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Abstract
Accurate timing is one of the key features of the Global Positioning System (GPS), which is employed in many critical 
infrastructures. Any imprecise time measurement in GPS-based structures, such as smart power grids, economic activities, 
and communication towers, can lead to disastrous results. The vulnerability of the stationary GPS receivers to the time syn-
chronization attacks (TSAs) jeopardizes the GPS timing precision and trust level. In the past few years, studies suggested 
the adoption of estimators to follow the authentic trend of the clock offset information under attack conditions. However, 
the estimators would lose track of the authentic signal without proper knowledge of the signal characteristics. Therefore, a 
multi-layer perceptron neural network (MLP NN) is proposed to follow the trend of the data. The main difference between 
the proposed method and typical estimators is the reliance of the network on the training information consisting of signal 
features. The proposed MLP NN performance has been evaluated through two real-world datasets and two well-known types 
of TSA. The root mean square error results exhibit an improvement of at least six times compared to other conventional and 
state-of-art methods.

Keywords GPS spoofing attacks · MLP NN · Error estimation · Robust receiver · Clock offset

Introduction

The Global Positioning System (GPS) provides accurate tim-
ing information for time-dependent structures such as finan-
cial markets and banking systems, communication networks, 
and phasor measurement units (PMUs). For instance, GPS 
offers a precision better than 1 μs for PMUs to maintain the 
high sampling rate of the unit (Xie and Meliopoulos 2020). 
The weak nature of GPS signals causes vulnerability to all 
kinds of environmental conditions, and its well-known civil-
ian structure is prone to intentional interferences. Therefore, 
a malicious signal with slightly higher strength can outper-
form the authentic signal effortlessly (Bonebrake and O’Neil 
2014).

Customarily, the receivers that exploit the timing infor-
mation of the GPS signal are stationary; thus, they are threat-
ened more by a specific category of spoofing attacks: time 
synchronization attack (TSA). TSA manipulates the signal 
information so that the receiver miscalculates the clock off-
set and causes erroneous time measurement (Shepard et al. 
2012). Generally, in this type of attack, the position of the 
receiver will remain intact. Wrong or inaccurate time stamps 
in PMU measurements can cause false alarms or prevent the 
disclosure of an event in the network (Jiang et al. 2013). A 
similar attack on the communication towers can disturb time 
synchronization of adjacent towers, and eventually, jam their 
signals (3GPP2 2004).

An intermediate spoofer device contains a receiver 
and is placed near the target; thus, it spreads intelligently 
altered signals very similar to the authentic one in Doppler 
frequency and code phase (Mosavi et al. 2017). Therefore, 
the spoofing detection methods in the acquisition stage 
would be ineffective. TSA is considered as an intermediate 
spoofing attack, and software-defined radios (SDRs) can 
implement them straightforwardly (Schmidt et al. 2019). 
SDRs are accessible for public use; therefore, the genera-
tion of TSA is feasible and cost-effective, considering that 
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most commercial receivers cannot detect intermediate or 
even simplistic attacks (Schmidt et al. 2020).

A vast number of countermeasures and protection 
techniques have been proposed to detect or mitigate the 
effects of TSA, which can be categorized into four classes 
(Schmidt et al. 2016). The first category includes signal 
processing methods that monitor and analyze the signal 
features for any unexpected anomalies in quality, power, 
or any other observable parameters (Zhang and Zhan 2016; 
Schmidt et al. 2020). Multi-antenna receivers and radio 
spectrum inspections are organized in the second category 
and exploit the angle of arrival of each signal to detect the 
direction of its source (Magiera 2019; Heng et al. 2014). 
The cryptographic techniques present solutions in the third 
category that relies on the next-generation GPS signal 
structure (Ghorbani et al. 2020) or the relation between 
military signals and authentic ones to detect the invasion 
(Psiaki et al. 2013). The last category suggests the correla-
tion of GPS information with other time sources, such as 
GLONASS (Mosavi et al. 2016).

Cryptographic techniques are resilient to intermediate 
and advanced spoofing attacks; however, they are prone to 
simplistic attacks such as meaconing (Ghorbani et al. 2020). 
Therefore, it is strongly suggested to exploit the method 
accompanying other defense solutions to achieve the maxi-
mum level of protection (Musleh et al. 2019). The facility 
of cryptography is only available on new GPS signals and 
services (GPS CNAV) and the Galileo system, which is not 
exploited extensively.

As an advantage, there is no requirement to modify the 
signal protocols or the satellites for the validation of the 
GPS information by the other GNSS or data sources. How-
ever, the network-based validation creates an overwhelming 
amount of data traffic through the network and is vulnerable 
to cyber attacks, such as man-in-the-middle. Furthermore, 
verification of the information with other satellite systems 
requires extra receivers, which is not very cost-efficient. 
The immunity of multi-antenna defenses to SDR-generated 
attacks and their intrinsic resistance to spoofing distinguish 
them as a robust choice for secure receivers. Still, the utiliza-
tion of multi-antenna receivers and radio spectrum analyses 
are quite costly.

The signal processing countermeasures can be applied 
to the receivers by updating their firmware and equipping 
them with the latest defense methods. However, they do not 
require any hardware modifications or adjustments in signal 
structure. This research contributes a spoof-detection and 
mitigation algorithm based on the clock offset observations, 
which lies within the mentioned category. A multi-layer 
perceptron neural network (MLP NN) is trained to follow 
the behavior of clock offset information and maintain the 
authentic trend under TSA conditions. The network reduces 
the diversions introduced in the information and represents 

an acceptable accuracy for PMUs, the communication tow-
ers, and other time-dependent applications.

The contributions of this research can be listed as follows:

• A three-layer MLP NN is proposed, which can impres-
sively mimic the clock offset trend. Since each dataset 
has a similar pattern as the other ones in terms of clock 
offset behavior, the network is trained once, and there is 
no necessity to train it with every new dataset.

• A reference dataset can be exploited to train the network 
in offline mode; therefore, there is no obligation to train 
the network in the setup stage of the receiver. Further-
more, the trained weights can be stored in the memory 
of the receiver and exploited at each startup.

• The defensive mechanism of the proposed method is 
independent of the generation procedure of TSA, and it 
only concentrates on the correction of destructive effects 
on the clock offset. Therefore, it can cover a vast num-
ber of TSAs that influence the clock offset information, 
without concern about new or future methods of attack 
generation.

• The proposed MLP NN is exploited in a detection algo-
rithm, which can detect the type of attack.

• The algorithm requires low memory space, and it does 
not demand complicated mathematical tools and a mas-
sive number of computational resources. Therefore, the 
update of the receiver firmware consists of a few lookup 
tables and the algorithm routine.

The following section reviews clock offset derivation 
and the state-of-art algorithms in signal-processing defense 
techniques. The configurations of the MLP NN and the algo-
rithm are expressed in the third section, and it will be fol-
lowed by experimental results, which are obtained by two 
real datasets. Finally, the conclusions are made in the last 
section.

Terminology review and related works

The first part of this section explains the procedure of clock 
offset calculations and its associated terminology. The sec-
ond part discusses the existing solutions to confront the 
thread of TSA in stationary receivers and inspects their cons 
and pros.

GPS time and clock offset derivation

Generally, the GPS signals are exploited to determine the posi-
tion, velocity, and time or PVT solution of the receiver. The 
position accuracy in open sky conditions is about 4.9 m for 
smartphones (Diggelen and Enge 2015). Though, depending 
on environmental conditions, the accuracy will be reduced 
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in more challenging situations. According to the studies of 
Lewandowski et al. (1993), the precision of time measure-
ments of GPS receivers is in the order of nanoseconds (Li 
et al. 2015).

The GPS signals received at the front end of the receiver 
will be passed through acquisition, tracking, and navigation 
data processing stages to derive the PVT information. Based 
on the retrieved information, the position of each satellite is 
calculated, and the pseudoranges are estimated as well. Pseu-
doranges assist in computing the PVT solution. The relation-
ship connecting the trip time between the kth satellite and the 
user’s receiver, denoted by �k

u
 , the speed of light c, and the cor-

responding pseudorange �k
u
 , is defined as (Borre et al. 2007):

where tu is the user time and tk is the kth satellite time. Con-
sider tGPS as absolute GPS time. Clocks of the receiver and 
satellites are not exactly the same as the GPS time. There-
fore, the time of the user and kth satellite are expressed as 
follows:

where the epoch time, which expressed in terms of the 
receiver clock, is tu , and �k

u
 is known from the observations. 

According to (1), tk can be calculated and corrected with 
satellite clock offset dtk . Now the transmit time is obtained 
in absolute GPS time as well as clock offset of the user dtu.

TSA formation and countermeasures

The clock offset of receiver dtu is prone to TSA attacks. Any 
distortion in the receiver clock offset directly influences 

(1)tu − tk = �k
u
=

�k
u

c

(2)tu = tGPS + dtu

(3)tk = tGPS
u

− �k,GPS
u

+ dtk

the receiver clock and will be resulted in erroneous time 
stamps for data measurement or corruption of the synchro-
nization between devices. The mentioned distortion can be 
conducted by any possible means, such as a fluctuation in 
pseudorange or modification in ephemeris information. In 
Jiang et al. (2013), a TSA optimization problem is formu-
lated to increase the clock offset error, and consequently, the 
phase measurement error in a PMU. The problem conditions 
are precisely selected so that the position of the receiver 
and satellites, and pseudoranges are not altered drastically. 
These conditions develop a hard-to-detect TSA for simplistic 
observation countermeasures, such as position monitoring.

Another spoofing scheme is proposed by Lee et al. (2019) 
and Schmidt et al. (2020) that injects a malicious signal to 
the pseudorange measurements. Based on the shape of the 
added signal, two types of TSAs are introduced. In the first 
type of the proposed TSA, a step-shaped signal is added 
abruptly to the authentic measurements, while the second 
type of attack consists of gradual modification of the clock 
offset. The location of the receiver is constant, and its veloc-
ity is assumed to be zero in these cases.

The countermeasures for such attacks, independent of 
their configuration scheme, are divided into three categories: 
exploiting a defense mechanism in the receiver stage, detec-
tion or mitigating the attack effects on the application stage, 
or a combination of both methods, as shown in Fig. 1. Most of 
the countermeasures in the application stage detect the attack 
based on the unusual status of the device or the network. The 
application of GPS timing in PMUs and their vulnerability 
to TSA have drawn attention to the issue. Therefore, vari-
ous pieces of research have been conducted on this specific 
application and provided many solutions for TSA detection 
or mitigation in the application layer. In Zhu et al. (2016), the 
number of visible satellites has been estimated, and modifica-
tions in the signal were observed and investigated. Similarly, 
Wang and Chakrabortty (2016) monitor the oscillations in the 
network and check the consistency of parameter updates in 

Fig. 1  Defenses against TSAs 
are categorized into four 
classes, in which signal process-
ing techniques are utilized in the 
stages of the receiver, applica-
tion, or both
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each network node in a distributed scheme. The evaluation of 
the network time integrity and tracking the signal quality in 
Riedel et al. (2019) is an instance of exploiting both receiver-
level and application-level defense mechanisms.

Many solutions exclusively detect the malicious invasion 
based on statistical estimations, and the supervisor will con-
duct further reactions, such as disconnecting the faulty PMU. 
However, some defense mechanisms are equipped with error 
correction and mitigation techniques. Statistical model and 
state estimation techniques have been utilized for synchro-
phasor data correction in Fan et al. (2018a), while Fan et al. 
(2018b) employ the analysis of the network matrices to esti-
mate the phase shift, which is generated by the attack, and 
determination of the infected PMU. Furthermore, the Supervi-
sory Control and Data Acquisition (SCADA) system and PMU 
measurements assist a dynamic filter to estimate the phase 
shift of the attack in Siamak et al. (2020). The method also 
corrects the faulty measurements of the attacked PMU. These 
kinds of techniques explore the network models with complex 
relationships and investigate the results of spreading errone-
ous measurements through the network, which can eventually 
endanger the network state.

A more desirable method is the detection of attack in the 
receiver stage and refining the time information before exploit-
ing them in the application. TSA rejection and mitigation 
(TSARM) technique employs the spoofing attack model and 
mitigates the attack effects by correcting the pseudoranges 
and their rates (Khalajmehrabadi et al. 2018a, b). A belief 
propagation technique and adaptive extended Kalman filter 
(EKF) are utilized to adjust the pseudorange measurements in 
Bhamidipati et al. (2019), and the receivers are also equipped 
with multiple directional antennas. Low-memory and robust 
estimator (RE) is also proposed in Lee et al. (2019), which 
mitigates the TSA impacts effectively and does not require any 
parameter tuning procedure.

All of the mentioned contributions effectively mitigate the 
TSA effects; however, they follow specific modifications in 
the signal to alleviate the attack outcomes. Furthermore, the 
accuracy of the methods is an important issue, which will 
be addressed in the next sections. The contribution of this 
research is a MLP network that focuses on the time informa-
tion correction in the receiver level, independent of how the 
attack generated or affected the other parameters to alter the 
time. Therefore, in the upcoming section, the basics of the 
MLP NN will be discussed briefly and the correction mecha-
nism explained in detail.

An MLP NN for spoof mitigation: basics 
and mechanism

Multi-layer feedforward networks constitute one of the 
highly popular categories of NNs. They are called feedfor-
ward since the input signal propagates through the struc-
ture, which can have one or more hidden layers in a forward 
direction. Commonly, these networks, which are referred 
to as MLP NNs, can provide solutions for a diverse range 
of complex problems after receiving the proper training. 
The error back-propagation (BP) algorithm is employed to 
train MLP NNs in a supervised routine and consists of two 
passes: forward pass and backward pass (Haykin 2009). 
During the forward pass, the response of each layer to the 
input signal is investigated precisely, while the network 
weights remain constant. In the backward pass, the error is 
attained by the difference between the resultant output and 
the desired value. The error is exploited to adjust the weights 
and thresholds. Achieving the minimum possible error with 
a reasonable number of iterations is the ultimate goal of the 
learning process (Mosavi and Shafiee 2016).

In this section, a three-layer MLP NN is proposed and 
trained by the error BP algorithm in a supervised manner. 
Generally, the NNs are expressed by the number of neurons 
in each layer. For instance, a network with p nodes in the 
input layer, q neurons in the hidden layer, and r neurons in 
the output layer is denoted by N(p,q,r). According to this 
notation, in the first subsection, the calculations of the BP 
algorithm are presented for the N(p,q,1) network, and in 
the second subsection, the proposed network structure with 
N(3,3,1) is discussed.

Network training based on BP algorithm

Consider an N(p,q,1) network, as depicted in Fig. 2. Network 
parameters are defined as:

(4)X(k) =
[
x1(k), x2(k),… , xp(k)

]

(5)W
I
(k) =

⎡
⎢⎢⎣

wI
11
(k) … wI

1q
(k)

⋮ ⋱ ⋮

wI
p1
(k) … wI

pq
(k)

⎤⎥⎥⎦
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I
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where X(k) is a p × 1 input vector, WI
(k) is the input 

weights matrix with the size of p × q , �I
(k) expresses a q × 1 

vector of input thresholds, WO
(k) indicates output weight 

vector with the size of q × 1 , and �(k) is the output threshold. 
The stimulation of neurons in the hidden layer is denoted 
by a q × 1 vector VI

(k) , and the stimulation of output layer 
neuron is denoted by vO(k) (Mosavi 2006). Output of hidden 
layer neurons is a q × 1 vector YI

(k).

The final output of the network and desired value are 
denoted by yO(k) and d(k) , respectively. The activation func-
tion of each neuron is a sigmoid function. The function and 
its derivation are presented as:

where ��(x) denotes the derivation of sigmoid. The follow-
ing steps express the procedure of network learning by the 
BP algorithm:

Step 1: Initialization of the weights 
and thresholds

Assign small, random, and uniformly distributed numbers 
to the corresponding parameters.

(9)Y
I
(k) =

[
yI
1
(k), yI

2
(k),… , yI

q
(k)

]

(10)�(x) =
2

1 + e−2x
− 1

(11)��(x) = �(x)(1 − �(x))

Step 2: Forward pass

Forward calculations, based on Fig. 2, are defined as:

which express the forward flow of the input signal.

Step 3: Backward pass (weights 
and thresholds update)

After obtaining the relationships between inputs and output, 
the result should be compared with the desired signal. The 
objective function based on the squared error is defined as:

where e(k) is the output error. In each iteration, the algorithm 
endeavors to minimize the function by updating the adapt-
able parameters. The updating process is operated by adding 

(12)vI
j
(k) =

p∑
i=1

xi(k)w
I
ji
(k) + �I

j
(k)

(13)yI
j
(k) = �j

(
vI
j
(k)

)

(14)vO(k) =

q∑
i=1

yI
j
(k)wO

i
(k) + �(k)

(15)yO(k) = �
(
vO(k)

)

(16)J(k) =
1

2

(
e(k)2

)
=

1

2

(
d(k) − yO(k)

)2

Fig. 2  General form of N(p,q,1) 
network is illustrated, consisting 
of an input layer with p nodes, a 
hidden layer containing q neu-
rons, and a single output layer
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an adjustment value to each parameter. For instance, the 
update relation for wO

j
(k) is expressed as:

where ΔwO
j
(k) is the adjustment value and determined by 

partial derivative of J(k) with respect to wO
j
(k):

in which � is the learning rate parameter that influences 
on convergence speed of the algorithm. Likewise, the 
adjustment values for other parameters of the network are 
expressed as:

which can be exploited to update parameters in each 
iteration.

Step 4: Iteration

The time instant k is increased, and the algorithm is repeated 
from Step 2 until the output error conditions satisfy.

Proposed network structure

The ultimate goal of TSA is to affect the clock offset infor-
mation and cause errors in time stamps; therefore, an MLP 
NN can be a great help to estimate the authentic trend of the 
clock offset and preserve the receiver from the catastrophic 
consequences of TSA. The efficient utilization of MLP NN 
requires a proper selection of the network features, such 
as type of architecture, the number of layers and neurons, 
and training algorithm. Generally, the optimal decisions 
are made through a trial-and-error procedure (Shafiee et al. 
2018). In the proposed network, the previous samples of the 
clock offset are employed as inputs to predict the upcoming 
one.

The decision is directed by considering the trade-off 
between computational complexity and mean square error 
(MSE) of the training process. The network complexity 
directly relates to its order and depends on the number of 

(17)wO
j
(k + 1) = wO

j
(k) + ΔwO

j
(k)

(18)

ΔwO
j
(k) = −�

�J(k)

�wO
j
(k)

= � ⋅ e(k) ⋅ �
(
vO(k)

)
⋅
(
1 − �

(
vO(k)

))
⋅ yI

j
(k)

(19)

Δ�(k) = −�
�J(k)

��(k)
= � ⋅ e(k) ⋅ �

(
vO(k)

)
⋅
(
1 − �

(
vO(k)

))

(20)

ΔwI
ji
(k) = −�

�J(k)

�wI
ji
(k)

= � ⋅ e(k) ⋅ ��
(
vO(k)

)
⋅ wO

j
(k) ⋅ �

�

j

(
vI
j
(k)

)
⋅ xi(k)

(21)

Δ�I
j
(k) = −�

�J(k)

��I
j
(k)

= � ⋅ e(k) ⋅ ��
(
vO(k)

)
⋅ wO

j
(k) ⋅ �

�

j

(
vI
j
(k)

)

weights and thresholds. The order of a general N(p,q,1) net-
work is defined as (Karim 2019; Haykin 2009):

which has a direct relation with the dimensions of the 
network.

Multiple experiments have been conducted, and the number 
of neurons and inputs varied between two and 20 to deter-
mine the optimal selections. Furthermore, different activation 
functions such as Gaussian functions with various means and 
standard deviations are employed to attain the best solution. 
The sigmoid function is a popular selection as an activation 
function, and it performs well in estimating the clock offset 
trend. The final structure selection of the network has been 
established based on the results of Fig. 3. According to the 
figure, NNs with three inputs have lower MSEs in comparison 
with others. Specifically, networks with three and four neurons 
have the lowest possible MSEs. In terms of epochs, networks 
with four inputs have the fastest convergence rate. However, 
due to the nature of spoofing problems, the MSE parameter 
is a more crucial decision point than the convergence rate. 
Based on the mentioned priorities and tendency for simplicity, 
the N(3,3,1) network with sigmoid activation functions, which 
is depicted in Fig. 4, is selected to estimate the clock offset 
trend. As shown in the figure, the inputs of the network are 
three previous samples of the clock offset information, which 
are d(k − 1) , d(k − 2) , and d(k − 3) . Consequently, the output 

(22)Network Order = (p + 2)q + 1

Fig. 3  Performance comparison for different NN structures with sig-
moid activation function
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is the estimation of the clock offset, denoted by d̂(k), at the 
present time instant k.

According to (22), the network order is 16, which indicates 
a reasonable amount of complexity. The network has been 
trained with the Levenberg–Marquardt algorithm, which pro-
vides an acceptable response and fast convergence rate (Hagan 
and Menhaj 1994). A dataset of 200 samples of clock offset 
is exploited in the learning procedure, representing 200 s of 
information. The first half of the dataset, collected by Lee et al. 
(2019), has been exploited for this purpose. They utilized a 
Google Nexus 9 tablet, which has an embedded GPS chipset, 
to collect the data on November 4, 2018, at the San Antonio 
campus of the University of Texas. The complete dataset will 
be utilized in the following sections to evaluate the proposed 
network. The training process of the network is conducted by 
70% of data, while its performance is validated by 15% of 
samples. The other 15% of the data is employed to test network 
efficiency. Furthermore, the dataset is scaled to increase the 
convergence rate (LeCun et al. 2012). The MSE results of the 
training process are exhibited in Fig. 5.

The proposed MLP NN has been exploited in an error-
based detection algorithm, which can identify the type of 
TSA. The flowchart of the algorithm is exhibited in Fig. 6. 
According to the figure, the estimation error of the network 
is defined as:

where d(k) is the extracted clock offset information from the 
navigation solution of the receiver and d̂(k) is the MLP NN 
estimation of the current sample based on the previous three 

(23)eest(k) = d(k) − d̂(k)

samples. The application and its sensitivity to the clock off-
set errors determine the threshold of attack detection, which 
is denoted by � . Therefore, if the error between the predicted 
sample and receiver solution is higher than δ ( eest(k) > 𝛿 ), 
the error will be intolerable for that specific application. The 
IEEE C37.118 declares that the 1% total variation error is 
regarded as an intentional attack on PMUs (Martin 2011). 
The amount is equal to 26.65 μs of clock offset error or 
equivalent distance of 7989 m (Lee et al. 2019).

Fig. 4  Scheme of TSA on a 
typical GPS receiver and apply-
ing the proposed MLP NN as a 
defense mechanism is depicted. 
The proposed MLP NN has 
three nodes in the input layer, 
three neurons in the hidden 
layer, and a single output layer

Fig. 5  Learning process of MLP NN and MSE of each iteration with 
the Levenberg–Marquardt algorithm is exhibited. The best validation 
performance is 1.4341 × 10

−6 at epoch 103
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In the first type of attack, the clock offset error is intro-
duced abruptly into the samples; thus, the eest(k) is increased 
drastically at once and leads the algorithm to detect the 
attack. The estimation error is considered a correction coef-
ficient for sample refinement and expresses the amount of 
the injected clock offset. The second type of attack modifies 
the clock offset distinctly: The error is added to samples 
gradually. In the first type of attack, the correction coef-
ficient remains constant, while for the second attack, the 
value has to be updated in each iteration based on eest(k) . The 
second error threshold � is determined to exhibit the amount 
of parameter update under the condition of the second type 
of attack.

Experimental results and performance 
evaluation

In this section, the performance of the proposed MLP 
NN is evaluated through two real-world datasets with dif-
ferent characteristics. The first dataset has been provided 
by the authors of Lee et al. (2019) and is available on the 
Github Web site. A tablet equipped with a GPS chipset is 
used to record the first dataset on November 4, 2018, at 
the University of Texas at the San Antonio main campus, 
and the GNSS Logger android application (Google 2020) 
is employed to derive the navigation solution. The dataset 

contains 400 samples that are representing 400-s information 
of a stationary receiver.

A hardware equipment set including a GPS receiver and 
a spectrum analyzer with a tracking RF module is exploited 
for retrieving the second dataset, as shown in Fig. 7. The 
receiver captures the RF signal, combines it with the GPS 
simulator signal, and passes it through a band-pass filter 
and amplifier. The signal is downconverted to the IF; then, 
the results are digitized and stored for further processing. 
A temperature-compensated crystal oscillator (TCXO) has 
been utilized as a clock oscillator. A SDR is exploited for 
the acquisition, tracking, and extraction of the navigation 
solution. The dataset has been recorded on April 24, 2014, at 
Valiasr Street, Tehran, Iran, with a sampling frequency equal 
to 5.7143 MHz. It should be noted that the receiver has been 
stationary during the data recording procedure. Matlab® 
R2016a is employed to extract the solution and correspond-
ing clock offset information. The duration of the obtained 
dataset is 32.5 s, which is expressed by 400 samples. Fur-
thermore, Matlab® is used to train and test the MLP NN. 
The network has been trained with a unified dataset of 200 
samples that has the same characteristics as the first dataset.

TSA configuration and estimation methods

The first type of TSA is configured by a step-shaped signal 
with an 8000 m offset or time equivalent of 26.68 �s . The 

Fig. 6  Estimation error, the dif-
ference of MLP NN output and 
clock offset, through a series of 
threshold conditions leads to 
the spoof detection and error 
mitigation
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attack is abruptly added to the signal at the 30th time sam-
ple for the first dataset. The malicious signal is injected 
into the raw pseudoranges of the second dataset at the 69th 
sample. A gradually increasing signal is a representative of 
the spoofing signal in the second attack, which is injected 
to data at the same time samples, as mentioned for the first 
type. The disruptive modifications are performed on the 
raw measurements of all pseudoranges. This type of attack 
only affects the clock offset information, while the location 
of the receiver remains constant. Both attacks on datasets 
remain until the last sample of the data.

TSAs are generated in the same way as expressed in the 
RE work (Lee et al. 2019) for a fair comparison with the 
proposed MLP NN. Furthermore, the performance of MLP 
NN is compared with the well-known EKF (Axelrad and 
Brown 1996) and Luenberger observer (LO) (Luenberger 
1966) as classical approaches to estimate the clock offset. 
Root mean square error (RMSE) is exploited to conduct 
the assessment of methods and is defined as:

where dtu(k) is the true value of the clock offset, d̂tu(k) is the 
estimated one, and N is the number of samples involved in 
the assessment.

(24)RMSE =

√√√√ 1

N

N∑
k=1

(
dtu(k) − d̂tu(k)

)2

Evaluation of methods with first dataset

The GPS navigation estimator has to estimate position, 
clock offset, and clock drift in stationary applications. The 
navigation algorithm merges the raw measurements of the 
receiver and the satellite positions to estimate the user 
state. EKFs are widely exploited in stand-alone systems 
and linearize the models with the current best estimate of 
the receiver state (Axelrad and Brown 1996). Moreover, 
LO is a linear time-invariant system that is able to elimi-
nate the noise disturbances of the measurements (Luen-
berger 1966). Both EKF and LO are classical methods of 
receiver state estimation, which are not resistant to any 
types of spoofing attacks, as shown in Figs. 8 and 9.

According to the top panels of Figs. 8 and 9, the injected 
modifications of both types of TSA misled EKF and LO. 
In the first type of attack, a constant amount of error is 
shown in the bottom panel of Fig. 8 for EKF and LO, 
which indicates the impact of the step-shaped spoofing 
signal. Although, the performances of RE and proposed 
MLP NN are significantly better than classical approaches. 
The magnified part of the top panel of Fig. 8 indicates a 
fluctuation in the RE behavior caused by the abrupt injec-
tion of the attack signal. However, the MLP NN has not 
been affected by the sudden introduction of TSA.

Fig. 7  GPS signal collection. 
The GPS signals are collected 
through an antenna, and after 
passing the RF front end, the 
digitized samples of the signals 
are saved for further processing 
and extracting the PVT solution
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RE relies on the dynamic model for stationary applica-
tions under spoofing attacks. The main issue with estima-
tions based on the models of the system is their limited 
knowledge of the signal, which causes a deterioration in 
estimation conditions. Regarding the bottom panel of Fig. 8, 
eest of RE is increasing as time passes, while the proposed 
method has a stable eest . The reason for MLP NN stability is 
its knowledge of clock offset trend, which is obtained in the 
training procedure. The knowledge facilitates maintaining 
the quality of estimation during the epochs.

The same situation has occurred in the second type 
of TSA for EKF and LO, and the increasing behavior of 
TSA caused rising estimation errors, which are exhibited 
in Fig. 9. Estimations of RE and MLP NN are very close 

to the true clock offset and indicate their high accuracy 
based on eest shown in the bottom panel of the figure. The 
magnified sections of Fig. 9 indicate the mechanism of � 
threshold: The difference between the MLP NN estimated 
value and spoofed one increases until it reaches � . At this 
point, the attack is detected, and MLP NN knowledge 
facilitates omitting the excessive modifications caused by 
TSA. The RMSE of each method is expressed in Table 1, 
which confirms the superiority of MLP NN method. It 
is also worth noting that � = 0.15�s and � = 0.15�s are 
exploited in this set of experiments. Thresholds have been 
chosen based on the range of the input data and its varia-
tions for higher precision.

Fig. 8  Evaluations of methods with the first dataset. Clock offset 
information modifications on the first-type TSA (top), and estimation 
errors of each method (bottom) Fig. 9  Evaluations of methods with the first dataset. Clock offset 

information modifications on the second-type TSA (top), and estima-
tion errors of each method (bottom)
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Performance assessment of methods with second 
dataset

The characteristics of the second dataset are quite different 
from the first one. The higher data range and an abrupt alter-
ation in the middle of the clock offset samples create chal-
lenging conditions for most of the estimation algorithms. 
The GPS receivers have limited storage space; therefore, 
they cannot store large clock offsets. According to this point, 
prescribed ranges are defined for the clock offset. Every time 
the clock offset exceeds the ranges, the receiver clock is 
updated to maintain the limits. This update will cause a jump 
in the clock offset. The attack conditions or other factors 
can alter the update periods slightly; thus, the clock offset 
behavior is pseudo-periodic. Due to the weak performance 
of EKF and LO in the former dataset, only the results of RE 
and the proposed MLP NN are considered in the second 
dataset performance evaluation. The TSA modifications on 
the signal are the same as the previous subsection.

The top panel of Fig. 10 exhibits the response of each 
method to the first-type TSA. Previously, the RE algorithm 
reaction to the attack has been manifested as a fluctuation in 
the estimation. In this dataset, no fluctuations were observed 
in the behavior of the algorithm, and RE estimated the clock 
information slightly higher than the desired value. The bot-
tom panel of Fig. 10 indicates a high estimation error for 
MLP NN at the first samples of data. The network has been 
trained with a dataset whose initial values are near zero. 
Therefore, it takes a few samples for the network to adapt to 
the conditions of the new dataset and emendates the error. 
Both methods carry a constant error value after attack injec-
tion. However, MLP NN attempts to reduce eest with a fluc-
tuation, yet a slight amount of error is not compensated, as 
shown in the magnified part of the bottom panel of Fig. 10.

The responses of RE and the proposed MLP NN to the 
second type of attack are depicted in Fig. 11. The reactions 
to the attack are similar to Fig. 10, with respect to the high 
eest of the MLP NN at first samples of the dataset. Further-
more, a fluctuation is observed in the estimation error of RE 
concerning the sudden alteration of the data samples. The 
correction mechanism based on the � value for the gradually 
increasing nature of second-type TSA is exhibited in the 
magnified part of the bottom panel of Fig. 11. Every time 
the estimation error is higher than � , the algorithm corrects 

the erroneous clock offsets, which causes the sawtooth-
shaped eest . The value of � determines the height of each 
peak: Lower � results in small peaks and contrariwise. The 
RMSE values for each algorithm alongside the choices for � 
and � are presented in Table 2. The premier performance of 
the proposed MLP NN is established based on better RMSE 
results.

Discussion on attack detection and corrections 
for second dataset

The receiver clock update procedure causes a fluctuation in 
the clock offset trend. This large modification in the smooth 
trend of the clock offset can be detected as a spoofing attack 
in some of the monitoring methods. In this subsection, the 

Table 1  MSEs of each method under the TSA conditions for the first 
dataset (expressed in �s)

TSA type EKF LO RE Proposed 
MLP NN

Type 1 27.24 26.05 2.19 0.051
Type 2 261.003 261.37 1.30 0.070

Fig. 10  Performance of RE and the proposed MLP NN with the sec-
ond dataset. Clock offset information modifications on the first-type 
TSA (top) and estimation errors of each method (bottom)
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response of the proposed method to the fluctuation is inves-
tigated, specifically. Hence, an attack-free case is considered 
to evaluate the performance of the network, and the results 
are demonstrated in Fig. 12. According to the top panel, 
both RE and MLP NN have followed the trend with accept-
able performance. However, the bottom panel exhibits an 

increase in eest of RE, which has subsided after a short while. 
The fluctuation affects the performance of RE, and another 
raise is observed after the 250th sample. Furthermore, the 
bottom panel of Fig. 11 exhibits the same behavior for RE. 
On the other hand, the fluctuation has not affected the eest of 
MLP NN, and the value remains the same. As noted earlier, 
an error of 26.65 μs is considered a spoofing attack (Lee 
et al. 2019). The effect of the fluctuation on the RE method 
introduced an error of less than ten microseconds; thus, the 
resultant error does not trigger any false alarms.

According to Fig. 6, the proposed method exploits two 
thresholds, � and � . Any estimation error higher than � 
arises speculations of a spoofing attack occurrence; thus, 
the algorithm starts to correct the clock offsets based on the 
network knowledge. At this time, if the introduced eest rises 
higher than 26.65 μs and remains high for a few samples, 
then speculations about the first type of attack turn to assur-
ance. On the other hand, if the error does not exceed the 
threshold, the algorithm keeps observing eest and updates 
the correction coefficient using � . Similar to the first type of 
attack detection, when the correction coefficient passes the 
attack threshold for a few samples, it can be stated that the 
second type of attack is detected. Any time that the coeffi-
cient exceeds the predetermined value (26.65 μs), the attack 
is detected. Attack-free, the first type, and the second type 
of attack are depicted in the top, middle, and bottom panels 
of Fig. 13, which are associated with the second dataset.

Values of � and � affect the RMSE, as shown in Fig. 14. 
The best results of the network are obtained with � ∈ (0, 5�s] 
and � ∈ (0, 3�s] . According to the figure, a value near 5 μs 
is suitable for � , since it provides the lowest possible RMSE 

Fig. 11  Performance of RE and the proposed MLP NN with the sec-
ond dataset. Clock offset information modifications on the second-
type TSA (top) and estimation errors of each method (bottom)

Table 2  RMSEs of RE and the proposed MLP NN and correction 
algorithm parameters for the second dataset (expressed in �s)

TSA type RE Proposed MLP 
NN

� �

Type 1 6.16 1.03 4.8 2
Type 2 4.71 0.38 4.8 0.2

Fig. 12  Estimation errors (bottom) of RE and MLP NN demonstrate 
the effects of the update fluctuation in the clock offset trend (top) for 
the attack-free case
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and the highest speculation limit. The second coefficient, 
� , has a selection range of (0, 3 μs], in which the higher 
values lead to fewer corrections, and lower ones update the 
correction coefficients at a faster pace. Therefore, it is sug-
gested to select the lower values for � in case of unknown 
behaviors such as a second-type attack. High uncorrected 
estimation errors cause a gap between the authentic trend 
and the estimated one, which increases the RMSE, as shown 
in the yellow region of Fig. 14.

Discussion and conclusion

An MLP NN is contributed in this research to address the 
security issues concerning the clock offset information of a 
stationary receiver. Two datasets with different features have 
been exploited to evaluate the performance of the proposed 
method. The first dataset has straightforward features, while 
the second one is more challenging for most of the estima-
tors. GPS signals of the second dataset are gathered through a 
GPS receiver, and the digitized signal samples are stored in a 
computer to extract the navigation solution. Due to the pseudo-
periodic receiver clock updates, the behavior of the clock offset 
over time does not change drastically, and the proposed MLP 
NN has the same long-time performance.

Two well-known types of TSA are applied to the raw meas-
urements of pseudorange in each dataset. The performance of 
the proposed method is compared to the EKF, LO, and RE, 
and the achieved RMSEs of the proposed method are at least 
six times better than the state-of-art RE. The security-sensitive 
applications such as PMUs and communication towers can 
exploit the proposed MLP NN as well as other applications 
that require precise timing information. Additionally, the uti-
lization of the method does not demand extra hardware or soft-
ware resources, and firmware update of the GPS receiver can 
fortify it against a vast number of TSAs or other error sources.

Data availability The first dataset belongs to Lee et al. (2019) and is 
available at https:// github. com/ junhw anlee 95/ Robust- Estim ator. The 
second dataset that verifies the findings of this study is available from 
the corresponding author upon reasonable request.
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