δ = 15 s

Empirical Formal Empirical Formal Empirical Formal

GPS-only
I 100 100 99.8 99.9 99.2 99.8
II 100 100 93.5 100 77.5 100
III 100 100 99.5 100 96.3 100
IV 100 100 99.8 100 99.2 99.9
Galileo-only
I 100 100 100 100 100 100
II 100 100 96.0 100 94.1 100
III 100 100 99.9 100 99.9 100
IV 100 100 100 100 100 100
GPS-plus-Galileo 100 100
I 100 100 100 100 99.7 100
II 100 100 99.5 100 96.8 100
III 100 100 99.9 100 99.1 100
IV 100 100 100 100 99.6 100
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rate in all cases for both single- and multi-system solutions. 
However, when the user ignores the correction uncertainty 
for nonzero latencies, there is a drop in the empirical success 
rates that becomes more pronounced the longer the latency 
becomes. Reducing the number of used GPS satellites to 
obtain a coverage similar to that of Galileo showed that the 
ambiguity success rate further reduces from 77.5 to 70.9%, 
indicating the impact the number of satellites has on the 
ambiguity resolution performance. The dual-system integra-
tion pushes the success rate to 96.8% due to the increased 
number of used satellites, as observed by Khodabandeh 
(2021).

In addition, the results in the same table state that, upon 
employing the two proposed strategies for obtaining (part 
of) the error vc-matrix of the time-predicted corrections, the 
success rate increases dramatically, with the second method 
(case IV) bringing identical results to the case that the user 
is provided with the full error vc-matrix. This is an indica-
tor that a user equipped with such a model-driven recursive 
engine is able to achieve optimal performance.

Positioning results

Table 5 lists the single-epoch empirical and formal stand-
ard deviations of user’s position components for both the 
ambiguity-float and -fixed cases, considering cases I-IV and 
delays up to 15 s. The formal values are obtained from tak-
ing the average of the single-epoch position vc-matrices for 
all processing epochs, while the empirical values are deter-
mined by comparing the estimated positions to the ground-
truth coordinates. The ambiguity-fixed outcomes are com-
puted based on the correctly fixed solutions.3

Starting from the GPS-only results in case I, it can be 
observed that the ambiguity-float empirical and formal 
values remain almost invariant for increasing latency. 
This is due to the lower noise level of the time-predicted 
corrections compared to the one of the code data for the 
investigated time delays (see Fig. 1). Also, the empirical 
and formal solutions are in overall in good agreement, 
validating the stochastic model used for the processing.

Compared to the ambiguity-float results with dm-level 
precision for zero latency, one can observe two orders of 
magnitude improvement after successful ambiguity reso-
lution. However, the same improvement is not present for 
increased latency due to an increase in the ambiguity-fixed 
empirical and formal STDs. This is due to the fact that the 
phase data are affected by the uncertainty of the time-pre-
dicted PPP-RTK corrections, thereby restricting the range 
of improvement.

Despite the closeness between the fixed formal and 
empirical values for case I, in which the error vc-matrix 
of corrections is made available to the user, this agreement 
tends not to hold when the user assumes the corrections 

to be of nonrandom nature (case II) for nonzero latencies. 
In these cases, the larger the latency becomes, the differ-
ence between the two values increases. Therefore, although 
precise positioning can still be achieved with an incorrect 
measurement noise, it becomes clear that the estimation 
results are not accompanied by a realistic precision descrip-
tion. With an incorrectly specified stochastic model, the 
BLUE reported position standard deviations are incorrect 
and overoptimistic.

In case the user approximates the error vc-matrix of cor-
rections with only their system-noise-variance part (case 
III), we observe only a slight improvement in terms of the 
difference between the formal and empirical values for the 
fixed results. This result suggests that, upon using the sys-
tem-noise-variance part of the error vc-matrix of the correc-
tions, one can achieve close-to-optimal ambiguity resolution 
performance (see Table 4), but the precision description of 
position components is still not realistic enough. However, 
when the user is equipped with the proposed model-driven 
recursive engine (case IV) in an attempt to reconstruct the 
full error vc-matrix of the corrections, it can be observed 
that he obtains identical positioning performance as the one 
observed in case I. Therefore, one can expect to obtain opti-
mal positioning performance even when the provider does 
not provide the correction uncertainty, given that the user 
has all the necessary information to reconstruct it.

Similar conclusions can be drawn for the Galileo-only 
solutions. The GPS-plus-Galileo integrations deliver, in 
general, better positioning results compared to the single-
system solutions, which is expected as the satellite geometry 
is strengthened with a larger number of used satellites.

To gain a better understanding of the impact that the 
inconsideration of the correction uncertainty has on the 
user positioning precision description for nonzero laten-
cies, the horizontal positioning errors of user station UWA0 
are visualized and analyzed. Shown in Fig. 3 are the scatter 
plots of 10,000 single-epoch horizontal component estima-
tion errors based on GPS L1/L2 data for increased latency 
(looking from left to right) and the aforementioned cases 
(looking from top to bottom). Since the use of the model-
driven recursive engine (case IV) delivered identical results 
to the optimal case, we do not present the scatter plots of the 
former for brevity.

The solutions shown in each panel are categorized into 
three types; ambiguity-float solutions as gray dots, correctly 
fixed solutions as green dots, and wrongly fixed solutions as 
red dots. The provided 95% confidence ellipses are derived 
from the empirical and formal vc-matrices of the position 
solutions. The empirical vc-matrix is determined by the 
positioning errors derived from comparing the estimated and 
the ground-truth positions. The formal vc-matrix is given 
from the mean of the single-epoch position vc-matrices of all 
considered epochs. Note that, in the panels of the second and 
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third row, we provide the assumed confidence ellipse (blue), 
which is the one reported by the incorrectly assumed BLUE-
estimation, and the actual confidence ellipse (orange), which 
is the one computed with correct variance propagation law 
from an analyzer.

In the unrealistic case that the user has access to the error 
vc-matrix of the corrections (top row), one can observe 
only a small number of incorrectly fixed solutions, with 
the achieved empirical success rate being above 99% even 
for the 15 s latency case (see Table 4). Despite this fact, 
it is shown that as the latency increases, the success rate 
slightly decreases while the ambiguity-fixed position error 
scatter gets amplified. This is actually expected since the 
user’s phase data are affected by the uncertainty of the time-
predicted corrections, which increases as the latency gets 
higher. Most importantly, it can be observed that the formal 
confidence ellipse is in good agreement with the empirical 
one, indicating that one can expect a proper quality descrip-
tion when one considers the true uncertainty of one’s cor-
rected data.

When the user ignores the correctional uncertainty (mid-
dle row), a 100% success rate is achieved in the zero-latency 
case. However, the success rate experiences a significant 
reduction for increasing latencies. In the case of a 15 s 
latency, there are many incorrectly fixed solutions (red dots), 
leading to a 77.5% success rate. Worse than that, the fixed 
precision description reported by the incorrectly assumed 
BLUE is misleading as it provides a quite overoptimistic 
confidence ellipse with respect to the empirical one. After 
applying a correct variance propagation, the analyzer is able 
to obtain the actual precision description of the correctly 
fixed solutions that nicely fits the empirical one.

As a solution to the above issue, we now investigate 
whether the error vc-matrix of the corrections can be suf-
ficiently approximated by the system-noise-variance part of 
the former (bottom row), given that the provider’s dynamic 
model settings are known to the user. One notices the con-
siderable improvement in terms of the ambiguity resolution 
performance, which is also shown in Table 4. However, the 
position precision description that comes along with these 
results, although more representative than the one in case 
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Fig. 3  GPS L1/L2 single-epoch user east-north position error scat-
terplots of station UWA0 using multi-epoch single-station PPP-RTK 
corrections with latencies Δ of 0 (left column), 10 (middle column) 
and 15 (right column) seconds. From top to bottom, the first three fig-
ures refer to the ‘correct variance matrix’ case (case I) where the user 
considers the correctional uncertainty, thus producing the optimal 
minimum-variance results. The middle row figures refer to the ‘incor-
rect variance matrix’ case (case II) where the user ignores the correc-
tional uncertainty but the analyzer is able to obtain the actual formal 

measures based on correct variance propagation. The last row figures 
refer to the ‘sub-optimal variance matrix’ case (case III) where the 
user considers only the system-noise-part of the correctional uncer-
tainty but the analyzer is able to obtain the actual formal measures 
based on correct variance propagation. The gray, green and red dots 
represent the solutions with float, correctly fixed, and wrongly fixed 
ambiguities, respectively. The 95% empirical confidence ellipses 
(ECE) are shown in black, while the 95% formal confidence ellipses 
(FCE) are shown in blue (assumed FCE) and orange (actual FCE)
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of ignoring the correctional uncertainty, is still not good 
enough to describe the empirical positioning errors.

Although not shown in the figure for brevity, this is where 
the role of the model-driven recursive engine becomes 
prominent. Despite the various settings that need to be pro-
vided by the single-station provider and the engine the user 
needs to utilize in parallel, he is able to obtain optimal per-
formance in terms of both ambiguity resolution and posi-
tioning, as if he would be provided with the error vc-matrix 
the provider computed.

The user’s corresponding solutions based on Galileo E1/
E5a and dual-system data are shown in Figures 4 and 5, 
respectively. Similar conclusions can be drawn as in the 
GPS-only case. The Galileo-only solutions show a smaller 
fixed position error scatter compared to GPS, despite the 
increased latency. We consider these to be results of the 
highly time-stable clocks of the Galileo satellites, which 
allows the user to more accurately time-predict the clocks. 
It is interesting to note that incorporating only the system-
noise-variance part of the error vc-matrix of the corrections, 
rather than the full part, leads to almost-optimal results even 
for 15 s latency.

Finally, it is obvious that, compared to the single-system 
solutions, the dual-system integration delivers better posi-
tioning results and shows smaller sensitivity to the incon-
sideration of the correctional uncertainty. However, the lack 
of the actual stochastic model of user’s measurements still 
leads to an over-optimistic quality description.

3.6 Relevance to multi‑station PPP‑RTK

Despite the fact that our numerical analysis is focused on 
the single-station PPP-RTK corrections, this does not affect 
the generality of our analysis as it can also be applied for 
when corrections from a multi-station (or network) setup 
are utilized. The advantage of the network approach over 
the single-station setup is that the area of coverage of the 
corrections is enlarged, which is especially important for 
the ionospheric component. The users may take recourse to 
the aforementioned strategies for the error variance matrix 
of the corrections.

One could, instead, make use of the fact that the network 
PPP-RTK corrections are formed as a weighted average of 
the multiple single-station corrections (Khodabandeh and 
Teunissen 2015), thereby requiring less information from 
the provider to reconstruct the error vc-matrix of the cor-
rections. This, however, implies that the employed receiv-
ers collect measurements of the same precision level, which 
might not hold true in case of receivers of different types.

Conclusions

In this contribution, we studied and presented the impact 
that the single-station time-predicted corrections have on 
the PPP-RTK user ambiguity resolution and positioning 
performance when the error variance matrix of the cor-
rections is neglected. In a single-epoch user setup, we 
numerically demonstrated whether and to what extent the 

Fig. 4  Galileo E1/E5a single-
epoch user east-north position 
error scatterplots of station 
UWA0 using multi-epoch 
single-station PPP-RTK correc-
tions (see Fig. 3)
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user’s parameter solutions differ from their minimum-
variance counterpart. Next to the user positioning estima-
tion results, our focus was also placed on their precision 
description.

It was first shown how a subset of the single-receiver 
estimable parameters, provided as PPP-RTK corrections 
to the user with a certain time delay, is translated into the 
combined code- and phase- corrections that enable single-
receiver user ambiguity resolution. The pitfall of analyzing 
the quality of individual corrections was addressed, for 
which we demonstrated that such an analysis is far from 
sufficient as it is the high correlation between the correc-
tions that needs to be taken into account so that a proper 
quality judgment is done.

Further, the instantaneous PPP-RTK user performance 
was assessed with real GPS and Galileo dual-frequency 1 s 
data collected at two stations in Australia. It was shown 
that the user ambiguity success rate exceeds 99% even for 
a latency of 15 s when the uncertainty of the corrections 
is properly taken into account. When the corrections were 
assumed to be nonrandom, the success rate experienced a 
reduction for nonzero latencies, that was more pronounced 
the longer the latency became.

In both the ambiguity-float and -fixed cases, the empiri-
cal and formal positioning results showed a good agree-
ment, thus validating the stochastic model used for the 
processing. Single-receiver ambiguity resolution resulted 
in two orders of magnitude precision improvement com-
pared to the dm-level float solutions. This was shown not 

to hold for increased latency due to the fact that the phase 
data were affected by the uncertainty of the time-predicted 
corrections. It was then demonstrated that the inconsidera-
tion of the correctional uncertainty led to a discrepancy 
between the formal and empirical results that was enlarged 
the longer the time delay. As a result, one cannot expect 
to obtain a realistic precision description in the position-
ing domain when the uncertainty of the corrections is not 
considered. Next to the user-estimated quality information, 
our illustrations included the actual precision description 
in the user positioning domain, as estimated with a correct 
variance propagation from an external analyzer (e.g., the 
provider), who is aware of the uncertainties of the correc-
tions and of the user’s data. Our findings revealed that the 
actual formal precision matched well with the empirical 
one, indicating the extent to which the user-assumed qual-
ity information differs from the user-actual one.

Finally, to circumvent these limitations, we developed 
and presented two alternatives to the fully populated error 
variance matrix of the PPP-RTK corrections that can be 
structured from the user via a limited amount of informa-
tion from the provider. With the first strategy considering 
the system noise variance matrix as an approximation to the 
error variance matrix of the time-predicted corrections, it 
was numerically shown that the user can achieve close-to-
optimal ambiguity resolution performance, with the success 
rate exceeding 95%, in both single- and dual-system models 
for latencies up to 15 s. However, the positioning precision 

Fig. 5  GPS L1/L2 + Galileo 
E1/E5a single-epoch user east-
north position error scatterplots 
of station UWA0 using multi-
epoch single-station PPP-RTK 
corrections (see Fig. 3)
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description proved to be not sufficient enough to realistically 
describe the empirical position errors.

Our second alternative encompasses using a model-driven 
recursive engine that can recursively estimate, at the user 
side, the error variance matrix of the provider’s corrections 
using information shared by the provider. In this case, we 
showed that the user is able to obtain optimal performance 
for both ambiguity resolution and positioning, even for high 
latencies, as if the user would be provided with the original 
error variance matrix estimated by the provider. With the 
above real data results, we believe that the proposed strate-
gies enable a wide variety of applications that can make use 
of corrections with high latency and, at the same time, meet 
high accuracy and reliability requirements.
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