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Abstract
Global navigation satellite system (GNSS) remote sensing of the troposphere, called GNSS meteorology, is already a well-
established tool in post-processing applications. Real-time GNSS meteorology has been possible since 2013, when the 
International GNSS Service (IGS) established its real-time service. The reported accuracy of the real-time zenith total delay 
(ZTD) has not improved significantly over time and usually remains at the level of 5–18 mm, depending on the station and 
test period studied. Millimeter-level improvements are noticed due to GPS ambiguity resolution, gradient estimation, or 
multi-GNSS processing. However, neither are these achievements combined in a single processing strategy, nor is the impact 
of other processing parameters on ZTD accuracy analyzed. Therefore, we discuss these shortcomings in detail and present 
a comprehensive analysis of the sensitivity of real-time ZTD on processing parameters. First, we identify a so-called com-
mon strategy, which combines processing parameters that are identified to be the most popular among published papers on 
the topic. We question the popular elevation-dependent weighting function and introduce an alternative one. We investigate 
the impact of selected processing parameters, i.e., PPP functional model, GNSS selection and combination, inter-system 
weighting, elevation-dependent weighting function, and gradient estimation. We define an advanced strategy dedicated to 
real-time GNSS meteorology, which is superior to the common one. The a posteriori error of estimated ZTD is reduced by 
41%. The accuracy of ZTD estimates with the proposed strategy is improved by 17% with respect to the IGS final products 
and varies over stations from 5.4 to 10.1 mm. Finally, we confirm the latitude dependency of ZTD accuracy, but also detect 
its seasonality.
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Introduction

The global navigation satellite system (GNSS) signal delay 
depends on pressure, temperature, and water vapor content 
along the propagation path, which creates a link between 
GNSS and meteorology. Although troposphere delay is 
treated as an error source in precise GNSS positioning, 
there is a great potential of exploiting troposphere delays 

for weather and climate monitoring (Bianchi et al. 2016; 
Guerova et al. 2016). This is because the tropospheric wet 
delay is representative of the quantity of water vapor inte-
grated along the signal path. As a result, the tropospheric 
delay estimates from GNSS measurements can be used to 
quantify the precipitable water (PW, in [mm]) or its equiva-
lent—integrated water vapor (IWV, in [kg/m2]), using other 
well-determined meteorological data, i.e., pressure and tem-
perature (Lee et al. 2013; Shi et al. 2015a).

GNSS remote sensing of the troposphere, called GNSS 
meteorology (Tralli and Lichten 1990; Bevis et al. 1992), 
provides observations with spatial and temporal resolu-
tions that are higher than any other tropospheric sensing 
technique and operates in all weather conditions (Bennitt 
and Jupp 2012). Post-processing of GNSS observations can 
provide results with accuracies comparable to measurements 
of traditional precipitable water vapor sensors (Rocken et al. 
1997; Haase et al. 2003; Satirapod et al. 2011). The main 
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product of GNSS meteorology, the zenith total delay (ZTD), 
can be assimilated into numerical weather prediction (NWP) 
models, which leads to better initial states and thus improves 
the quality of forecasts, especially during severe weather 
conditions (Cucurull et al. 2004; Yan et al. 2009; De Haan 
2013). In Europe, the E-GVAP project (https​://egvap​.dmi.
dk/) was established for monitoring water vapor on a Euro-
pean scale with GNSS in near real time (latency < 90 min) 
for meteorological use (Elgered et al. 2005; Vedel et al. 
2013). The reported accuracy of ZTD estimates from near 
real-time GPS data processing is 3–10 mm (Pacione et al. 
2009; Douša and Bennitt 2013; Hadas et  al. 2013) and 
products are usually delivered with a temporal resolution 
between 5 and 30 min. The threshold accuracy of ZTD prod-
ucts for NWP assimilation is 15 mm, while a target value of 
10 mm is preferable (E-GVAP 2010; Dymarska et al. 2017).

The timely provision of GNSS ZTD estimates is limited 
by the latency of information for precise satellite orbits and 
clocks. New possibilities for GNSS meteorology became fea-
sible in 2013, when the International GNSS Service (IGS) 
established its real-time service (RTS, https​://www.igs.org/
rts). A standard deviation of 5 to 18 mm for ZTD from real-
time GPS data processing was early reported by Douša and 
Václavovic (2014), Li et al. (2014) and Yuan et al. (2014). The 
obtained accuracy is depending on the station and period are 
being studied; therefore, it is sensitive to weather conditions. 
A strong correlation could be noticed between the precision 
of the real-time satellite clock products and the real-time GPS 
ZTD solutions using the precise point positioning (PPP) tech-
nique (Shi et al. 2015b). Several real-time ZTD estimation 
software packages were compared by Ahmed et al. (2016), 
who noticed a major decrease in the accuracy when ignor-
ing antenna reference point eccentricities and phase center 
offsets and variations. The improvement of ZTD estimation 
from integer ambiguity fixing was at the millimeter level only 
(Ahmed et al. 2016; Ding et al. 2017; Lu et al. 2018). Li et al. 
(2015) and Lu et al. (2015) reported significantly worse accu-
racy of real-time ZTD from GLONASS-only and BeiDou-only 
processing compared to GPS-only processing. Compared to 
GPS-only processing, GPS + GLONASS and multi-GNSS 
processing with empirical weighting factors obtained using 
variance component estimation method led to a ZTD accu-
racy improvement of up to 10 and 22%, respectively (Lu et al. 
2017; Douša et al. 2018). Pan and Guo (2018) noticed that 
the retrieval accuracy of real-time ZTDs is latitude depend-
ent due to varying water vapor contents in different latitude 
regions. Pan and Guo (2018) and Zhao et al. (2018) consid-
ered tropospheric azimuthal asymmetry, which only slightly 
improved the ZTD retrieval accuracy. However, horizontal gra-
dients are sensitive to processing options and providing real-
time gradients would require multi-GNSS constellation with 
high-accuracy real-time products (Kačmařík et al. 2019). Yuan 
et al. (2019) recommend using forecasted Vienna mapping 

functions 1 (VMF1-FC) for ZTD modeling in real-time GNSS 
applications.

Although some aspects of a ZTD retrieval in real time 
have already been investigated independently, the reported 
accuracy did not improve over time significantly. The real-
time campaign of the European Cooperation in Science 
and Technology (COST) Action GNSS4SWEC (advanced 
global navigation satellite systems tropospheric products for 
monitoring severe weather events and climate, https​://gnss4​
swec.knmi.nl/) revealed that further research is still required 
(Jones et al. 2020). However, neither are these achievements 
combined in a single processing strategy, nor is the impact 
of other processing parameters on ZTD accuracy analyzed, 
e.g., the choice of PPP functional model, GNSS selection 
and combination, inter-system weighting, and elevation-
dependent weighting function when using low elevation 
observations. Therefore, the presented results can be blurred 
by the non-optimal selection of other processing parameters. 
Moreover, results from multi-GNSS processing should be 
reviewed, due to recent improvements in Galileo’s space 
segment (Steigenberger and Montenbruck 2017; Chatre and 
Verhoef 2018) and progressing advances in GNSS orbit and 
clock modeling, including real-time products (Kazmierski 
et al. 2018b). It should be noted that, among the quoted 
papers, studies on real-time ZTD retrieval using multi-GNSS 
observations cover data analysis up to early 2017. Therefore, 
not only a former reference frame and antenna calibration 
models were applied, but also an immature Galileo constel-
lation was used. Since early 2019, the Galileo constellation 
is almost complete, and the accuracy of Galileo-only real-
time positioning is close to GPS-only positioning (Hadas 
et al. 2019). Therefore, not only a significant contribution of 
Galileo observations in a multi-GNSS solution is expected, 
but it is also possible to investigate single system real-time 
ZTD retrieval from all four GNSSs.

We investigate the sensitivity of real-time troposphere 
products on various processing parameters, i.e., PPP func-
tional model, GNSS selection and combination, inter-system 
weighting, elevation-dependent weighting function, and gra-
dient estimation. We define an advanced strategy dedicated 
to real-time GNSS meteorology, which combines recom-
mended processing parameters. We evaluate the accuracy 
of real-time ZTD by comparing real-time products with 
the final IGS product and ZTD obtained from ray-tracing 
through a selected NWP.

Methodology

In the following subsections, we describe the test period and 
stations, provide sources of all data and products, introduce 
functional models of GNSS data processing and define the 
processing strategy with multiple variants.

https://egvap.dmi.dk/
https://egvap.dmi.dk/
https://www.igs.org/rts
https://www.igs.org/rts
https://gnss4swec.knmi.nl/
https://gnss4swec.knmi.nl/
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Data and products

We select two test periods, both covering 31 consecutive 
days of observations. The winter test period starts on Janu-
ary 1, 2019 (day of year, DoY 1) and the summer test period 
starts on June 2 (DoY 183), 2019. For the evaluation of ZTD 
accuracy, we extend the test period to the entire year 2019.

We use RINEX 3.0 × files from 20 globally distributed 
IGS stations of varying altitudes (Fig. 1). Among selected 
stations are 10 different receiver types from 4 different man-
ufacturers and 12 different antenna types from 6 manufac-
turers. Stations ALGO and BIKO track GPS, GLONASS, 
and Galileo, station REYK tracks also BeiDou during the 
second test period, while the other 17 track all four GNSS 
during both periods. The antenna at station KERG misses 
GLONASS phase center offset (PCO) and variation (PCV) 
calibrations in the up-to-date igs14.atx ANTEX file. None 
of the antennas has PCO/PCV calibration for Galileo and 
BeiDou.

We use BKG’s Ntrip Client v 2.12 to record real-time 
broadcast ephemeris from the real-time service (RTS, https​
://www.igs.org/rts) stream RTCM3EPH and to store real-
time multi-GNSS orbit and clock corrections, which are pro-
vided by the Centre National d’Études Spatiales (CNES) 
through CLK93 stream.

We use the official IGS final estimates, delivered by United 
States Naval Observatory (USNO) as a reference product for 
ZTD. The temporal resolution of the product is 5 min. Moreo-
ver, ZTD is modeled from the global forecast system (GFS) 
fields provided by U.S. National Oceanic and Atmospheric 

Administration/National Centers for Environmental Prediction 
(NOAA/NCEP). ZTDs are derived by integrating vertical pro-
files of refractivity, which are interpolated from 0.5° × 0.5° 
horizontal grid using inverse distance weighting. Refractiv-
ity profiles are up-sampled to a high-resolution vertical grid 
(about 1 m in the troposphere) by cubic splines before com-
puting ZTD from the numerical integration. Station-specific 
ZTDs are determined for predefined station location and atti-
tude. A more detailed description of this procedure can be 
found in Kačmařík et al. (2017).

Functional model

We use the GNSS-WARP software (Hadas 2015) to process 
multi-GNSS, multi-frequency pseudorange (code) P , and car-
rier phase L observations using the PPP technique. The data 
are processed using the standard ionospheric-free (IF) obser-
vation model (Malys and Jensen 1990; Zumberge et al. 1997) 
and undifferenced uncombined model (Schönemann 2014).

The standard ionospheric-free observation model is defined 
as:

with

where s denotes the satellite number and S is the correspond-
ing GNSS ( S ∈ {G,R,E,C} for GPS, GLONASS, Galileo, 
and BeiDou, respectively); �s

0
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between the position of the satellite s antenna phase center 
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phase center 
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Fig. 1   Location and height of test stations

https://www.igs.org/rts
https://www.igs.org/rts
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displacement effect corrections (Gérard and Luzum 2010) 
for pseudoranges and carrier phase measurements, respec-
tively; e is the direction vector; �X is the position correction 
vector; ISBG

S
 is the receiver inter-system bias between S and 

G (for S = G , it is set to 0); �s
IF

 is the ionospheric-free wave-
length; Bs

IF
 is the ionospheric-free ambiguity (bias) param-

eter; i is the number of the frequency f .
The undifferenced uncombined processing is performed 

using the following observation model:

Compared to the ionospheric-free model, in the undif-
ferenced uncombined model pseudorange and carrier phase 
observations are processed unchanged. This requires the esti-
mation of slant ionosphere delays Is and allows estimating 
ambiguities Ns

i
 corresponding to their original wavelength �i.

Horizontal gradients are estimated as random walk vari-
ables with a process noise an order of magnitude smaller than 
for ZTD. The gradient contribution term that has to be addi-
tionally included on the right-hand side of (1, 2, 7 and 8) is:

where GN and GE are horizontal components (north and east 
direction) of a tropospheric gradient, a is the azimuth, mfG 
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)

⋅mfG

is an elevation e-dependent gradient mapping function and 
can be expressed as (Chen and Herring 1997):

Alternative mapping functions are proposed and studied 
in great detail by MacMillan (1995) and Masoumi et al. 
(2017).

Strategy and variants

We surveyed all papers mentioned in the introduction which 
focus on real-time ZTD estimation, in order to identify the 
most popular settings of a processing strategy. In this way, a 
common processing strategy is defined (Table 1). This strat-
egy is further modified in many ways, changing the follow-
ing aspects: observation model, GNSS selection and inter-
system weighting, elevation-dependent weighting, gradient 
estimation. In addition to the common solution, 11 alterna-
tive solutions are obtained (Table 2).

Differences between real‑time results

Through a comparison of results obtained with the differ-
ent processing strategies, we identify the significance and 
impact of selected processing parameter on real-time ZTD 
product. As a consequence, we define an advanced strategy 
for real-time ZTD estimation.

Observation model

The ZTD differences obtained for all test stations with 
ionospheric-free and undifferenced uncombined functional 

(10)mfG = (sin e ⋅ tan e + 0.0031)−1.

Table 1   Summary of the common processing strategy

Observables Ionospheric-free combination of pseudorange and carrier phase

Frequencies (RINEX 3.03 notation) GPS L1/L2
A priori sigma of observations σ0 = 0.30 m for Ci , σ0 = 0.01 m for Pi

Elevation e-dependent weighting 1/sin(e)
Elevation cutoff angle 3°
Sampling rate 60 s
Troposphere delay modeling VMF1-FC mapping functions a priori value for hydrostatic delay from VMF; wet delay estimated as ran-

dom walk process with individual process noise (Hadas et al. 2017); no gradients
Receiver clock white noise for GPS; constant for ISB
Satellite orbits and clocks fixed from real-time CNES stream (mountpoint CLK93)
Code and phase biases observation specific from CLK93
Solution type static with float ambiguities
Correction models phase wind-up, relativistic delays, solid earth tides (Gérard and Luzum 2010)
Receiver PCO and PCV from igs14.atx; GLONASS G1/G2 from L1/L2 (KERG only); Galileo E1/E5a from L1/L2; BeiDou B1/(B3 

or B2) from G1/G2
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models are zero mean with the standard deviation smaller 
than 2.0 mm (Fig. 2). Detailed insights into the results reveal 
that extreme differences occur during the initialization of a 
PPP solution. They are also caused by slight differences that 
occur during the rejection of observation outliers. Therefore, 
the choice of the functional model is less critical, unless 
additional data are used, e.g., third frequency or ionosphere 
model. In such a case, the undifferenced uncombined model 
is recommended, as it allows to include ionospheric con-
straints (Banville et al. 2014) and is the key for efficient 
phase ambiguity resolution (Shi et al. 2015b). The model 
allows us to process multi-frequency data. However, such 
processing for precise applications would require antenna 
calibration information for all signals. Otherwise, missing 
PCO or PCV corrections may dramatically degrade the accu-
racy of estimated ZTD (Ahmed et al. 2016).

Single GNSS solution

Not only GPS, but also GLONASS, Galileo, and BeiDou 
are already mature enough to provide independent solu-
tions themselves. A real-time PPP solution is limited by the 
accuracy and availability of real-time orbit and clock correc-
tion. The CLK93 stream supports all GPS and GLONASS 
satellites. For Galileo, the two satellites on elliptical orbits 
(E14 and E18) are not supported, due to missing navigation 
messages (Steigenberger and Montenbruck 2017). For Bei-
Dou, the corrections are provided only for second-generation 
satellites.

During both test periods, the availability of real-time cor-
rections varies among systems and is the largest for GPS, 
and the smallest for BeiDou (Fig. 3). For GPS and GLO-
NASS, there are some incidents with missing corrections 
during both test periods. During the winter test period, the 
latest four Galileo satellites are not supported yet. For Bei-
Dou, corrections are frequently missing during both periods, 
sometimes even for the entire constellation. There are few 
episodes with missing corrections for all GNSSs (DoY 10, 
31, 200, and 206, 2019) due to a failure of the Internet con-
nection at the user side. However, a similar episode at DoY 
207, 2019 is caused by the stream provider.

Due to different numbers of satellites per constellation, 
varying availability of real-time corrections and their inho-
mogeneous quality, the availability of single GNSS real-time 
PPP solution, hence the availability of real-time ZTD, var-
ies (Fig. 4). For GPS, it ranges from 88.4% (KZN2, winter) 
to over 99.5% (8 stations in summer). For GLONASS, we 
notice a significant degradation of solution availability for 
stations located far west (FAA1, YEL2), in central and East 
Asia (BIK0, LHAZ, ULAB). These locations correspond 
to regions of low coverage of the RTS network (https​://
www.igs.org/netwo​rk?netwo​rk=rts). A small availability 

Table 2   Modifications with respect to the common processing strategy for alternative solutions

No. Variant name Modified parameters Setting

1 Undifferenced uncombined Observables Undifferenced uncombined pseudorange 
and carrier phase

2 GLONASS-only Frequencies G1/G2
3 Galileo-only E1/E5a
4 BeiDou-only B1/(B3 or B2)
5  = GNSS Frequencies L1/L2, G1/G2, E1/E5a and B1/(B3 or B2)
6 wGNSS Frequencies L1/L2, G1/G2, E1/E5a and B1/(B3 or B2)

A priori sigma of observations SISRE dependent (Kazmierski et al. 2018a)
7 Sine-type Elevation e-dependent weighting Equation (12)
8 Exponential Equation (13)
9 Cosine-type Equation (14)
10 Grad Troposphere delay modeling Two horizontal gradients
11 Advanced All of the above Favorable combination of above

Fig. 2   Histograms of ZTD difference between ionospheric-free and 
undifferenced uncombined model among test stations; µ—mean, σ—
standard deviation

https://www.igs.org/network?network=rts
https://www.igs.org/network?network=rts
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of Galileo-only solution for station KERG is caused by an 
insufficient number of observations at the E5a frequency. For 
Galileo, the average availability over both periods is similar. 
However, the second period was affected by the Galileo out-
age episode, which caused a 5-day-long unavailability of 
real-time solutions. Neglecting this episode, the estimated 
availability of Galileo-only solution would increase from 
73.2 to over 87%. Therefore, the inclusion of four newest 
satellites in CLK93 stream was a major step for the per-
formance of Galileo-only real-time PPP. The BeiDou-only 
solution is almost unavailable for stations on the Western 
Hemisphere. However, we can identify that there are Bei-
Dou-only solutions for some high-latitude stations (YEL2, 
REYK, WROC, RDGD), which can also receive low-eleva-
tion signals from satellites located either on geostationary 
(GEO) or inclined geosynchronous orbit (IGSO). Solution 
availability grows the further east a station is, reaching a 
maximum of 49.1% and 50.0% for station PNGM during the 
winter and summer test periods, respectively.

We notice that time series of real-time ZTD obtained with 
various single GNSS solutions are quite consistent with each 
other, except often outlying BeiDou-only solutions (Fig. 5). 
The best agreement with the GPS-only solutions, by means 
of the correlation coefficient and the RMSE of ZTD differ-
ences, is found for Galileo-only solution (Table 3). Although 
none of the GNSS outperforms GPS by means of solution 
availability, a high consistency of GLONASS-only and Gal-
ileo-only solutions with GPS-only solution, expressed by the 

RMSE of ZTD differences below 10 mm, shows, that they 
can provide independent and reliable ZTD product if only 
the real-time corrections availability increases. For BeiDou, 
this should also be achieved when the third generation of 
satellites will be supported in the RTS.

Multi‑GNSS solution

A combination of observations from four GNSSs in a multi-
GNSS solution creates a tool that traces the troposphere with 
an outstanding resolution. Compared to a single GNSS solu-
tion, in multi-GNSS mode, the number of observations is 
at least twice as much (Fig. 6). However, as real-time prod-
uct accuracy varies for different GNSS, this requires care-
ful weighting of observations in a multi-GNSS solution. A 
multi-GNSS solution with equal weighting, compared to a 
GPS-only solution, either improves or degrades the internal 
accuracy of the adjustment, expressed by an average a pos-
teriori error of unit weight (Fig. 7). On the other hand, for 
multi-GNSS solutions with inter-system weighting applied 
(Kazmierski et al. 2018a), there is an improvement from 7 
to 37% (23% on average).

Differences of real-time ZTD between a GPS-only and 
a multi-GNSS solution reach up to 30 mm for a solution 

Fig. 3   Availability of real-time orbit and clock correction. The time 
resolution is 12 h

Fig. 4   Availability of real-time ZTD from single GNSS processing 
for winter (top) and summer (bottom) test periods
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with equal weighting but are usually below 10 mm with 
inter-system weighting applied (Fig. 8). In multi-GNSS 
solutions, ZTD is usually underestimated by few millim-
eters with respect to GPS-only solutions. We justify this 
effect by the missing receiver PCO and PCV for Galileo 
and BeiDou, and the adoption of corresponding values 
from GPS or GLONASS (Table 1).

Elevation‑dependent weighting

The choice of an elevation-dependent stochastic model 
affects solution precision and is particularly relevant for 
an accurate height determination (Jin et al. 2005; Luo et al. 
2014). The three most commonly used functions to calcu-
late the standard deviation � of a GNSS observation are: 
sine (Dach et al. 2015), sine-type (King and Bock 2001) 
and exponential (Euler and Goad 1991; Li et al. 2016), 
which are defined as follows:

Fig. 5   Time series of real-
time ZTD from single GNSS 
processing

Table 3   Comparison of single 
GNSS solutions against 
GPS-only solution: average 
availability, correlation 
coefficient (r) and RMSE

System Winter 2019 Summer 2019

aval. [%] r RMSE [mm] aval. [%] r RMSE [mm]

GPS 95.3 – – 97.2 – –
GLO 70.8 0.923 9.4 76.3 0.956 9.2
GAL 74.6 0.953 8.2 73.2 0.974 8.4
BDS 7.2 0.710 18.1 7.7 0.708 25.0

Fig. 6   Average number of observed satellites among stations during 
winter (top) and summer (bottom) test period
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where e is the elevation angle, �0 is a priori sigma of an 
observation (Table 1), the constant parameters are set to: 
�1 = 0.64 , �1 = 0.36 , �2 = 1 , �2 = 3.5 , e0 = 9◦ . The com-
mon feature of these functions is that they significantly down 
weight low elevation observations. This is an adverse effect 
of former characteristics of GNSS antennas and troposphere 
mapping functions. Therefore, we propose alternative, 
cosine-type function

with �3 = 1 , �3 = 4 , n = 8 . We test all four elevation-depend-
ent weighting function. The weighting factor �∕�0 equals 
to 1 for e = 90◦ , but varies significantly for lower elevation 
angles (Fig. 9).

We find an impact of the weighting function on coor-
dinate precision and a posteriori error of ZTD (Table 4). 
Exponential weighting function performs similarly and 
significantly better to sine-type function during winter and 
summer test periods, respectively. With the cosine-type 
function, a significant reduction of σZTD is reached in 
exchange for worse horizontal precision. We justify this as 
an impact of very low-elevation observations. The choice 
of weighting function causes differences in estimated ZTD 
(Fig. 10), which usually remain below 5 mm level, but may 
exceed 10 mm during initialization periods.

(11)sin e∶ � = �0∕ sin e

(12)sin e - type: � = �0

√

�1 + �1∕e

(13)exponential: � = �0
(

�2 + �2 exp
(

−e∕e0
))

(14)� = �0

√

�3 + �3 cos
n e

Fig. 7   Average a posteriori error of unit weight among station 
obtained with GPS-only, equally weighted multi-GNSS (= GNSS) 
and inter-system weighted multi-GNSS (wGNSS) solutions

Fig. 8   Time series of real-time ZTD and a posteriori error of ZTD 
(σZTD) obtained with GPS-only, equally weighted multi-GNSS 
(= GNSS) and inter-system weighted multi-GNSS (wGNSS) solu-
tions

Fig. 9   Elevation weighting factor �∕�
0
 for different elevation-depend-

ent weighting schemes
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Gradient estimation

The magnitude and direction of estimated real-time tropo-
spheric gradients vary over time and stations (Fig. 11). We 
usually observe smaller magnitudes for inland stations than 
we do for coastal and island stations. For both test periods, 
the gradients are close to zero mean and the clear effect of 
the atmospheric bulge, i.e., the diurnal variations of density 
of the neutral gas, is not observed. The a posteriori standard 
deviation of estimated gradients is usually within the range 
of 0.1 to 0.3 mm. Moreover, the a posteriori error of unit 
weight is reduced by 23% on average and the receiver height 
precision is improved by 27% on average, compared with a 
solution neglecting troposphere gradients.

The estimation of tropospheric gradients has an impact on 
the estimated ZTD (Fig. 12). ZTD differences between solu-
tions with and without gradient estimation exceed 10 mm 
in extreme cases, e.g., after solution initialization, but are 
usually smaller than 2–5 mm, depending on a station. The 

Table 4   Average for all test 
stations: a posteriori standard 
deviation of estimated ZTD 
(σZTD), repeatability of 
horizontal (Hz) and vertical 
(V) coordinates for different 
elevation weighting schemes

Function Winter 2019 Summer 2019

σZTD [mm] Hz [mm] V [mm] σZTD [mm] Hz [mm] V [mm]

sin e 3.2 2.3 1.2 6.0 4.8 1.5
sin e-type 3.6 2.0 1.0 4.4 2.8 1.4
Exponential 3.5 2.2 1.1 3.5 2.1 1.0
cosine-type 3.0 2.5 1.2 3.1 3.3 1.3

Fig. 10   Time series of ZTD differences (ΔZTD) between various 
weighting schemes against sine weighting scheme

Fig. 11   Real-time tropospheric horizontal gradients [mm] for rep-
resentative test station during winter (left) and summer (right) test 
period; color represents time
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larger a gradient magnitude is, the larger a corresponding 
ZTD difference can be, but also large magnitude gradients 
can have a small impact on ZTD. This means that other esti-
mated parameters, i.e., receiver clock error or height, can 
absorb this effect.

Advanced strategy

Following the abovementioned results, a state-of-the-art 
strategy for real-time ZTD determination with GNSS should 
differ from the common approach (Table 1). The recom-
mended strategy is based on the undifferenced uncombined 
functional model, applies inter-system weighting for multi-
GNSS observations, uses elevation-dependent cosine-type 
weighting function and estimates horizontal gradients.

We notice significant differences in ZTD between the two 
strategies. The advanced strategy allows reducing the aver-
age a posteriori error of estimated ZTD (Fig. 13). The reduc-
tion varies from 10% for station KERG to 53% for station 
CAS1 during the winter test period, and from 13% for sta-
tion JPLM to 50% for station RGDG during the summer test 
period. The ZTD differences between both strategies usually 
remain within ± 10 mm range but reach up to 50 mm during 
the initialization period or limited availability of RTS cor-
rections (Fig. 14). We find an average offset between the two 
solutions, which equals -2.6 mm and  − 2.0 mm for winter 
and summer test periods, respectively. All of this confirms 

that significant differences can be found in ZTD depend-
ing on the processing strategy, as the optimal accuracy for 
ZTD should be 5 mm (https​://egvap​.dmi.dk/suppo​rt/forma​
ts/egvap​_prd_v10.pdf).

Accuracy of real‑time ZTD

We assess the consistency of ZTD from the two refer-
ence products. Then, the accuracy of ZTD obtained with 
the advanced strategy is compared against the accuracy of 
results obtained with the common processing strategy.

Fig. 12   Time series of real-time ZTD estimated with and without 
horizontal gradients

Fig. 13   A posteriori standard deviations of estimated ZTD (σZTD) 
obtained with common and advanced strategies

Fig. 14   Differences in real-time ZTD obtained with advanced strat-
egy minus common strategy

https://egvap.dmi.dk/support/formats/egvap_prd_v10.pdf
https://egvap.dmi.dk/support/formats/egvap_prd_v10.pdf
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Assessment of reference products

The agreement between ZTD from the two reference prod-
ucts depends on the station and time (Fig. 15). Although 
the general variability of ZTD is reflected in both products, 
major differences between the two products are also present. 
The smallest standard deviation of ZTD differences over the 
entire year 2019 is 5.1 mm for station CAS1, the largest is 
22.4 mm for station BIK0. On average, the standard devia-
tion of ZTD differences is 12.7 mm, which agrees with (Lu 
et al. 2016). Moreover, we notice incidental large peaks and 
frequent midnight discontinuities in the time series of the 
final ZTD, which exceed 10 mm. This is far more than the 
2–3 mm uncertainty, which is reported for the IGS final 
ZTD and questions the few-millimeter-level precision of 
this product.

Validation of real‑time products against reference 
products

When comparing to the IGS final product (Fig. 16, top), 
the standard deviation of ZTD differences is reduced in the 
advanced strategy for all stations by 11% on average. The 
multi-GNSS product is underestimated with respect to the 
GPS-only product, resulting in a smaller average offset with 
respect to the IGS final product. The average RMSE of ZTD 
differences improves from 9.5 mm in the common strategy 
to 7.9 mm in the advanced strategy (17%) over the entire 
year 2019. When comparing against the GFS model (Fig. 16, 
bottom) significantly higher standard deviations of ZTD dif-
ferences are observed than for the comparison with the IGS 
products. Still the 5% of improvement is found when chang-
ing from the common strategy to the advanced strategy.

IGS final products originate from post-processing of 
GPS-only observations in the double-differenced mode and 
real-time ZTD are estimated with the PPP technique. They 
should not be considered as totally independent and a small 

bias is expected. However, midnight discontinuities of the 
final ZTD and a processing strategy, which was defined 
already several years ago, can justify the limited improve-
ment with respect to IGS product. On the other hand, GFS 
is an independent source of ZTD which implies that worse 
consistency of real-time products with GFS can be expected. 
In particular, station and NWP-specific biases can occur and 
are justified by a deficiency of the NWP orography repre-
sentation (Kačmařík et al. 2017). However, when comparing 
GNSS ZTD to NWP model products, a bias should not be 
considered as a quality indicator, because station-specific 
GNSS ZTD biases are removed prior to ZTD assimilation 
(Mile et al. 2019).

Conclusions

With a total number of 20 different real-time solutions for 
a worldwide spatially distributed set of stations and two 
time periods, we investigate the impact of PPP process-
ing parameters on estimated ZTD. We show that for dual-
frequency and ionosphere-unconstrained processing, the 
choice of functional model between ionospheric-free and 
undifferenced uncombined is not critical. We show that 
all four GNSSs can provide real-time ZTD solutions inde-
pendently. The best agreement with GPS-only solution is 
found for Galileo-only solution, whereas the performance Fig. 15   Exemplary ZTD time series from IGS and GFS model

Fig. 16   Comparison of real-time ZTD obtained with common and 
advanced strategy against IGS final product (top) and GFS model 
(bottom)
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of BeiDou-only solution is the worst. We also show that 
a multi-GNSS solution, with inter-system weighting based 
on the SISRE parameter, reduces the a posteriori standard 
deviation of estimated ZTD by up to 37%. We propose a 
cosine-type elevation-dependent weighting function, which 
reduces the a posteriori error of estimated ZTD. We confirm 
that the estimation of real-time gradients improves height 
precision by 27% on average and can significantly affect 
ZTD estimates. Real-time gradients are estimated with an 
uncertainty of 0.1–0.3 mm, but their accuracy with respect 
to an NWP model or post-processing results is not investi-
gated in this study. Based on the abovementioned conclu-
sions, we define an advanced strategy dedicated to real-time 
GNSS meteorology.

We question the few millimeters accuracy of ZTD final 
products from the IGS, noticing centimeter-level jumps at 
the day boundary. The standard deviation of ZTD differ-
ences between GFS ray-tracing and IGS product exceeds 
12 mm. Despite that, we compare real-time ZTD obtained 
with the common and advanced strategies against both refer-
ence products. The advanced strategy is superior to the com-
mon one, i.e., it has 0.9% more results over the entire year 
2019, and the a posteriori error of estimated ZTD is reduced 
by 41% on average. The accuracy with respect to the IGS 
final product improves by 17% and varies over stations from 
5.4 to 10.1 mm. Such performance will legitimate real-time 
ZTD estimates for assimilation into NWP.
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