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Abstract
Global pressure and temperature 2 wet (GPT2w) is an empirical model providing the mean values plus annual and semiannual 
amplitudes of weighted mean temperature (Tm), which makes it a widely used tool in converting zenith wet delay (ZWD) to 
precipitable water vapor (PWV) in GNSS meteorology. The model meets the needs of real-time Tm anywhere in the world 
without relying on any other meteorological observations compared with traditional Tm calculation methods. It outperforms 
the other empirical Tm models released in recent years. Due to the lack of the Tm vertical adjustment in the model, the 
accuracy of Tm estimated by the model is subject to certain constraints, especially at sites which have large altitude differ-
ences compared with the GPT2w grid points. We explored the Tm lapse rate for the vertical adjustment using 10 years of 37 
monthly mean pressure level data from the European Center for Medium-Range Weather Forecasts (ECMWF) and extended 
the GPT2w model to a new one called the GPT2wh model. Three schemes with different height ranges were established to 
fit the Tm lapse rate, and the most appropriate scheme was selected by adopting the goodness of fit measures, including the 
coefficient of determination (R-squared) and the root mean square error (RMSE). In addition to the mean value, annual and 
semiannual amplitudes for Tm lapse rate on a regular 1° grid were determined and stored in the GPT2wh model. The per-
formance of the new model was assessed against the GPT2w model using different data sources in 2011, i.e., the ECMWF 
data and globally distributed radiosonde data. The numerical results show that the GPT2wh model outperforms the GPT2w 
model with an improved RMSE of 7.36/5.00/2.45/1.37/0.51/0.03 K at different height levels in the ECMWF comparison. In 
comparison with the radiosonde data, the mean RMSE of the GPT2wh model improves by 0.33 K from 4.16 to 3.83 K, i.e., 
an approximately 8% improvement against the GPT2w model. The impact of Tm on GNSS-PWV was analyzed, showing 
that the GPT2wh model can effectively improve the accuracy of the converted PWV.
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Introduction

The Global pressure and temperature (GPT) model is an 
empirical model proposed by Böhm et al. (2007), which is 
based on spherical harmonics up to degree and order 9 and 
provides temperature and pressure at any site in the vicinity 
of the earth’s surface. The model is widely used in geodetic 

applications, such as reference pressure values for atmos-
pheric loading or the determination of a priori hydrostatic 
zenith delays.

Lagler et al. (2013) proposed the GPT2 model to improve 
the limited spatial and temporal variability of the GPT 
model. GPT2 model provides temperature, pressure, as well 
as water vapor pressure and mapping function coefficients 
at any site with a global 5° grid of mean values, alongside 
annual and semiannual variations in all parameters. This 
brings forth improved empirical slant delays for geophysi-
cal studies.

The global pressure and temperature 2 wet (GPT2w) 
model is the up-to-date version proposed by Böhm et al. 
(2015), established on monthly meteorological data of 
10-year (2001–2010) ERA-Interim, and developed the 
weighted mean temperature (Tm) as a new output parameter 
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with a global resolution of 1° × 1° geographical grid. The Tm 
is a function of atmospheric temperature and vertical humid-
ity profiles and plays a crucial role in the progress of retriev-
ing water vapor information from the tropospheric delay of 
GNSS signals (Wang et al. 2005; Sapucci 2014; Wang et al. 
2016). The quality of PWV and SWV are affected by the 
accuracy of Tm (Askne and Nordius 1987; Bevis et al. 1994; 
Ross and Rosenfeld 1997; Yao et al. 2012).

Traditionally, the Tm can be exactly determined by the 
atmospheric profiles based on a ray-tracing method, but 
the atmospheric profiles are almost impossible to obtain in 
real-time or near real-time at any site. The Bevis formula 
( Tm = a + b ⋅ Ts , Ts is the surface temperature) is another 
alternative, in which the coefficients ( a and b ) are largely 
season and location-dependent and should be estimated 
using meteorological measurements at specific regions 
and seasons (Bevis et al. 1992; Emardson and Derks 2000; 
Mendes et al. 2000). It often becomes invalid when in situ 
temperature measurements are unavailable. To overcome the 
limitations, some empirical Tm models, fed only by coordi-
nates of the site and the time, have been proposed in recent 
years, such as the GWMT, GTm-II, GTm-III, GTm_N and 
GTm_X model (Yao et al. 2012, 2013, 2014; Chen et al. 
2014; Chen and Yao 2015). Compared with these empirical 
models, the GPT2w model is the latest with an excellent per-
formance in Tm calculation verified by scholars (Wang et al. 
2016; He et al. 2017; Zhang et al. 2017; Hua et al. 2017; 
Yang et al. 2019). In addition, the GPT2w model is not a 
specific Tm model and can output many other atmospheric 
parameters, making it a widely used tool in meteorology.

In the GPT2w model, it selects the four nearest grid points 
around the station and calculates their Tm values using the 
corresponding mean values, annual and semiannual ampli-
tudes from the external grid file. The bilinear algorithm is 
then adopted to interpolate the Tm of the station from the 
Tm of the four grid points. However, the grid points of the 
GPT2w model are not strictly collocated with the GNSS 
station; therefore, spatial adjustments are always required. In 
the model, the exponential based on virtual temperature, the 
temperature lapse rate, and the water vapor decrease factor 
were applied to fulfill this request for pressure, temperature, 
and water vapor pressure, respectively (Böhm et al. 2015; 
Wang et al. 2017). For Tm, however, the model lacks the cor-
responding parameter for vertical adjustment, which results 
in inaccuracy in the Tm calculation.

The applications of Tm estimated by this model would be 
limited because the altitude differences between the GNSS 
stations and the reference level of the model always exist 
(Zhang et al. 2017). To solve this issue, the Tm lapse rate 
along the vertical direction, which can be affected by several 
factors, (e.g., the atmospheric pressure, moisture content of 
air and the height), should be considered and applied to the 
GPT2w model (Yang and Smith 1985; He et al. 2017; Zhang 

et al. 2017). We utilized the 10 years (2001–2010) of 37 
monthly mean pressure level data from ECMWF to analyze 
the global Tm lapse rate. The purpose was to determine the 
mean value as well as annual and semiannual amplitudes 
for the Tm lapse rate on a regular 1° grid at mean ETOPO5 
heights, which is similar to the other parameters of the 
GPT2w model (Lagler et al. 2013; Böhm et al. 2015). Then, 
a new model called GPT2wh model was established.

We describe in detail the method of determining the Tm 
lapse rate in the section of determination of the Tm lapse 
rate. The mean value as well as annual and semiannual 
amplitudes for the grid Tm lapse rate is analyzed in the sec-
tion on analysis of the gridded Tm lapse rate. The GPT2wh 
model is compared to the GPT2w model using the ECMWF 
data and the radiosonde data in the section on validation of 
the Tm lapse rate. Finally, the impact of Tm on GNSS-PWV 
is analyzed, and the conclusion is given.

Determination of the Tm lapse rate

To explore the vertical dependence of Tm, namely the Tm 
lapse rate, the Tm profiles of each grid point at a certain 
moment should be calculated. The Tm can be obtained by 
numerical integration using the layered meteorological data 
along the zenith direction, which is expressed as follows 
(Davis et al. 1985):

where T  is the atmospheric temperature (in K); p is the par-
tial pressure (in hPa) of water vapor that can be calculated 
using (Bolton 1980; Wang et al. 2016):

where Ps is the saturated vapor pressure, rh is the relative 
humidity, and Td is the atmospheric temperature (in °C).

To obtain the Tm at each level, we retrieved the 10 years 
of global monthly mean profiles for temperature, relative 
humidity, and geopotential from the ERA-interim (Dee 
et al. 2011), which were discretized at 37 pressure levels 
and 1° of latitude and longitude. Note that the geopotential 
height is used in the reanalysis data, a procedure of properly 
converting it to the geometric height at each vertical level 
is required (Nafisi et al. 2012; Dousa and Elias 2014; Zus 
et al. 2014). Then, the meteorological parameters T, rh were 
interpolated or extrapolated to the earth’s surface as needed. 

(1)Tm =
∫ p

T
dz

∫ p

T2
dz

(2)Ps = 6.11 × 10

(

7.5×Td

237.3+Td

)

(3)p =
rh × Ps

100
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The topography is the same as that in the GPT2w model, 
which is represented by a resampled 1°-version of ETOPO5 
(Lagler et al. 2013). After achieving these parameters, the 
Tm of each pressure level above the earth’s surface can be 
computed using the discretized formula of (1) as follows:

where i is the ith pressure level, N is the total number of 
layers, zi is the thickness of the ith layer.

A linear relationship is found between Tm and height, 
which can be used to describe the Tm lapse rete (He et al. 
2013; Zhang et al. 2017; Chen et al. 2018). The relationship 
is expressed as follows:

where � is the Tm lapse rate in K/km, h refers to the height 
in km, and k represents a constant. The linear model was 
utilized to fit the monthly values for Tm lapse rate at each 
grid point. Taking the Tm and height of each pressure layer at 
a certain moment into the above equation, we can fit the Tm 
lapse rate � of the grid point at the corresponding moment.

Considering the distribution of the atmospheric water 
vapor, the difference between the lower and the upper 
atmosphere, the vertical adjustments of Tm mostly occur in 
the lower atmosphere in practical applications. Therefore, 
we chose three schemes with different height ranges to fit 
the Tm lapse rate. The range from the surface to a height 
less than 7 km above the surface is considered as Scheme 
#1. In Scheme #2 and #3 the ranges decrease to 5 km and 
2 km, respectively. The goodness of fit measures, includ-
ing the coefficient of determination (R-squared) and the root 
mean square error (RMSE) were adopted to choose the most 
appropriate scheme.

The processing above yielded 120 monthly values for the 
Tm lapse rate at each grid point in every scheme. The most 
appropriate scheme is then used in the next step, namely the 
time series analysis. We utilized the least-squares adjust-
ment to estimate mean values A0 as well as annual ( A1 , B1 ) 
and semiannual ( A2,B2 ) variations for the Tm lapse rate on a 
regular 1° grid as follows:

where doy is the day of the year. The estimated values for 
each grid point were stored in the gridded input file of the 
GPT2wh model. For the future calculation of Tm using the 
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GPT2wh model, the estimated Tm lapse rate can be used to 
the vertical adjustment of the Tm.

Analysis of the gridded Tm lapse rate

To choose the best height range from the three schemes, we 
evaluated the fitted results. In Table 1, the globally mean 
R-squared and RMSEs of the fit in different schemes at 
all grid points are summarized. The values within square 
brackets are the minimum and maximum, the first % col-
umn is the percentage of those global grids with a value of 
R-squared < 0.9, and the second % column is the percent-
age of those global grids with a value of RMSE < 0.5 K. 
Although the three schemes all achieved a good mean 
R-squared with a value > 0.98, poor results exist in Scheme 
#1 and #2, in which the minimum of R-squared are 0.79 and 
0.59, respectively. For Scheme #3, only 4 grid points (the 
corresponding % is 0.006%) have a R-squared value less than 
0.9, while the percentages reach up to 0.73% and 5.5% for 
Scheme #2 and #1, respectively. One can also find from the 
RMSEs that Scheme #3 significantly outperforms the other 
two schemes in terms of the mean value, the minimum and 
maximum, as well as the percentage.

Figure 1 illustrates the distribution of the R-squared and 
RMSE (not the mean value of all grid points) in different 
schemes. The fitting results of Scheme #1 show land-sea and 
regional differences exist in the figure, and poor accuracy 
appears in some areas, especially in the Antarctic region. 
The results of Scheme #2 have a significant improvement, 
but the fit differences between grid points worldwide can 
still be seen clearly. For example, both R-squared and RMSE 
have large variations, the range of which is from 0.79 to 
0.9998 for R-squared and from 0.08 to 2.12 K for RMSE. 
Scheme #3 improves the fitting results globally, showing the 
R-squared greater than 0.9 and the RMSE less than 1.0 K 
at almost all gird points. Specifically, the RMSE values of 
Scheme #3 range from 0.02 to 0.86 K, outperforming the 
other two schemes with a global average RMSE of only 
0.17 K and an approximately 62.9% improvement over the 
worst scheme.

According to the above analysis, Scheme #3, namely the 
range from the surface to a height less than 2 km above 
the surface, was selected as the best choice to estimate the 

Table 1  Globally mean R-squared and RMSEs of the fit in different 
schemes

R-squared % RMSE %

Scheme #1 0.9829 [0.59, 0.9996] 5.5 0.83 [0.22, 3.39] 31.8
Scheme #2 0.9919 [0.79, 0.9998] 0.73 0.53 [0.08, 2.12] 57.4
Scheme #3 0.9926 [0.89, 0.9999] 0.006 0.17 [0.02, 0.86] 94.7
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mean values as well as an annual and semiannual variation 
for the Tm lapse rate. Note that the vertical adjustment of 
meteorological parameters mostly occurs within this range. 
Therefore, the choice meets the practical application. Fig-
ure 2 illustrates the mean values of the Tm lapse rate, its 
annual and semiannual amplitudes, and the standard devia-
tions of the residuals as estimated by the least square adjust-
ment. The distribution of the mean values is mostly lati-
tude-dependent and altitude-dependent, significantly small 
absolute values appear at the poles and large absolute values 
appear at alpine areas, such as the Himalayas, the Andes, and 
the Rocky Mountains. Annual amplitudes of the Tm lapse 
rate are strongest at latitudes between 40° N to 70° N (e.g., 
the amplitudes in north-east Asian and some parts of Canada 
exceed 1.8 K/km). In addition to the Antarctic region, the 
semiannual amplitudes of the Tm lapse rate are also evident 
in northern India, the western Sahel zone, and north-east 
China. Figure 2d shows that the standard deviation of the 
residuals of the least square adjustment is less than 0.85 K/
km on a global scale, with an average of 0.33 K/km. Overall, 
Fig. 2 clearly demonstrates that it is not enough to apply a 
constant lapse rate for the Tm, neither in space nor in time.

Validation of Tm lapse rate

The gridded Tm lapse rate estimated above was added into 
the GPT2w model, making it a new model called GPT2wh 
model. To assess the performance of the Tm lapse rate in Tm 
vertical adjustment, we compared the Tm calculated by the 
GPT2wh model and the GPT2w model using the reference 
Tm values derived from ECMWF data and radiosonde data. 
The two statistical quantities, bias and root mean square 
error (RMSE), were selected to measure their performance, 
which can be calculated by the following equations:

where TCi

m  and Ti
m

 are the Tm values from the models and the 
reference, respectively, and N is the number of the samples.

(7)Bias =
1

N

N
∑
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Fig. 1  Global distribution of 
the R-squared (left panel) and 
RMSE (right panel) in different 
schemes
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Comparison with ECMWF data

The ECMWF data of 2011 at a resolution of 5° × 5°, rang-
ing from 85° N to 85° S in latitude and from 175° W to 
175° N in longitude, was used to analyze the reliability of 
the GPT2wh model for the Tm lapse rate. We collected the 
meteorological profiles of these 2520 sites at UTC 12:00 
each day and computed Tm at different heights for each site 
to show the Tm vertical adjustment effect of the GPT2wh 
model. Six height levels were selected as follows: At the 
earth’s surface (level 1), 300 m higher than the surface (level 
2), 600 m higher than the surface (level 3), 900 m higher 
than the surface (level 4), 1500 m higher than the surface 
(level 5) and 2000 m higher than the surface (level 6). The 
Tm data with a temporal resolution of 24 h derived by the 
ECMWF data were considered as a reference, and the Tm 
of each site at the same time and same height levels were 
calculated using the GPT2w and GPT2wh model. Thus, the 
bias and RMS can be obtained for the two models.

The altitude difference between the site to be computed 
and the four grid points in the GPT2w model used to inter-
polate this site directly affects the results of the Tm vertical 
adjustment using the Tm lapse rate. Thus, Fig. 3 shows the 
distribution of the altitude differences between the 2520 sites 
and the corresponding four grid points in the GPT2w model 
at different height levels. We can see that the altitude dif-
ferences between the 2520 sites and their four grid points 
increase with the increasing height levels. The maximum 

and minimum altitude difference, as well as the average 
altitude difference at each height level, is shown in Table 2. 
The largest altitude difference in all experiments is 2603 m, 
which appears at level 6, while the smallest altitude differ-
ence of 0.1 m appears at level 1. The average altitude differ-
ence increases from 54 to 1994 m with the change of height 
level. Therefore, the height level 6 with an average altitude 
difference of 1994 m is considered as an experiment with 
a lager altitude difference, while the height level 1 as an 
experiment with a small altitude difference in this study.

The globally mean biases and RMSEs of the differences 
between the Tm derived from the two models (the GPT2wh 
model and the GPT2w model) and the Tm derived from 
ECMWF data at the 2520 sites are summarized in Table 3. 
The results of these 6 height levels are included. Table 3 
shows that the GPT2wh model significantly outperforms the 
GPT2w model. The statistical results of the GPT2wh model, 
including RMSE and biases, are better than those of the 
GPT2w model at every height level. The mean bias of the 
GPT2w model varies greatly at different height levels (from 
0.31 to 10.16 K), while it is relatively stable and small for 
the GPT2wh model. As the altitude difference increases, the 
mean RMSE of the GPT2w model increases significantly, 
while the GPT2wh model can always obtain Tm results with 
a relatively small RMSE. It is found that the improvement 
of Tm by the GPT2wh model is small at the height level 
with the smallest average altitude difference, e.g., the mean 
RMSE is reduced by 0.03 K from 2.92 to 2.89 K at height 

Fig. 2  Mean values (a), annual 
amplitudes (b), semiannual 
amplitudes (c), and standard 
deviation of the residuals of the 
least-squares adjustment (d) of 
the Tm lapse rate
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level 1, while the improvement becomes apparent in the case 
of a large altitude difference, such as the improved mean 
RMSE is 7.36 K from 10.78 to 3.42 K at height level 6. 

Moreover, the largest bias and RMSE in the whole experi-
ment appear in the case of the largest altitude difference 
(height level 6), where these values are 17.22/17.5 K and 

Fig. 3  Distribution of the 
altitude differences between the 
2520 sites and the correspond-
ing four grid points in GPT2w 
model at different height levels 
(unit: m)

Table 2  Maximum and 
minimum altitude difference 
between the 2520 sites and the 
corresponding four grid points, 
as well as the average altitude 
difference at each height level 
(unit: m)

Altitude difference Height level

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Average 54 308 599 896 1495 1994
Maximum 1292 1292 1292 1503 2103 2603
Minimum 0.1 21 48 24 348 848

Table 3  Globally mean biases 
and RMSEs of the differences 
between ECMWF-derived and 
model-derived Tm (in K) on six 
height levels

Values within square brackets are the minimum and maximum

Height level Bias RMSE

GPT2w model GPT2wh model GPT2w model GPT2wh model

1 0.31 [− 2.92 3.72] 0.28 [− 3.10 2.82] 2.92 [0.95 5.87] 2.89 [0.94 5.65]
2 1.63 [− 2.24 5.46] 0.22 [− 2.53 3.04] 3.47 [1.31 6.77] 2.96 [0.94 5.87]
3 3.02 [− 1.36 7.63] 0.15 [− 2.59 3.07] 4.41 [1.85 8.18] 3.04 [0.95 5.91]
4 4.45 [− 0.39 9.73] 0.13 [− 2.49 3.07] 5.56 [2.95 10.21] 3.11 [0.96 5.92]
5 7.48 [2.08 13.90] 0.27 [− 1.91 2.97] 8.26 [3.78 14.27] 3.26 [0.99 6.02]
6 10.16 [4.67 17.22] 0.53 [− 1.34 3.12] 10.78 [5.66 17.5] 3.42 [0.99 7.54]
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3.12/7.54 K for the GPT2w model and the GPT2wh model, 
respectively. This proves once again that the altitude differ-
ence is an important factor in determining the accuracy of 
the Tm for the two models and is also related to the effect of 
the Tm vertical adjustment for the GPT2wh model.

Figures  4 and 5 illustrate the global distribution of 
RMSEs and biases of the differences between ECMWF-
derived and model-derived Tm (in K). Only the results of 
height levels 1 and 6 are given since they represent the 
cases with the minimum and maximum altitude difference, 
and the figures of other cases are similar to them. For the 
GPT2wh model with the Tm vertical adjustment, Tm values 
with high accuracy can be obtained in any case worldwide. 
The improvement in Tm accuracy by the GPT2wh model 
becomes obvious with an increase in the altitude difference 
from height level 1 to height level 6. At the height level 1, 
more than 82% and 83% of the sites had RMSE less than 4 K 
for the GPT2w model and the GPT2wh model, respectively. 
While at the height level 6, the GPT2w model becomes par-
ticularly poor, all the sites had RMSE more than 5.6 K, but 
for the GPT2wh model, the percentage < 4 K still reaches 
67%. For the case of bias, the two models can achieve good 
Tm results at height level 1, the ranges of bias are from 
− 2.9 to 3.7 K and from − 3.1 to 2.8 K for the GPT2w and 
GPT2wh model, respectively. As the altitude difference 
increased, the Tm values estimated by the GPT2w model 
become larger, which results in a big warm bias with the 
range from 4.7 to 17.7 K at height level 6 while the GPT2wh 

model can achieve a good bias result with the range from 
− 1.3 to 3.1 K at this height level.

Comparison with radiosonde data

The GPT2wh model was also evaluated using independent 
measurements (i.e., radiosonde). A total of 457 globally 
distributed radiosonde stations that contain available data 
of over 6 months were selected (Durre et al. 2006). The 
Tm values of each station at UTC 0:00 and 12:00 every day 
in 2011 were computed from radiosonde profiles using the 
integration method and were treated as the reference values 
to validate the two models.

The statistical results of bias and RMSE for the two 
models are shown in Fig. 6, in which the spatial variation 
in the accuracy of these models can be seen. An accuracy 
of better than 5 K has been achieved at most stations for 
the GPT2wh model (Fig. 6b), and the percentage reaches 
84.2%. While stations with an accuracy better than 5 K 
account for 75.4% for the GPT2w model (Fig. 6a). The 
largest improvement is 7.39 K from 11.39 to 4.00 K, and 
the globally mean RMSE of the GPT2wh model is 3.83 K, 
which shows approximately 0.33 K (8%) improvement 
against the GPT2w model. Colors in Fig. 6c, d distinguish 
two types of stations, one with a warm bias and the other 
with a cold bias. This is mainly affected by the altitude 
difference between the radiosonde station and the four grid 
points. The stations with cold bias always have negative 

Fig. 4  Global distribution of 
RMSEs in the two models 
tested by using the ECMWF 
data at height levels 1 and 6 (a, 
b represent the cases of height 
level 1 using the GPT2w and 
GPT2wh model, respectively. c, 
d represent the cases of height 
level 6 using the GPT2w and 
GPT2wh model, respectively. 
Unit: K)
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altitude difference, and the warm ones have a positive alti-
tude difference. After the Tm vertical adjustment by the 
GPT2wh model, the large cold/warm biases of the GPT2w 
model are obviously reduced. The globally mean biases 

are − 0.32 K and − 0.94 K for the GPT2wh model and the 
GPT2w model, respectively.

The average altitude differences between the radiosonde 
stations and the corresponding four grid points of the model 

Fig. 5  Global distribution of 
biases in the two models tested 
by using the ECMWF data at 
height levels 1 and 6 (a, b rep-
resent the cases of height level 1 
using the GPT2w and GPT2wh 
model, respectively; c, d repre-
sent the cases of height level 6 
using the GPT2w and GPT2wh 
model, respectively. Unit: K)

Fig. 6  Global distribution of 
RMSEs and biases in the two 
models tested by using the 
radiosonde data (a, b refer to 
the RMSEs of the GPT2w and 
GPT2wh model, respectively; 
c, d refer to the biases of the 
GPT2w and GPT2wh model, 
respectively. Unit: K)
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are counted and the change of the RMSE (upper) and bias 
(bottom) with the altitude difference is plotted in Fig. 7. 
Both the RMSE and bias of the GPT2w model increase 
with the increasing altitude difference. While the GPT2wh 
model can obtain relatively stable RMSE and bias regard-
less of the altitude difference, it effectively improves the 
accuracy of the GPT2w model at stations with large altitude 
differences. According to their altitude difference, the biases 
and RMSEs of the differences between the Tm derived from 

the two models and the Tm calculated from radiosonde data 
are grouped into four intervals 0–100, 100–200, 200–400 
and > 400 m, which are listed in Table 4. As the altitude dif-
ference increases, the improvement in the GPT2wh model 
becomes more apparent, and the values of the improved bias/
RMSE are 0.08/0.02, 0.56/0.11, 1.30/0.46 and 3.09/2.61 K, 
respectively.

The histogram of the Tm residuals, namely the values of 
subtracting the radiosonde-derived Tm from model-derived 
Tm, in terms of the mean, standard deviation (SD), median, 
and mode value, is shown in Fig. 8. All the indicators of the 
GPT2wh model are better than those of the GPT2w model. 
The histograms of both the GPT2w model and the GPT2wh 
model are normally distributed, and the new model is bet-
ter than the original one with more residuals concentrated 
around zero. For example, the percentages of residuals in 
the range of − 2 to 2 K are 40% and 44% for the GPT2w and 
GPT2wh models, respectively.

Impact of Tm on GNSS‑PWV

In GNSS meteorology, the purpose of determining Tm is 
to map the zenith wet delay (ZWD) of GNSS signals onto 
PWV based on the following formula:

where � is a conversion factor determined by Tm. �w refers 
to the density of the liquid water; Rv denotes the specific 
gas constant for water vapor; k3 and k′

2
 are the atmospheric 

refractivity constants given in Bevis et al. (1994). The ZWD 
is the zenith wet delay that can be computed by subtracting 
zenith hydrostatic delay (ZHD) from zenith tropospheric 
delay (ZTD).

To determine the impact of Tm on GNSS-PWV, we 
selected the International GNSS Service (IGS) sites with 
meteorological data recorded and a nearby radiosonde sta-
tion. Since the IGS can provide accurate ZTD products for 
each site, the ZHD can be accurately computed by mete-
orological data based on the Saastamoinen model (1972), 
and the Tm derived from the nearby radiosonde station is 

(9)PWV = � ⋅ ZWD =
106

�wRv

(

k3
/

Tm + k
�

2

) ⋅ ZWD

Fig. 7  Change of the RMSE (upper) and bias (bottom) with the alti-
tude difference for the two models

Table 4  Mean biases and 
RMSEs of the differences 
between radiosonde-derived 
and model-derived Tm (in K) in 
different intervals

Values within square brackets are the minimum and maximum

Altitude 
difference(m)

Bias (K) RMSE (K)

GPT2w model GPT2wh model GPT2w model GPT2wh model

0–100 − 0.24 [− 2.56 2.03] − 0.16 [− 2.51 1.95] 3.89 [1.25 7.16] 3.87 [1.21 7.15]
100–200 − 0.77 [− 2.58 0.94] − 0.21 [− 1.88 0.85] 3.93 [1.50 5.97] 3.82 [1.34 5.85]
200–400 − 1.69 [− 4.46 2.09] − 0.39 [− 2.66 0.64] 4.27 [1.36 6.45] 3.81 [1.23 5.82]
> 400 − 4.48 [− 10.75 8.44] − 1.39 [− 3.33 2.05] 6.22 [3.54 11.39] 3.61 [1.73 5.42]
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regarded as the true value to construct the conversion fac-
tor. Based on the above principles, two IGS sites were cho-
sen, one is LHAZ with latitude 29.66° of and longitude of 
91.10°. The other one is NICO with a latitude of 35.14° 
and a longitude of 33.40°. The nearby radiosonde stations 
are Zuls (the station number is 55591) with a distance of 
2.5 km from LHAZ and Lcnc (the station number is 17607) 
with a distance of 1.1 km from NICO, respectively. The 
average altitude differences between the IGS site and the 
four grid points are 1031 and 155 m for LHAZ and NICO, 
respectively. In our experiment, the PWV converted by the 
radiosonde-computed Tm was treated as a reference value to 
compare the PWVs converted by the two modeled Tm.

Figure 9 shows the residuals of PWV converted by the 
two modeled Tm for the two IGS sites in 2011. For the LHAZ 
site, the PWV residuals of the GPT2w model are negative 
and improved by the GPT2wh model. This is because the 
altitude of the LHAZ site is lower than all the four corre-
sponding grid points. This results in the Tm estimated by the 
GPT2w model being smaller than the radiosonde-computed 

Tm, while the converted PWV is smaller than the true value 
of PWV. After the vertical adjustment of the GPT2wh 
model, the value of the estimated Tm and the converted PWV 
become larger. For the NICO site, the altitude difference 
between the site and the four grid points is positive. There-
fore, most of the PWV residuals of the GPT2w model are 
positive. In addition, the improvement in the new model at 
the LHAZ site is more obvious than that at the NICO site. 
This is due to the LHAZ site (1031 m) having a larger aver-
age altitude difference than the NICO site (155 m).

The statistics of the PWV residuals for the two models at 
the different IGS sites are listed in Table 5. The bias/RMSE 
are improved by 0.28/0.29 mm and 0.07/0.04 mm at the 
LHAZ and NICO sites, respectively. This indicates that the 
improvement in the GPT2wh model on PWV conversion 
increases with the increasing altitude difference. Moreover, 
we counted the altitude difference of 507 IGS sites world-
wide. The percentage of IGS sites with an altitude difference 

Fig. 8  Histogram of the Tm residuals in 2011 for the two models

Fig. 9  Residuals of PWV converted by the two modeled Tm for the 
two IGS sites in 2011
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larger than 1000 m is 4.1%, the percentage reaches to 12.2% 
and 56.4% when the altitude difference is set to larger than 
500 m and 100 m, respectively. It can be expected that the Tm 
estimated by the GPT2wh model could effectively improve 
the accuracy of the PWV conversion at most IGS sites.

Conclusion

The applications of Tm estimated by empirical models is 
limited because the altitude differences between the GNSS 
stations and the reference level of the models always exist. 
Therefore, the Tm vertical adjustment plays a crucial role in 
obtaining high-precision Tm for the empirical Tm models. 
The Tm lapse rate along the vertical direction is applied to 
solve this issue. To adopt a constant as the Tm lapse rate 
is not sufficient neither in space or in time. Therefore, the 
development of the GPT2w model, namely the GPT2wh 
model, was proposed using the 10 years of 37 monthly mean 
pressure level data from ECMWF. The process of calcu-
lating the Tm lapse rete was described in detail. The mean 
value, as well as annual and semiannual amplitudes for the 
Tm lapse rate, were determined and analyzed, which is stored 
in the same format with the other parameters of the GPT2w 
model.

The comprehensive comparisons between the GPT2w 
model and the GPT2wh model were conducted using the 
ECMWF data and the globally distributed radiosonde data. 
Comparisons with the Tm derived from ECMWF data at 
6 height levels show that the altitude difference seriously 
affects the accuracy of the GPT2w model, and the GPT2wh 
model can effectively reduce this effect. The statistical 
results show that the improvement is 7.36 K from 10.78 to 
3.42 K at height level 6 and is 0.03 K at height level 1. More 
than 67% of the sites have an RMSE less than 4 K for the 
GPT2wh model at each height level, while the percentage 
is smaller for the GPT2w model. In comparison with the 
radiosonde data, the mean RMSE and bias values of the 
GPT2wh model are 3.83 K and − 0.32 K, outperforming 
the GPT2w model with an RMSE and bias of only 4.16 K 
and − 0.94 K, approximately a 8% and 66% improvement 
over it. Additionally, the impact of Tm on GNSS-PWV was 

analyzed, showing that the GPT2wh model can improve the 
bias and RMSE of the converted PWV at different IGS sites.

The GPT2wh model can improve the accuracy of Tm, 
especially at the sites which have large altitude differ-
ences compared with the GPT2wh grid points and can be 
used to achieve the Tm at different pressure levels. In fur-
ther research, the diurnal amplitudes should be explored to 
improve the situation where the GPT2wh model has little 
or no improvement in Tm at some epochs. Moreover, the 
hydrostatic equation should be used to achieve a more robust 
Tm result.
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