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Abstract
Global navigation satellite system (GNSS) water vapor (WV) tomography is a promising technique to reconstruct the three-
dimensional (3D) WV field. However, this technique usually suffers from the ill-posed problem caused by the poor geometry 
of GNSS rays, resulting in underdetermined tomographic equations. Such equations often rely on iterative methods for solv-
ing, but conventional iterative approaches require accurate initial WV density. To address this demand, we proposed two 
models for WV density estimation. One is the conventional model (CO model) that consists of an exponential model and a 
linear least-squares model, which are used to describe the spatial and temporal variability of the WV density, respectively. 
The other is a neural network model (NN model) that uses a backpropagation neural network (BPNN) to fit the nonlinear 
variation of WV density in both spatial and temporal domains. WV density derived from a Hong Kong (HK) radiosonde 
station (RS) during 2020 was used to validate the proposed models. Validation results show that both models well describe 
the spatial and temporal distribution of the WV density. The NN model exhibits better prediction performance than the CO 
model in terms of root mean square error (RMSE) and bias. We also applied the proposed models to GNSS WV tomography 
to test their performance in extreme weather conditions. Test results show that the proposed model-based GNSS tomography 
can correct the content of WV density but cannot accurately sense its irregular distribution.
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Introduction

The global navigation satellite system (GNSS) technique has 
emerged as a powerful sensor for dynamic water vapor (WV) 
detection (Bevis et al. 1992; Rocken et al. 1993). Accord-
ing to the wet ingredients within the tropospheric delay, 
the technique can retrieve the WV in the GNSS-ray path. 
Numerous studies have validated the GNSS-derived WV by 
comparing it with the accurate WV determined using other 
approaches (Chen and Liu 2016; Dai et al. 2002; Gurbuz and 

Jin 2017; Troller 2004), including radiosonde, WV radiom-
eter, and remote sensing. In addition, the widespread deploy-
ment of continuously operating reference station (CORS) 
systems further expands the unique superiority of the GNSS 
WV detection technology, for example, all-time/all-weather 
support and real-time continuity (Chen and Liu 2014).

Two WV products can currently be derived using the 
GNSS technique. One is the precipitable WV (PWV), 
which has been applied in many cases, e.g., weather 
forecasting (Zhao et al. 2021) and multi-source WV data 
fusion (Zhang and Yao 2021). The other is WV density 
obtained by the tomography algorithm, which is appropri-
ate for assimilation into the initial field of the numerical 
weather prediction (NWP) system. Therefore, since it was 
first reported in Flores et al. (2000), GNSS WV tomogra-
phy has increasingly attracted substantial interest. How-
ever, due to the less than ideal distribution of satellites and 
GNSS receivers, the technique still suffers an ill-posed 
problem within the tomographic design matrix. Various 
attempts have been made to overcome this problem. Dong 
and Jin (2018) adopted GNSS observations from multiple 
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systems (GPS, BDS, GLONASS) jointly contributing to 
the WV tomography process; their experiment in Hong 
Kong (HK), China, validated its resultant three-dimen-
sional (3D) WV information. Additionally, Yao et  al. 
(2020a, b) developed two modified tomographic methods 
using an improved tomographic window and an optimized 
voxel strategy, respectively. The test results indicated that 
both modified methods achieved a superior 3D WV field 
than the traditional approach.

Even with the progress from the above studies, the ill-
posed problem has not been completely overcome. As a 
result, the tomography equations still require an iterative 
method to solve. The main iterative algorithms commonly 
used in GNSS tomography, such as the multiplicative alge-
braic reconstruction technique (MART) (Bender et al. 
2011) and Kalman filtering (KF) method (Ding et al. 2007; 
Nilsson and Gradinarsky 2006), all require high-quality 
initial values. Unfortunately, the easily accessed ERA5 
and atmospheric sounding datasets do not support the real-
time need for GNSS WV tomography. Also, there are no 
appropriate models available for WV density estimation. 
Therefore, even as crucial prior information, far too little 
attention has been paid to investigating the empirical WV 
density distribution of interest.

The specific objective of this study was to develop the 
WV density model for providing the high-quality prior 
WV information that used in GNSS WV tomography. 
With the assistance of the model, GNSS tomography can 
continuously perform without relying on other WV data 
(initial value). In this study, we established two regional 
WV density models. One is the conventional (CO) model, 
which adopted an exponential function to describe the 
spatial variability of WV density while imposing a lin-
ear least-squares sine and cosine model to express the 
temporal variability of the WV density. The other is a 
neural network (NN) model that used a backpropagation 
NN (BPNN) (Haykin 1998; Zhang et al. 2018) to fit the 
nonlinear variation of WV density in both temporal and 
spatial domains. The HK radiosonde station (RS)-derived 
WV density from 2015 to 2019 was used to generate the 
two models. Then, according to the RS record in 2020, we 
designed and carried out test experiments to evaluate and 
compare the performances of the proposed models. Also, 
to assess the applicability of the proposed model-based 
GNSS WV tomography in extreme weather, the experi-
ments were carried out in HK when the models provided 
poor initial values (WV density estimation).

We first present the methodology of GNSS WV tomogra-
phy and the development process for the CO and NN models, 
respectively. The validation of both models is described in 
the next section. The tomography experiment, which assisted 
with the proposed models, is then performed. Finally, we 
summarize the conclusions and outlook of this research.

GNSS troposphere WV tomography

The slant WV (SWV), which refers to the WV content in 
the GNSS-ray propagation path, is the fundamental data 
for GNSS WV tomography. After dividing the tomography 
area into finite voxels, the SWVs combine with their cor-
responding signal intercepts, forming the basic tomography 
equation:

where SWVm stands for the SWV of a signal m, Am
ijk

 refers 
to the intercept of the signal m in the 3D voxel (i, j, k), and 
Xijk is the WV density of the above voxel. Significantly, the 
signal line intercepts are determined by the spatial voxel 
strategy, which contains the horizontal and vertical grid 
schemes of the study area.

The constraints, which originate from the empirical 
WV distribution, are another essential component of the 
tomography equation. The three commonly imposed con-
straints are horizontal, vertical, and boundary conditions 
(Flores et al. 2000). Given the previously proposed opti-
mized voxel (Yao et al. 2020a), the improved tomographic 
algorithm no longer relies heavily on the former two 
constraints. Thus, we now only introduce the following 
expression to assemble the vertical constraints (Elosegui 
et al. 1998):

where Vn and Vn−1 are the WV densities of the two verti-
cally adjacent voxels n and n−1, respectively; similarly, hn−1 
and hn are the heights of the adjacent voxels. In addition, 
H represents the WV-scale height. We note here that the 
WV scale is the critical parameter in the CO model, and its 
computational method is described in the below in a separate 
section. The appropriate number of (2) form the completed 
vertical constraints:

where V is the vertical constraint matrix and X refers to the 
WV density of each voxel that consists of a single column 
vector whose rows are equal to the number of valid voxels.

Finally, Equations (1) and (3) are combined to establish 
the entire tomography equation:

where Aupd is the updated design matrix which consists of 
the GNSS ray intercept matrix A and vertical constraint 
matrix V, A is an m × n matrix, m is the quantity of the valid 

(1)SWVm
=

∑

ijk

(

A
m
ijk
⋅ Xijk

)

(2)
Vn

Vn−1

= e(hn−1−hn)∕H

(3)V ⋅ X = 0

(4)

AupdX = Yupd

Aupd =

[

A

V

]

, Yupd =

[

SWV

0

]
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signal while n is equal to the number of objective voxels, 
SWV is an m × 1 column vector whose components are the 
SWV estimation of the m ray paths, and X is the same as 
in (3).

Since the significant inverse difficulties, previous 
research (Dong and Jin 2018) preferred the iterative 
method to solve (4). Hence, we selected the widespread 
KF algorithm for the tomography solution. The specific 
design and usage of KF can be found in Gradinarsky and 
Jarlemark (2004). Notability, the KF method requires 
accurate prior WV information. As a result, developing a 
WV density model is necessary to address the demand for 
GNSS tomography.

Regional WV density model

In this section, we first briefly describe the study area, list 
the modeling steps of the CO and NN models, and then pre-
sent the modeling process of the above models.

Study area

In consideration of the comprehensive historical records of 
the King’s Park RS (station code: 45004) and the conveni-
ently accessed GNSS observations of HK CORS (SatRef), 
we selected HK, China, as the study area. As shown in 
Fig. 1, there are 19 sites of SatRef and one RS in HK. The 
19 evenly distributed sites, approximately 10 km of mean 
geographic distance between each other, can provide a mas-
sive valid signal with SWV for the tomography experiments. 
Meanwhile, the RS can offer sufficient high-precision 3D 
WV density data to establish the WV density model and as 
a reference for the WV tomography test.

Modeling steps

Figure 2 shows the schematic process for generating the CO 
and NN models. For the CO model, we first need to know 
the spatial and temporal distribution of WV density and then 
describe the above two distributions separately using the 
appropriate models. Combining the above models, we finally 
embody the entire CO model.

Regarding the NN model, the input and output datasets 
need to be identified first. In particular, we must clarify the 
variables in the input. Second, we need to define the NN 
structure, including the optimal number of neurons in the 
hidden layer. Based on the above input–output datasets and 
the NN structure, we finally trained and obtained the NN 
model.

Development of the CO model

The CO model, which consists of an exponential model and 
a linear least-squares model, was established in this section. 
Its detailed modeling steps are as follows:

Determining the WV density distribution

To model the WV density, we need to recognize the spatial 
and temporal variation features. Figure 3 provides the WV 
density variations in HK during 2015–2019. First, in the top 
panel, we discover that the WV density rapidly decreased 
with height and may have a periodicity in the timeline views. 
Second, the middle panel presents the exponential decrease 
in WV density with increasing height more distinctly than 
the top panel. Third, the WV densities at various layers seen 
in the bottom panel jointly suggest that the WV density has a 
similar annual periodic variation in each height layer. There-
fore, integrating the contents of the figure, we may conclude 
the WV density varies exponentially and annually periodic 
in spatial and temporal domains, respectively.

Describing the spatial variability

According to Elosegui et al. (1998) and Tomasi (1981), we 
impose the following exponential equation to represent the 
spatial distribution of the WV density during a single epoch:

(5)�z = �0e
−z∕H

Fig. 1   Distribution of 19 GNSS stations (red triangles) and one RS 
(blue circle) in the selected study area
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where ρz and ρ0 are the WV density at the height z and the 
surface WV density, respectively, and H represents the WV 
scale height (recall 2).

Describing the temporal variability

Based on (5), after determining the temporal variability of 
ρ0 and H, we will ultimately generate the spatio-temporal 
WV density model. The surface WV density (ρ0) can be 
retrieved from the RS record, and the WV scale height (H) 
can be calculated as:

where PWV can also be obtained directly from the RS obser-
vations. According to (6), we next need to represent the tem-
poral variability of ρ0 and PWV.

We executed the Lomb-Scargle (LS) method (Hocke 
1998; Zhao et al. 2018) to analyze the oscillations of ρ0 and 
PWV, respectively. Figure 4 shows the variations in ρ0 (top 
left) and PWV (bottom left) during 2015–2019 and their 
corresponding power spectra (top right) and (bottom right). 
One distinct peak is observed at one year in both Fig. 4 
(right panels), which is much higher than the 99% level, 
demonstrating that both ρ0 and PWV indeed have a forceful 
annual variation. Based on the variabilities detected above, 
we introduced linear least-squares sine and cosine equations 
to express the oscillations:

where x(t) is the ρ0 or PWV, Ai (i = 0, 1, 2) refers to the 
model coefficients, and DOY represents day-of-year (DOY).

In a word, based on the RS records during 2015–2019, we 
first obtained the time series model of ρ0 and PWV. We then 
embodied the H model by the two models above. Integrating 

(6)H ≈
PWV

�0

(7)
x(t) = A0 + A1 sin(2� ⋅ t) + A2 cos(2� ⋅ t)

t = DOY∕365.25

the H and ρ0 models with (5), we finally generated the entire 
CO model.

Development of the NN model

Multilayer NN is a powerful nonlinear fitting tool. We 
thereby used a BPNN to construct the NN model, whose 
specific modeling steps are presented as follows:

Identifying input and output datasets

According to Fig.  3, WV density varies with time and 
height. Therefore, the date variables (year and DOY) com-
bined with the height variables (12 layers per epoch) were 
determined as the inputs. Then, we select the WV density at 
the height corresponding to the inputs as the outputs. Based 
on the identified inputs and outputs, WV density derived 
from HK RS record during 2015–2019 assembled the origi-
nal input–output datasets.

Additionally, Fig. 3 shows that the WV density exhibits 
a nominal value when the height exceeds 10 km, suggest-
ing that it is unnecessary to include more than 10 km of the 
WV results in the input–output datasets. We accordingly 
removed the above useless portion of the original input–out-
put datasets.

Defining the NN structure

Based on the features of the input–output datasets, we 
adopted a BPNN to establish the NN model, which is well-
performed in fitting complex nonlinear relationships (Ding 
2018).

A BPNN is usually composed of the input layer, hidden 
layer, and output layer. With the multilayered structure, the 
BPNN can obtain a function that appropriately maps the 
given inputs to their corresponding outputs. The architecture 
of the BPNN used in this study is expressed in Fig. 5.

Fig. 2   Flowchart of the main 
procedures to establish the CO 
and NN models
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Figure 5 shows that the input layer consists of 14 neu-
rons, including two data parameters (year and DOY) and 
12 height parameters. Accordingly, 12 neurons in the out-
put layer match the 12 heights within the inputs. Regarding 
the hidden layer, a single unit can describe the nonlin-
ear variation of WV density in both spatial and temporal 
domains. Next, the optimal number of neurons in hidden 
units requires determination. Here is a thumb rule (Masters 
1994) for approximately computing the above number, i.e., 
√

n × m , where n and m represent the number of neurons in 
the input and output layer, respectively. In this case, n is 14 
while m is 12, so the optimal nodes in the hidden layer may 
be around 13. Therefore, we tested the BPNNs with from 
8 to 18 nodes in the hidden layer to obtain the best nodes 
setting using the tenfold cross-validation (CV) technique. 
This method first divides the samples, which refers to RS 
data from January 2015 to December 2019, randomly into 
an equal number of ten groups. One of the groups is then 
adopted as a test dataset, while the rest is used as training 
datasets to generate the model. This process will repeat 
until each individual group has been used as a test dataset. 
Finally, the evaluation of the model performance will be 
represented by the average of the ten rounds. The root 
mean square error (RMSE) of the BPNNs with different 
hidden nods is depicted in Fig. 6. It shows that for the 
BPNN model, the RMSE first decreased until the number 
of hidden layer neurons reached 15 and then increased. 
This result indicates that 15 is the optimal number of neu-
rons in hidden units. Consequently, the hidden layer with 
15 neurons in a single layer is finally determined.

Among the input–output datasets acquired above, 70% 
were randomly divided as training, while the rest as vali-
dation. Based on the above datasets, we then trained and 
constructed the NN model.

Model validation experiments

RS-derived WV density during 2020 was used to validate 
the predicted performance of both the CO and NN models, 
and the comparison between them is expressed below in 
bias and RMSE.

Fig. 3   Variation of WV density with time and height. The top panel 
uses a two-dimensional (2D) pseudo-color plan showing the above 
variation. The middle panel displays the specific variations in three 
dimensions, and the bottom panel presents the variation in specific 
height layers

▸
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Bias comparison

Figure 7 displays the bias distributions of the CO and NN 
models. The bias of both models shows a similar distribution 
that decreases with increasing height. The spatial distribu-
tion of WV density was the primary reason for this phe-
nomenon. The surface WV density, if affected by extreme 
weather, could be much larger or smaller than usual (model 
estimates), thus causing a significant bias. Conversely, at 
high altitudes, even a significant variation rate of WV den-
sity could cause a minor bias due to the limited content. In 
addition, combined with bias distribution (Fig. 8), the NN 
model has a lower bias with respect to the CO model in 

general, suggesting that the NN model has a better predic-
tive effect.

For a more detailed assessment of the model perfor-
mance, the mean bias variations for both models with time 
and height are presented in Fig. 9. The top panel shows that 
the NN model obtains a lower bias (close to 0) than the CO 
model at most test epochs, indicating that the NN model 
obtains superior WV density estimates than the CO model. 
Moreover, we observe that the CO model shows more posi-
tive than negative bias. The bottom panel shows an apparent 
difference between the mean bias of the two models in views 
of height. For the CO model, a positive bias occurred below 
approximately 3.5 km, while a negative bias emerged at the 

Fig. 4   Period analysis of surface 
WV density and PWV during 
2015–2019. Left panels present 
the time series of the surface 
WV density and PWV and 
right panels their corresponding 
power spectrums, respectively. 
Additionally, the horizontal 
dashed lines in the right panels 
express 99% of the peak values

Fig. 5   Structure of the BPNN 
designed for WV density 
estimation. The symbols u and 
w represent the weights between 
the input and hidden layers and 
between the hidden and output 
layers, respectively. Addition-
ally, g(·) and f(·) are the activa-
tion function of each neuron 
in the hidden layer and output 
layer, respectively
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remaining height layers, revealing that the CO model under-
estimates the WV density at the surface but overestimates 
that for the rest of the troposphere. Meanwhile, the positive 
absolute value (near the surface) is greater than the negative 
(middle to top troposphere). It explains why the CO model 
appeared more positive bias (top panel). Contrary to the CO 
model, the bias of the NN model is negative below 3.5 km 
and positive at the other height layers, while the absolute 
values of the positive and negative biases are approximately 
equal. This result indicates that the NN model, in general, 
provides unbiased estimates of WV density.

Overall, combined with Figs. 7, 8, 9, the NN model 
achieves a superior prediction performance than the CO 
model in terms of bias. The reason for the low performance 
of the CO model may be that the traditional exponential 
model cannot reasonably describe the spatial distribution of 
the WV density, especially near the surface.

RMSE comparison

In Fig. 10 (top), we observed that the RMSE for both models 
present similar temporal trends. Meanwhile, the NN model 
exhibits a smaller RMSE in most experimental periods com-
pared with the CO model. It leads to that the NN model (red 
dashed line) has a lower mean RMSE than the CO model 
(blue dashed line). Besides, the maximum values for the 
blue and red lines were found at DOY 104 and 297 in 2020, 
respectively. As a result, the worst performance occurred on 
April 13, 2020, for the CO model, and October 23, 2020, for 
the NN model, respectively. According to the meteorological 
records, the above dates were the periods when HK suffered 
from extreme weather. It suggests that the poor performance 
of both models is caused by extreme weather. Besides, the 
bottom panel shows that the NN model performs better than 
the CO model at any height.

Fig. 6   Comparisons of RMSE from tenfold cross-validation using 
BPNNs with different numbers of hidden nodes

Fig. 7   Spatio-temporal distribu-
tion of bias for the CO model 
(left) and NN model (right). 
Notably, the bias here represents 
the deviation between the truth 
value originating from the RS 
observations and the estimated 
value from the WV density 
model

Fig. 8   Histogram of bias distribution for the CO model (left) and NN 
model (right)
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Overall performance

Table 1 shows that the overall bias and RMSE for the 
CO model are 0.3 and 1.9 g/m3, respectively, while they 
were reduced to 0.0 and 1.3 g/m3 for the NN model. This 
result indicates that the NN model exhibits a 100 and 32% 
improvement compared with the CO model in bias and 
RMSE. Based on the analysis above, we can conclude that 
the NN model has significantly better performance in the 
HK region than the CO model.

WV tomography experiments

To test the ability of the proposed model-based GNSS 
tomography in calibrating the poor initial values, we 
designed and conducted tomography experiments under 
severe weather conditions.

Text period selection and data preprocessing

As shown in Fig. 10 and Table 1, both the CO and NN mod-
els achieved a good prediction accuracy (low RMSE) at most 
test epochs. In particular, the RMSE of the NN model is less 
than 1.3 g/m3 for some experimental periods, suggesting that 
the initial values provided by the models alone are better 

than the partially reported tomographic results (Dong and 
Jin 2018; Yao et al. 2020b; Zhao et al. 2020). However, the 
predictions of both two models deteriorated sharply during 
extreme weather, with the worst occurring at DOY 104 for 
the CO model and DOY 297 for the NN model.

The above periods are theoretically the best choice for 
testing the effects of the GNSS tomography. Therefore, we 
collected the GNSS observations and RS records in DOY 
103–105 and 296–298, 2020. The former was processed by 
GAMIT/GLOBK (v 10.71) (Herring et al. 2018) to retrieve 
the SWV of each GNSS-ray path. Meanwhile, the latter is 
regarded as the actual values to verify the resultant GNSS-
derived WV density.

Voxel strategy

As shown in Fig. 11 (left), we adopt the voxel division 
scheme in which seven and eight grids are in the latitudinal 
and longitudinal directions, respectively. Meanwhile, 12 lay-
ers are in the elevation direction, with thicknesses of 0.5, 0.5, 

Fig. 9   Mean bias comparison of the CO model and the NN model at 
each DOY (top) and each height (bottom)

Fig. 10   RMSE comparison between the CO and NN models in terms 
of DOY (top) and height (bottom)

Table 1   Statistical results of 
the overall accuracy of the two 
models during the experimental 
period (g/m3)

Bias RMSE

CO model 0.3 1.9
NN model 0.0 1.3



GPS Solutions (2022) 26:4	

1 3

Page 9 of 12  4

0.7, 0.7, 0.7, 0.9, 0.9, 0.9, 1.1, 1.1, 1.1, and 1.1 km. After 
gridding, the selected tomographic area was discretized into 
7 × 8 × 12 voxels (right panel). Based on the divided voxels, 
we assembled and then solved the tomography equation (see 
section on GNSS troposphere WV tomography).

Tomographic results

The RMSE and absolute bias were selected to illustrate the 
calibration of the GNSS tomography technique on the initial 
WV density provided by the proposed models.

Calibration in RMSE

Figure 12 shows the RMSE of the proposed models and the 
calibrated results processed by GNSS tomography. For brev-
ity, we simplified the CO model-based and the NN model-
based GNSS tomography to the GNSS_CO method and 
GNSS_NN method, respectively. We found that when the 
NN model provides a better initial WV field, the GNSS_NN 
approach also exhibits better performance (lower RMSE) 
for most test epochs. The same can be stated for the CO 
model. This finding indicates that a better initial value drives 
better correction results regarding the GNSS tomography 
algorithm and vice versa.

The RMSE reduces after the adjustment by the GNSS 
tomography. However, it was not significant in some cases 
(last six epochs). Figure 13 may explain this phenomenon, 
i.e., the GNSS tomography technique fails to accurately 
sense irregular distribution of WV caused by extreme 
weather. According to the weather record, under the 

influence of a continental airstream behind the cold front, 
the weather in HK became very dry on DOY 102–103, 
2020. Accordingly, the WV content shows an abnormally 
low value (black line in top panel). In these cases, both mod-
els overestimate the WV content, especially the CO model. 
Because of the low content WV, a minor adjustment will sig-
nificantly reduce RMSE. Thus, we can observe that GNSS 
tomography receives a good optimization effect against the 
bad prior value (red and blue dash) in the first four cases. 
Unfortunately, the optimized WV profile (red and blue line) 
does not well match the actual value (black line).

The situation is quite different for the last six epochs. 
Figure 13 (bottom) displays the WV profiles (red and blue 
dash) that are calibrated by the GNSS tomography to the 
correct direction (near the black line). Unfortunately, due 
to the rich content and unusual distribution of WV below 
3 km, i.e., low content at the surface and high in the middle 
troposphere, even with some correction, the adjusted pro-
files (red and blue lines) still differ significantly from their 
actual distribution (black line). Hence, the RMSE of both 
the GNSS_CO and GNSS_NN methods does not decrease 
significantly. Overall, the insensitivity to the abnormal dis-
tribution of WV caused the poor performance of the GNSS 
tomography.

Figure 14 illustrates the height variations of the RMSE 
for the GNSS_CO and GNSS_NN approaches. The RMSEs 
of both GNSS_CO and GNSS_NN exhibit a similar trend; 
with the increasing height, the RMSE decreases first and 
increases until reaching a peak, then overall decrease to 
the end. Furthermore, two peaks occur at the surface and 
the middle-low troposphere (approximately 2–4  km), 

Fig. 11   Voxel strategy of the 
study area. The HK domain is 
divided into a 7 × 8 grid, and 
each grid spans 0.06° in latitude 
and longitude. Furthermore, 
12 layers are designed for the 
vertical direction with the thick-
nesses of 0.5, 0.5, 0.7, 0.7, 0.7, 
0.9, 0.9, 0.9, 1.1, 1.1, 1.1, and 
1.1 km. After gridding (left), 
the study area is discretized to 
7 × 8 × 12 voxels (right)
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respectively. The results suggest that the two above methods 
have the worst performance at the surface, followed by the 
middle-low troposphere. Recalling Fig. 13, we realize that 
the WV content at the surface is lower than expected, while 
the middle is abnormally high. It demonstrates again that 
GNSS tomography has not effectively captured the anoma-
lous distribution of WV, which is the key reason for its poor 
predicted performance.

Calibration in absolute bias

For a comprehensive evaluation of the applicability of GNSS 
tomography under extreme weather conditions, the absolute 
bias comparison between the original WV fields and their 
calibrated results is shown in Fig. 15. It is noticed that after 
the GNSS tomography adjustment, the absolute bias of the 
WV fields significantly reduces in all test epochs, and the 
maximum improvement is up to 95%. This result suggests 
that the GNSS tomography technique can accurately correct 
the overall WV content. Combining Figs. 12, 13, 14, 15, we 
can conclude that the GNSS tomography technique can cor-
rect the variation of WV content caused by extreme weather, 
but not its irregular distribution.

Conclusions and outlooks

We proposed the CO and NN models for the initial WV 
density estimation used in GNSS troposphere tomography. 
The CO model consists of an exponential and a linear least-
squares model, while the NN model is BPNN-based. WV 
density originating from HK RS during 2015–2019 is the 
common modeling data for both models.

First, we adopted RS-derived WV density datasets for 
2020 to validate the two proposed models. Statistical results 
indicated that compared with the CO model, the NN model 
exhibited 32% accuracy improvements in terms of RMSE. 

Fig. 12   RMSE comparison of the WV fields before and after GNSS 
tomography correction during DOY 103–105 and 296–298, 2020. 
Two proposed models generate the prior WV fields, respectively, 
and both are then adjusted by GNSS tomography. Here we define the 
tomography experiment for which the CO model provides initial val-
ues as the GNSS_CO method. Accordingly, the GNSS_NN method 
refers to the GNSS tomography based on the NN model

Fig. 13   Comparison of WV profiles obtained by RS, CO model, NN 
model, GNSS_CO method, and GNSS_NN method at UTC 00:00 of 
DOY 104, 2020 (top), and DOY 298, 2020 (bottom)

Fig. 14   Variation in RMSE with height for the GNSS_CO and 
GNSS_NN approaches during the test period
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In addition, the bias distribution revealed that the CO model 
underestimated the WV density. However, the NN model 
provided unbiased estimates of the WV density.

Second, two periods were selected to investigate the 
applicability of the proposed model-based GNSS tomogra-
phy in extreme weather conditions. The one is April 12–14, 
2020, and the other is October 22–24, 2020. Test results 
suggested that the tomography technique could significantly 
modify the incorrect WV content but not accurately adjust 
the WV distribution. Therefore, accurately sensing the irreg-
ular distribution of the WV remains a challenge for GNSS 
WV tomography.

Currently, both the CO and NN models only support the 
regional WV density estimation. Hence, future work will 
focus on establishing an updated version for global users. 
For the tomography algorithm, further improvement will 
highlight a reasonable spatial voxel scheme and vertical 
constraint, increasing its detection ability for 3D WV infor-
mation during extreme weather.
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