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Abstract
The formation-flying technique is a fundamental concept for earth observing satellite missions, which usually require 
both absolute and relative orbit accuracies. Their precise orbit determinations are usually exclusively performed based on 
spaceborne GNSS data, where integer ambiguity resolution (IAR) plays a crucial role in achieving the best orbit accuracy. 
However, it is found that single-receiver IAR by resolving the single-difference (SD) ambiguities between GNSS satellites at 
each individual formation-flying satellite cannot achieve the same relative orbit accuracy that is attained by double-difference 
(DD) IAR between formation-flying satellites. To unravel this problem, 1 year of GPS data collected by the Gravity Recovery 
and Climate Experiment (GRACE) mission are used and four types of orbits are derived for comparison: (1) orbits where 
no ambiguities are fixed; (2) orbits where SD IAR is performed for both satellites; (3) orbits where only DD ambiguities 
between the twin GRACE satellites are resolved; (4) and orbits where SD IAR is carried out on only GRACE A while DD 
IAR is further accomplished between the twin satellites, namely the integrated SD IAR and DD IAR solutions. They are then 
evaluated through comparison to the reduced-dynamic orbit generated at the Jet Propulsion Laboratory, residual analysis 
of satellite laser ranging (SLR), and K-Band ranging (KBR) measurements. As expected, the integrated SD IAR and DD 
IAR solutions can achieve the highest absolute and relative orbit accuracies simultaneously. Specifically, SLR residuals in 
case of the integrated IAR are reduced by at least 25% for the kinematic orbit, when compared to the case of DD IAR. KBR 
residuals in case of the integrated IAR are reduced by 35 and 16% for the dynamic and kinematic orbit, respectively, when 
compared to those of SD IAR. Importantly, we find that errors in GPS clocks and/or narrow-lane fractional-cycle biases are 
in part responsible for the deteriorated relative accuracy of SD IAR achieved orbits. Therefore, we suggest that the integrated 
SD IAR and DD IAR scheme should be implemented for the best orbit solutions of formation-flying missions.

Keywords Precise orbit determination · GRACE · Single- and double-difference ambiguity resolution

Introduction

The satellite formation-flying technique has demon-
strated its particular importance in implementing new and 
advanced concepts in earth observation missions in the 
past decades, such as the GRACE (Tapley et al. 2004), 
TanDEM-X (Krieger et al. 2007) and Swarm (Friis-Chris-
tensen et al. 2008) missions. To fulfill their respective mis-
sion goals, we prefer or even require orbits of high qual-
ity in both absolute and relative senses. For that purpose, 

the GNSS-based precise orbit determination (POD) is 
indispensable, where integer ambiguity resolution (IAR) 
plays a crucial role in achieving the best orbit accuracy. 
At present, IAR can be performed on both double- and 
single-difference levels. Resolving the double-difference 
(DD) ambiguities between-satellites-between-receivers 
has long been practiced to achieve the best accuracy for 
ground–ground, space–space and space-ground baselines 
(Allende-Alba and Montenbruck 2016; Allende-Alba et al. 
2017; Dong and Bock 1989; Jäggi et al. 2007; Kroes et al. 
2005). Regarding absolute orbit accuracy, however, the 
contribution of DD IAR was shown to be minor or even 
negative (Jäggi et al. 2007; Mao et al. 2017). In the past 
decade, single-receiver IAR by resolving the single-differ-
ence (SD) ambiguities between GNSS satellites (hereafter 
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we also call it SD IAR) has demonstrated its great poten-
tial in improving positioning performance with respect to 
ambiguity-float solutions (Collins 2008; Ge et al. 2008; 
Laurichesse et al. 2008). As to POD for low earth orbiting 
(LEO) satellites, Laurichesse et al. (2009) showed that 
SD IAR was able to improve the Jason-1 orbit accuracy 
as evidenced by a reduction in the Satellite Laser Ranging 
(SLR) residuals by 1.5 mm. This approach was also suc-
cessfully applied to POD for the Sentinel-3A and Swarm 
satellite missions and notably improved the orbits by about 
30% as inferred from SLR residuals (Montenbruck et al. 
2017; 2018). Li et al. (2015) generated the GPS satellite 
fractional-cycle biases (FCBs) required for SD IAR and 
their GRACE POD test spanning 30 days showed that 
accuracy of kinematic orbits was considerably improved 
by about 30% in 3D as inferred from comparison with the 
JPL reduced-dynamic orbit. However, Allende-Alba et al. 
(2018) reported that SD IAR could not achieve compara-
ble relative orbit accuracy to that provided by DD IAR, 
particularly for formation-flying satellites with short/
medium-size baselines, identical spacecraft and common 
orientation, e.g., GRACE.

Thus, both SD IAR and DD IAR have merits and draw-
backs for formation-flying satellites. Neither of them 
can provide orbit solutions with the best accuracies in 
both absolute and relative senses. One may argue that 
this ultimate goal can be reached based solely upon DD 
IAR through joint processing of spaceborne and ground-
based GPS data and by fixing the ambiguities on the 
ground–ground, space-ground, and space–space baselines. 
However, on the one hand, this will drastically complicate 
data processing. On the other hand, Jäggi et al. (2007) 
showed that the relative orbit accuracy was degraded in 
the joint processing mode due to a very low fixing rate of 
the space-ground baseline ambiguities. In this study, we 
process only spaceborne GPS data and propose a new IAR 
scheme for formation-flying satellites, where the SD IAR 
is integrated with the DD IAR, to simplify the data pro-
cessing and enhance the orbit solutions. To demonstrate 
the added value of the proposed IAR scheme, we use the 
onboard GPS data collected by the GRACE mission. Con-
sidering that GRACE suffers from data gaps since 2011, 
we use the GPS data collected in 2010 for that purpose. 
In total, four types of orbits are derived, and each type of 
orbit consists of a kinematic and dynamic one. For the first 
type, the undifferenced (UD) ambiguities are estimated 
as float parameters. For the second one, we perform SD 
IAR at each GRACE satellite. For the third one, only the 
DD ambiguities between the twin GRACE satellites are 
resolved; and for the fourth one we make integrated SD 
and DD IAR, that is fix the SD and DD ambiguities simul-
taneously. These orbits will be compared with the reduced-
dynamic orbit produced at the Jet Propulsion Laboratory 

(JPL), validated by independent SLR and K-Band ranging 
(KBR) measurements.

In the following, we first present the details of the strategy 
adopted for GRACE POD. Then, we focus on the different 
AR schemes to enhance POD. After that, the orbits derived 
from different AR schemes will be evaluated. Finally, we 
will make a discussion followed by conclusions of this study.

POD strategy

In this study, the data processing is performed with the 
Position And Navigation Data Analyst (PANDA) software, 
which is developed at the GNSS Research Center of Wuhan 
University and has been widely used in satellite POD and 
earth’s gravity field recovery (Guo et al. 2018; Liu and Ge 
2003). For GRACE POD, we have used both the dynamic 
and kinematic orbit determination approach. The adopted 
POD strategy is listed in Table 1.

For dynamic POD, only a few deterministic dynamic 
parameters are estimated, and sophisticated force models are 
required for that purpose. Among others, the 8-plate macro 
model for the GRACE satellite is used to model the non-
gravitational forces, which mainly result from atmospheric 
drag, solar and earth radiation pressure. As described in 
Table 1, the atmospheric density values required for atmos-
pheric drag modeling are obtained with the DTM94 model 
(Berger et al. 1998). To account for deficiencies in DTM94 
and/or the GRACE macro model, the drag coefficients, i.e., 
the scaling factors, are estimated freely once per orbital 
revolution in the course of dynamic POD. As to the solar 
and earth radiation pressure, we calculate them based on the 
satellite macro model as described in Marshall and Luthcke 
(1994). In contrast to atmospheric drag, a fixed scale factor 
of one is used for both the solar and earth radiation pressure, 
which indicates that the ‘datum’ of our dynamic orbit at the 
cross-track and radial components is defined by the applied 
force models rather than the GPS measurements. Addition-
ally, 1 cycle-per-revolution (cpr) empirical accelerations 
are freely estimated to compensate for deficiencies in the 
adopted force models.

In view of the kinematic orbits, they are completely inde-
pendent of the applied force models and are determined by a 
precise point positioning (PPP) approach (Švehla and Roth-
acher 2005).

For both dynamic and kinematic orbit determination, 
the same data and observation models have been used. 
The GRACE level 1B RL02 products (Case et al. 2010) are 
used here, which include the GPS data (GPS1B) and satel-
lite attitude data (SCA1B) to perform POD. The GPS data 
are processed in an undifferenced manner, where the GPS 
orbits and clocks are fixed to a priori values. Furthermore, 
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single-receiver IAR requires consistent GPS orbit, clocks 
and FCBs. For that purpose, we use the GPS phase clocks 
and FCBs (or phase biases) as described in Geng et al. 
(2019) which are consistent with the operational GPS 
orbits produced by the Center for Orbit Determination in 
Europe (CODE) (Bock et al. 2009). For the sake of further 
consistency, we have used the outdated IGS05.ATX model 
for GPS antenna phase center correction. The GRACE 
antenna phase center locations are modeled according to 
the VGN1B products, which provide L1/L2 antenna phase 
center offsets. To reduce the phase center model errors, 
we have estimated the phase center variations (PCVs) for 
the ionosphere-free L1/L2 combination for each satellite 
using the residual approach as described in Jäggi et al. 
(2009) and applied as observation corrections during the 
POD process. In addition, data processing in this study has 
been performed in 30-h arcs centered on the noon of each 
day, which leads to 6-h overlaps (21:00–03:00 h) between 
adjacent arcs, but only the orbits of the center 24-h are 
used in the orbit evaluation to avoid boundary effects.

Integer ambiguity resolution

In this section, we start with the basic GPS observation 
equations. Then, the different AR schemes are described 
in detail followed by a brief description about the adopted 
method for ambiguity fixing decision. Finally, we discuss the 
impact of ambiguity constraint on POD in case of different 
AR schemes.

Observation model

Pseudorange and carrier-phase observations between a satel-
lite (superscript s) and a spaceborne receiver (subscript r) 
are usually described by the following observation equations 
(Blewitt 1989):

where the subscript j denotes a given frequency fj , and � is 
the geometric range between the antenna phase center of 
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Table 1  GRACE POD strategy

Description

Background force models
 Static gravity field model EIGEN-6C4 (Förste et al. 2014) (150 × 150)
 Solid earth and pole tides IERS Conventions 2010 (Petit and Luzum 2010)
 Ocean tides EOT11a (Rieser et al. 2012) (120 × 120)
 Ocean pole tides Desai (2002) (30 × 30)
 Atmosphere and ocean de-aliasing AOD1B RL05 (Flechtner et al. 2015)
 Third-body perturbations DE421 (Folkner et al. 2009)
 General relativistic effects IERS Conventions 2010 (Petit and Luzum 2010)
 Atmospheric drag Macro model (Bettadpur 2012); DTM94 density model (Berger et al. 1998)
 Solar radiation pressure Macro model (Bettadpur 2012)
 Earth radiation pressure Macro model (Bettadpur 2012); CERES earth radiation data (Priestley et al. 2011)

Input data and corrections
 GPS observations Undifferenced ionosphere-free code and phase, 30 s sampling
 GPS orbits CODE final ephemerides
 GPS clocks and FCBs 30 s phase clocks and daily wide- and narrow-lane FCBs (Geng et al., 2019)
 GPS antenna phase center correction IGS05.ATX (Schmid et al. 2007)
 GRACE antenna phase center correction Applied
 Phase wind up Applied (Wu et al. 1993)
 Relativistic correction Applied (Petit and Luzum 2010)
 Gravitational bending Applied (Petit and Luzum 2010)

Estimated parameters
 Initial state vector Position and velocity per satellite and per arc
 Drag coefficient One per orbital revolution
 Empirical along- and cross-track accelerations 1-cpr accelerations per orbital revolution
 Receiver clock offsets Epoch-wise
 Carrier-phase ambiguities One per tracking pass
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the satellite (at the time of signal transmission) and receiver 
(at the time of signal reception). The antenna phase center 
offsets and variations, gravitational bending and relativistic 
corrections must be applied to the geometric range between 
the center of mass of the GNSS and LEO satellites. c is the 
speed of light in vacuum, dtr and dts denote the receiver and 
satellite clock offsets, I is the ionospheric path delay, which 
varies predominantly with the inverse square of the signal 
frequency. � is the signal wavelength and N is the integer 
ambiguity, �s

r
 is the phase wind up correction, br and bs are 

the hardware biases for the pseudorange observations at the 
receiver and satellite, respectively, while Br and B

s are hard-
ware biases for the carrier phase. In reality, these biases are 
usually stable or at least vary slowly over time (Geng and 
Bock 2016; Geng et al. 2011). Finally, observation noise and 
unmodeled errors such as multipath effects and higher-order 
ionosphere delays have been ignored for brevity.

To eliminate the first-order ionospheric path delay, the 
orbit processing is based on the undifferenced ionospheric-
free observations, which are formulated as follows:

with �1 the wavelength on L1 and

Following the IGS analysis convention, the IF pseudor-
ange biases br,IF and bsIF are assimilated into the respective 
receiver and satellite clock offsets in the data processing 
(Kouba 2009). Thus, Eqs. (2) are reformulated as:

with
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The IF ambiguity N̄s
r,IF

 is usually estimated as a float 
parameter due to the existence of hardware biases in both 
pseudorange and carrier-phase observations.

Undifferenced float ambiguities

The UD IF ambiguities N̄s
r,IF

 are usually decomposed into 
combinations of integer wide-lane (WL) and float narrow-
lane (NL) ambiguities to perform IAR, following Blewitt 
(1989):

with
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 are the so-called receiver- and satellite-
dependent NL FCBs. The WL and NL ambiguities 
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)

 are usually fixed in two sequential steps.
First, the WL ambiguity Ns
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 is resolved with the 

Hatch–Melbourne–Wübbena combination N̄s
r,WL

 (Hatch 
1982; Melbourne 1985; Wübbena 1985), which is defined 
as:

with
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 are the receiver- and satellite-dependent 
WL FCBs. By applying these WL FCB corrections to N̄s
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 , 

the WL ambiguity Ns
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 can be resolved according to (8) as:

Second, the resolved integer WL ambiguity and IF ambi-
guity estimated from the POD process are used to compute 
the float NL ambiguity N̄s
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 according to (6). Then, by 
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Once the WL and NL ambiguities are fixed, the IF ambi-
guity can be constructed according to (6) as follows:

In practice, the satellite-dependent FCBs can be esti-
mated from a global network solution in advance, whereas 
the receiver-dependent FCBs are not available. Thus, the 
WL and NL UD ambiguities cannot be fixed and the UD IF 
ambiguities N̄s

r,IF
 can thus only be estimated as float parame-

ters (hereafter, we denote the orbit solution based on the UD 
float ambiguity resolution (FAR) as a ‘FAR-UD’ solution).

SD ambiguity resolution

In the case of SD ambiguities, between-satellite, receiver-
dependent FCBs are canceled out. By applying satellite-
dependent FCB corrections, the integer properties of the 
WL and NL SD ambiguities are recovered and can be fixed 
sequentially arc by arc according to (10) and (11). Then, the 
SD IF ambiguity can be derived from the fixed WL and NL 
SD ambiguities:

where ∇ is the single-difference operator and s0,s denotes a 
satellite pair. As we process UD IF observables, the derived 
SD IF ambiguities are taken as pseudo-observations to con-
strain the UD IF ambiguity parameters during parameter 
estimation:

where Ws0,s
r  is the weight. Therefore, single-receiver IAR can 

be performed and hereafter we denote the orbit solution as 
an ‘IAR-SD’ solution.

DD ambiguity resolution

In the case of DD ambiguities, between-receiver-between-
satellite, both receiver- and satellite-dependent FCBs are 
canceled out. Thus, the WL and NL DD ambiguities are 
theoretically integers and can thus again be fixed sequen-
tially arc by arc according to (10) and (11). Then, the DD IF 
ambiguities can be constructed as follows:
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where Δ∇ is the double-difference operator and r0,r denotes 
a receiver pair. Similarly, the constructed DD IF ambiguities 
are treated as pseudo-observations to constrain the UD IF 
ambiguity parameters:

where Ws0,s
r0,r

 is the weight. Hereafter, we denote the orbit 
solution as an ‘IAR-DD’ solution.

Integrated SD and DD ambiguity resolution

Once the SD and DD ambiguities have been fixed, we can 
also constrain the UD IF ambiguity parameters with both 
(14) and (16) during parameter estimation. As SD and DD 
ambiguities are fixed simultaneously, only the SD ambigui-
ties for a single LEO satellite (here we select GRACE A) are 
needed to be fixed. The obtained orbit solution is denoted as 
an ‘IAR-SD-DD’ solution hereafter. At this point, one may 
deduce that the IAR-SD-DD scheme is essentially equivalent 
to the IAR-SD one, where the SD ambiguities for GRACE A 
and B are fixed separately, due to the fact that the DD ambi-
guities between GRACE A and B are constructed from their 
respective SD ambiguities. Theoretically, this is true when 
assuming strictly common observations on both GRACE 
satellites. However, this is not the case in practice and in 
fact, one can obtain a better performance of the IAR-SD-DD 
scheme as will be shown later.

Fixing decision

In this study, the fixing decision is made according to the 
probability  P0 (fixing to the nearest integer), which is cal-
culated with the formula as proposed in Dong and Bock 
(1989). Given a confidence level � , the ambiguity can be 
fixed to its nearest integer if  P0 is larger than 1 − � , otherwise 
not. In this study, we choose a confidence level of 0.1%, 
which has been proven feasible in practice (Dong and Bock 
1989; Ge et al. 2005, 2008).

Ambiguity constraint

Concerning the weights of the pseudo-observations used to 
constrain the UD IF ambiguities, the situations are different 
for SD IAR and DD IAR. As shown in (15), once the WL 
and NL DD ambiguities are correctly fixed, the derived DD 
IF ambiguities can be treated as error-free. Thus, it allows 
assigning an arbitrarily large weight to the DD ambiguity 
pseudo-observation, i.e., Eq.  (16). In this research, we 
impose strong constraints by setting the precision of the DD 
IF ambiguities ∇ΔN̄s0,s

r0,r,IF
 to be 1 × 10−4 L1 cycles or about 

0.02 mm in length unit.
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Nevertheless, this is not the case for SD IAR. As shown 
in (13), even if the WL and NL SD ambiguities are correctly 
fixed, the SD ambiguity is still not free of error because the 
NL SD FCBs contain errors. Thus, the weights assigned to 
the SD ambiguity pseudo-observations may influence the 
orbits. To investigate the possible impacts, we produced 
three sets of orbit solutions, where precision of the SD ambi-
guity pseudo-observations was set to be 2, 0.2 and 0.02 mm, 
respectively. Note that a precision lower than 2 mm could 
not provide enough constraint to improve the orbits, while 
a precision of 0.02 mm was adequate, and a higher preci-
sion could not further change the orbits. The results revealed 
that, while orbit comparison to the JPL reduced-dynamic 
orbit and SLR validation were insensitive to the precision 
settings, the KBR validation was rather sensitive to them. 
While increasing the precision settings from 2 to 0.02 mm 
gradually improved the KBR validation in the case of the 
integrated IAR-SD solution, the KBR validation gradually 
degraded in the case of the IAR-SD-DD solution. This indi-
cates that the current absolute orbit accuracy (usually at the 
centimeter level) is insensitive to the errors in the FCBs 
under consideration. On the other hand, this implies that 
FCB-induced orbit errors can be mitigated when forming 
baselines from the IAR-SD orbits, while they exist in the 
baselines constructed from the IAR-SD-DD orbits because 
SD IAR is only performed on GRACE A in that case. We, 
therefore, impose soft (2 mm) and hard (0.02 mm) constraint 
to the SD ambiguity pseudo-observations for the IAR-SD-
DD and IAR-SD solution, respectively, in the following 
computations.

Results

Based on the POD strategy, four sets of GRACE orbits have 
been produced for the year 2010 using different AR schemes. 
Each set of the orbit consists of a dynamic and kinematic 
one. In this section, we first give a description about the 
quality of the employed FCB products. Then, the obtained 
orbits will be evaluated in a comprehensive way.

Quality of FCB products

As the quality of the FCB products play a crucial role in 
performing single-receiver IAR, for the purpose of illustra-
tion, the distribution of the fractional parts of all the FCB-
corrected WL and NL ambiguities on the twin GRACE 
satellites for a typical orbital arc (2009-12-31 21:00:00 to 
2010-01-02 03:00:00) is shown in Fig. 1. In the given exam-
ple, about 90% of the fractional parts are confined to 0.25 
cycles for both WL and NL ambiguities. Another efficient 
way to validate the FCBs is to check the ambiguity fixing 

efficiency after applying these corrections. For that purpose, 
we have made a statistic for all the orbital arcs and the results 
show that on average about 97.1% of the SD NL ambiguities 
can be resolved to integers. In the case of the DD ambigui-
ties, our statistics have revealed a slightly higher fixing rate 
(about 97.3%), which agrees well with those reported in the 
previous studies (Allende-Alba and Montenbruck 2016; Mao 
et al. 2017). Thus, the fixing rate for the SD ambiguities is 
in close accordance with that for the DD ambiguities. This 
confirms a good quality of the FCB products, as well as the 
feasibility of performing IAR at a single GRACE satellite.

Orbit comparison

The obtained orbits are compared with the JPL reduced-
dynamic orbits which have been released as the GRACE 
GNV1B RL02 product. JPL has proposed a distinctive 

Fig. 1  Distribution of the fractional parts of all the FCB-corrected 
WL (top) and NL (bottom) SD ambiguities. The mean and standard 
deviations are displayed in the top right corners
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approach to single-receiver IAR. In that approach, the wide-
lanes and phase biases of the ground stations were derived 
in advance from a global network solution and introduced 
as known when resolving DD ambiguities between the 
local receiver being point-positioned and a receiver from 
the global network solution. Thus, single-receiver IAR 
can be performed in the sense that no other receiver data 
are required. This approach has been used to produce the 
GNV1B RL02 products (Bertiger et al. 2010).

Figure 2 shows the daily difference RMSs between the 
JPL reduced-dynamic orbit and our dynamic orbits derived 
from different AR schemes for GRACE B. The plots for 
GRACE A show similar patterns. Thus, they are not shown 
here. It can be seen that our dynamic orbits show impres-
sive consistency with the JPL orbit: the differences are 
no more than 16 mm in 3D RMS for all cases (Table 2). 
Despite that, IAR is still able to improve the consistency, 
particularly when the SD ambiguities are fixed. In case 
of GRACE B, the mean difference RMSs are reduced by 

36, 5 and 24% in the along-track, cross-track, and radial 
components, respectively, when compared to the FAR-UD 
orbit (Table 2). This is not strange, because JPL also per-
formed single-receiver IAR during their POD process. On 
the other hand, the difference RMS values with respect to 
the JPL orbit for the IAR-SD and IAR-SD-DD orbits are 
hardly discernible for both satellites as can be seen from 
both Fig. 2 and Table 2. In the case of GRACE B, this 
indicates that the effect of IAR-SD-DD can be equivalent 
to that of IAR-SD. Note that in case of IAR-SD-DD, we 
only resolve the SD ambiguities at GRACE A and the DD 
ambiguities between GRACE A and B, whereas the SD 
ambiguities are separately resolved in the case of IAR-SD.

Figure 3 displays the daily difference RMSs between 
the JPL orbit and our kinematic orbits derived from dif-
ferent AR schemes for GRACE B. The ambiguities from 
the dynamic orbit determination process have been used 
when computing the kinematic orbits. Again, the plots for 
GRACE A are not shown here due to their similar patterns 
as GRACE B. In general, the results are similar to those 
for the dynamic orbits.

However, a comparison between Figs. 2 and 3 reveals 
that the improvements for the kinematic orbits obtained 
with IAR-SD are more significant than those for the 
dynamic orbits. For GRACE B, the mean difference RMSs 
are reduced substantially by 59, 54 and 42% for the along-
track, cross-track and radial components, respectively, 
as opposed to the FAR-UD orbit (Table 3). Unlike the 
dynamic orbit, whose accuracy is largely dominated by the 
applied force models, the quality of the kinematic orbit is 
completely dependent on the precision and geometry of 
the observations. Thus, this indicates that single-receiver 
IAR can enhance the observation strength and consider-
ably improve the quality of the kinematic orbit. Finally, it 
can be seen that the IAR-SD-DD scheme is able to pro-
vide orbits of the same quality as IAR-SD (Table 3), again 
demonstrating their equivalent effects regarding absolute 
orbit accuracy.

SLR validation

The international laser ranging service (ILRS) (Pearlman 
et al. 2002) provided SLR measurements to the GRACE 
satellites. Thus, the SLR measurements are used as an 

Fig. 2  Daily RMS of differences between the JPL reduced-dynamic 
orbit and our dynamic orbits derived from different AR schemes for 
GRACE B

Table 2  Mean RMS (mm) of 
differences between the JPL 
reduced-dynamic orbit and our 
dynamic orbits derived from 
different AR schemes

GRACE A GRACE B

Along-track Cross-track Radial 3D Along-track Cross-track Radial 3D

FAR-UD 11.3 8.4 5.8 15.2 11.8 8.4 5.9 15.6
IAR-DD 10.9 8.3 5.8 14.9 10.9 8.3 5.7 14.8
IAR-SD 7.6 8.0 4.5 11.9 7.7 8.0 4.5 11.9
IAR-SD-DD 7.5 8.1 4.6 11.9 7.5 8.0 4.5 11.9
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independent validation of the obtained orbits. For that pur-
pose, coordinates of the SLR stations are referred to the 
SLRF2008 (v 16/08/08) frame (https ://ilrs.cddis .eosdi s.nasa.
gov/scien ce/awg/SLRF2 008.html). In addition, site loading 
displacement induced by solid earth tides, ocean tides and 
pole tides is modeled according to IERS 2010 and applied as 
corrections to the station coordinates. As to the SLR obser-
vations, the slant tropospheric delay is computed with the 
zenith delay model (Mendes and Pavlis 2004) and mapping 
function (Mendes et al. 2002). The general relativistic time 
delay due to gravitational bending is modeled according to 
IERS 2010. Furthermore, due to the different performance 
of the SLR stations (Arnold et al. 2018a), a subset of 16 
high-performance stations (Yarragadee, Matera, San Juan, 
Koganei, Graz, Greenbelt, Herstmonceux, Potsdam, Con-
cepcion, Mount Stromlo, San Fernando, Papeete, Monument 
Peak, Zimmerwald, Grasse, Arequipa) have been selected for 
this validation, which contribute about 81% of the available 
observations. In addition, a threshold of 20 cm is applied 

to detect outliers, which further exclude about 1% of the 
observations from the selected 16 stations.

Figure 4 displays the SLR residuals for the kinematic 
orbits obtained from different AR schemes. It can be 
observed that the vast majority of them are confined to 
± 5 cm, which indicates a good quality of the obtained kin-
ematic orbits. This is particularly true when the SD ambigui-
ties are fixed. In that case, residuals are distinctly less scat-
tered for both satellites. The residual RMSs for the IAR-SD 
kinematic orbits are reduced considerably by 31% and 35% 
for GRACE A and B, respectively, when compared to those 
for the FAR-UD orbit (Table 4). Finally, the differences 
between the SLR validations are hardly discernible for the 
IAR-SD and IAR-SD-DD orbits as can be seen from Fig. 4 
and Table 4. These results are consistent with those from 
the independent orbit comparisons and also demonstrate 
the equivalent effect of IAR-SD and IAR-SD-DD regarding 
absolute accuracy.

In view of the dynamic orbits, SLR validation reveals that 
the improvements obtained with IAR are insignificant as 
compared to the kinematic orbits (Table 4), as well as those 
reported in other studies (Montenbruck et al. 2017, 2018), 
which also indicates that the accuracy of our dynamic orbits 
is largely dominated by the applied force models. Finally, 

Fig. 3  Daily RMS of differences between the JPL reduced-dynamic 
orbit and our kinematic orbits derived from different AR schemes for 
GRACE B

Table 3  Mean RMS (mm) of 
differences between the JPL 
reduced-dynamic orbit and our 
kinematic orbits derived from 
different AR schemes

GRACE A GRACE B

Along-track Cross-track Radial 3D Along-track Cross-track Radial 3D

FAR-UD 20.8 15.4 20.9 33.3 23.5 17.3 24.4 38.0
IAR-DD 19.5 14.4 19.9 31.4 19.7 14.5 20.7 32.1
IAR-SD 8.9 7.8 12.3 17.1 9.6 7.9 14.2 18.9
IAR-SD-DD 9.0 7.9 12.1 17.0 9.7 8.0 14.0 18.8

Fig. 4  SLR residuals for GRACE kinematic orbits derived from dif-
ferent AR schemes

https://ilrs.cddis.eosdis.nasa.gov/science/awg/SLRF2008.html
https://ilrs.cddis.eosdis.nasa.gov/science/awg/SLRF2008.html
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the results also show that IAR-SD-DD can provide the same 
absolute orbit accuracy as IAR-SD.

KBR validation

The K-Band ranging system onboard GRACE has measured 
the range (with a bias) between the twin satellites at the 
micron level (Dunn et al. 2003), which offers a unique pos-
sibility to validate the relative position accuracy of the twin 
satellites in the approximate along-track direction.

Figure  5 shows the daily STDs of KBR residuals 
(observed minus computed) for the dynamic (top) and kin-
ematic (bottom) orbits derived from different AR schemes. 
It is clear that IAR has considerably reduced the STDs for 
both orbits. In view of dynamic orbits, IAR-SD improves 
the STD from 6.7 to 1.7 mm, a factor of about four, which is 

consistent with previous studies where relatively short peri-
ods of data have been processed (from several days to several 
tens of days) (Allende-Alba et al. 2018; Arnold et al. 2018b; 
Bertiger et al. 2010; Laurichesse et al. 2009). While the 
KBR validation performance of our IAR-SD orbit is slightly 
better than those in the above-mentioned investigations, it 
is still worse than IAR-DD as can be seen from Fig. 5 and 
Table 5. We explain this by the fact that the FCB products 
are not free of error and their errors might have degraded 
the KBR validation. In addition, the IAR-SD-DD orbit pre-
sents the same performance as the IAR-DD orbit as can be 
seen from Fig. 5 and Table 5. We also note that the achieved 
best relative accuracy (1.1 mm) still cannot reach the high-
est (sub-mm) level as reported in previous research, where 
single-differenced or double-differenced GPS data have been 
processed (Allende-Alba and Montenbruck 2016; Gu et al. 
2017; Jäggi et al. 2007; Kroes et al. 2005; Mao et al. 2017). 
We attribute this to the fact that we have processed undif-
ferenced data in this research (Table 1), thus common mode 
errors from the GPS satellites (and receivers) cannot be 
effectively mitigated as compared to the single-differenced 
(and double-differenced) data processing scheme.

Regarding kinematic orbits, as they occasionally suffer 
from large errors, the KBR residuals must be cleaned from 
outliers. In that regard, the residuals exceeding a given thresh-
old (10 times the corresponding STD) are identified and then 
excluded from the statistics. The procedure is iterated until 
no more outliers are found. As a result, less than 0.3% of the 
residuals have been discarded in all four considered cases. 
STDs of the cleaned residuals are listed in Table 5. In general, 

Table 4  Mean, STD and RMS 
(mm) of the SLR residuals for 
dynamic and kinematic orbits 
derived from different AR 
schemes

GRACE A GRACE B

mean STD RMS mean STD RMS

Dynamic orbit
 FAR-UD − 0.6 13.3 13.3 0.4 13.2 13.2
 IAR-DD − 0.7 13.1 13.1 0.3 13.0 13.0
 IAR-SD − 1.4 13.0 13.0 0.6 12.8 12.9
 IAR-SD-DD − 1.0 12.8 12.9 0.5 12.6 12.7

Kinematic orbit
 FAR-UD − 1.3 19.9 19.9 0.0 22.3 22.3
 IAR-DD − 1.3 18.8 18.8 0.0 19.5 19.5
 IAR-SD − 0.7 13.7 13.7 1.5 14.5 14.6
 IAR-SD-DD − 0.6 13.7 13.7 1.3 14.5 14.6

Fig. 5  Daily STDs of the KBR residuals for the dynamic (top) and 
kinematic (bottom) orbits derived from different AR schemes

Table 5  Mean STDs (mm) of KBR residuals for the dynamic and 
kinematic orbits derived from different AR schemes

FAR-UD IAR-SD IAR-DD IAR-SD-DD

Dynamic orbits 6.7 1.7 1.1 1.1
Kinematic orbits 19.7 5.0 4.2 4.2
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the relative performances among different AR schemes are 
similar to those for dynamic orbits. But the KBR validation 
is still inferior to that of the dynamic orbits due to the relative 
poor model strength of the PPP approach with respect to the 
dynamic approach as can be seen in Table 5.

Discussion

Although IAR-SD can achieve the same relative orbit accu-
racy as IAR-DD from the theoretical point of view, all stud-
ies up to now show that IAR-SD still cannot compete with 
IAR-DD in terms of relative accuracy (Allende-Alba et al. 
2018; Arnold et al. 2018b; Bertiger et al. 2010; Laurichesse 
et al. 2009). In our study, we point out that errors in the NL 
FCBs may partly explain this degradation. One may argue 
that the GPS orbit and clocks adopted in this study are not 
coming from one unique source and this may be considered 
crucial in the case of IAR-SD. On the one hand, we believe 
that our GPS clocks are consistent with the GPS orbits and 
can support SD IAR as shown in Geng et al., (2019). On the 
other hand, we note that all previous studies showed that 
IAR-SD performed worse than IAR-DD in terms of rela-
tive orbit accuracy, although the GPS orbits and clocks they 
used were from a unique source. In fact, we also produced 
the GRACE orbits using the GPS orbits and integer clocks 
released by CNES/CLS (Centre National d’Études Spatiales/
Collecte Localisation Satellites) analysis center (Loyer et al. 
2012). Unfortunately, this did not alter the conclusions and 
we did not observe any further improvements in the rela-
tive accuracy of the IAR-SD orbits. Thus, we speculate that 
errors in the GPS clocks cannot be thoroughly canceled out 
in case of SD IAR, although the GPS clocks have to be con-
sidered error-free in the data processing. It should be noted 
that this is also applicable in our case because of the 1-to-1 
linear dependency between NL FCBs and GPS clock correc-
tions. We suggest that the residual errors must be properly 
accounted for in data processing to achieve the best orbit 
accuracy. In our case, we have dealt with this issue through 
constraining the SD IF ambiguities in a proper manner as 
described in the section of ambiguity constraint.

Conclusions

In this study, we have proposed an integrated IAR scheme 
for formation-flying satellites to enhance the orbit solu-
tions. To demonstrate the added value, four sets of orbits 
have been produced using 1 year of GPS data collected 
by GRACE. For the first set, we have estimated the UD 
ambiguities as float parameters (denoted as the ‘FAR-UD’ 
solution). For the second one, SD IAR has been performed 
(denoted as the ‘IAR-SD’ solution). For the third one, only 
the DD ambiguities between the twin GRACE satellites 

have been resolved (denoted as the ‘IAR-DD’ solution) 
and for the fourth one the SD and DD ambiguities have 
been fixed simultaneously (denoted as the ‘IAR-SD-DD’ 
solution). The obtained orbits are evaluated by comparison 
with the JPL reduced-dynamic orbit, external validation 
with independent SLR and KBR measurements. Based on 
this analysis, we have shown that the integrated IAR-SD-
DD scheme is able to provide the best absolute and relative 
orbit accuracies simultaneously. These findings are likely 
applicable also to other formation-flying satellites, at least 
for those distributed in short/medium-size baselines and 
composed of identical spacecraft.

Acknowledgements The work was sponsored by the National ‘863 
Program’ of China (Grant No. 2014AA121501), the National Natu-
ral Science Foundation of China (Grant Nos. 41674033, 41574030, 
41904009). The numerical calculations in this research have been done 
on the supercomputing system in the Supercomputing Center of Wuhan 
University. The FCB or phase bias products can be found at ftp://igs.
gnssw hu.cn/pub/whu/phase bias/, and open-source PPP-AR software 
can be obtained from pride.whu.edu.cn.

References

Allende-Alba G, Montenbruck O (2016) Robust and precise baseline 
determination of distributed spacecraft in LEO. Adv Space Res 
57(1):46–63. https ://doi.org/10.1016/j.asr.2015.09.034

Allende-Alba G, Montenbruck O, Jäggi A, Arnold D, Zangerl F (2017) 
Reduced-dynamic and kinematic baseline determination for the 
swarm mission. GPS Solutions 21(3):1275–1284. https ://doi.
org/10.1007/s1029 1-017-0611-z

Allende-Alba G, Montenbruck O, Hackel S, Tossaint M (2018) Rela-
tive positioning of formation-flying spacecraft using single-
receiver GPS carrier phase ambiguity fixing. GPS Solutions 
22(3):68. https ://doi.org/10.1007/s1029 1-018-0734-x

Arnold D, Montenbruck O, Hackel S, Sośnica K (2018a) Satellite 
laser ranging to low earth orbiters: orbit and network validation. 
J Geodesy. https ://doi.org/10.1007/s0019 0-018-1140-4

Arnold D, Schaer S, Villiger A, Dach R, Jäggi A (2018b) Undifference 
ambiguity resolution for GPS-based precise orbit determination 
of low Earth orbiters using the new CODE clock and phase bias 
products. International GNSS Service Workshop 2018, Wuhan, 
China, 29 October–2 November, 2018

Berger C, Biancale R, Ill M, Barlier F (1998) Improvement of the 
empirical thermospheric model DTM: DTM94—a comparative 
review of various temporal variations and prospects in space 
geodesy applications. J Geodesy 72(3):161–178. https ://doi.
org/10.1007/s0019 00050 158

Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss 
JP (2010) Single receiver phase ambiguity resolution with GPS 
data. J Geodesy 84(5):327–337. https ://doi.org/10.1007/s0019 
0-010-0371-9

Bettadpur S (2012) GRACE product specification document. CSR-
GR-03-02, v4.6. Center for Space Research, University of Texas 
at Austin

Blewitt G (1989) Carrier phase ambiguity resolution for the global 
positioning system applied to geodetic baselines up to 2000 km. 
J Geophys Res Solid Earth 94(B8):10187–10203. https ://doi.
org/10.1029/Jb094 ib08p 10187 

ftp://igs.gnsswhu.cn/pub/whu/phasebias/
ftp://igs.gnsswhu.cn/pub/whu/phasebias/
https://doi.org/10.1016/j.asr.2015.09.034
https://doi.org/10.1007/s10291-017-0611-z
https://doi.org/10.1007/s10291-017-0611-z
https://doi.org/10.1007/s10291-018-0734-x
https://doi.org/10.1007/s00190-018-1140-4
https://doi.org/10.1007/s001900050158
https://doi.org/10.1007/s001900050158
https://doi.org/10.1007/s00190-010-0371-9
https://doi.org/10.1007/s00190-010-0371-9
https://doi.org/10.1029/Jb094ib08p10187
https://doi.org/10.1029/Jb094ib08p10187


GPS Solutions (2020) 24:14 

1 3

Page 11 of 12 14

Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock cor-
rections from CODE: support of 1 Hz applications. J Geodesy 
83(11):1083–1094. https ://doi.org/10.1007/s0019 0-009-0326-1

Case K, Kruizinga G, Wu S-C (2010) GRACE level 1B data product 
user handbook. JPL D-22027, v1.3. Jet Propulsion Laboratory

Collins P (2008) Isolating and estimating undifferenced GPS integer 
ambiguities. In: Proceedings of ION NTM 2008, Institute of Navi-
gation, San Diego, California, USA, 28–30 January, pp 720–732

Desai SD (2002) Observing the pole tide with satellite altimetry. J 
Geophys Res 107(C11):7-1-7-13. https ://doi.org/10.1029/2001j 
c0012 24

Dong DN, Bock Y (1989) Global positioning system network analysis 
with phase ambiguity resolution applied to crustal deformation 
studies in California. J Geophys Res Solid Earth 94(B4):3949–
3966. https ://doi.org/10.1029/Jb094 ib04p 03949 

Dunn C et al (2003) Instrument of GRACE. GPS World 14(2):17–28
Flechtner F, Dobslaw H, Fagiolini E (2015) AOD1B product descrip-

tion document for product release 05. GR-GFZ-AOD-0001. GFZ 
German Research Centre for Geosciences

Folkner WM, Williams JG, Boggs DH (2009) The planetary and lunar 
ephemeris DE 421. Jet Propulsion Laboratory, California Institute 
of Technology

Förste C, Bruinsma SL, Abrikosov O, Lemoine J-M, Marty JC, Flech-
tner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 
the latest combined global gravity field model including GOCE 
data up to degree and order 2190 of GFZ Potsdam and GRGS 
Toulouse. Geophysical Research Abstracts, EGU2014-3707. EGU 
General Assembly, Vienna, Austria, 27 April–2 May, 2014

Friis-Christensen E, Lühr H, Knudsen D, Haagmans R (2008) Swarm—
an earth observation mission investigating geospace. Adv Space 
Res 41(1):210–216. https ://doi.org/10.1016/j.asr.2006.10.008

Ge M, Gendt G, Dick G, Zhang FP (2005) Improving carrier-phase 
ambiguity resolution in global GPS network solutions. J Geodesy 
79(1–3):103–110. https ://doi.org/10.1007/s0019 0-005-0447-0

Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS 
carrier-phase ambiguities in precise point positioning (PPP) 
with daily observations. J Geodesy 82(7):389–399. https ://doi.
org/10.1007/s0019 0-007-0187-4

Geng J, Bock Y (2016) GLONASS fractional-cycle bias estimation 
across inhomogeneous receivers for PPP ambiguity resolu-
tion. J Geodesy 90(4):379–396. https ://doi.org/10.1007/s0019 
0-015-0879-0

Geng J, Teferle FN, Meng X, Dodson AH (2011) Towards PPP-RTK: 
ambiguity resolution in real-time precise point positioning. 
Adv Space Res 47(10):1664–1673. https ://doi.org/10.1016/j.
asr.2010.03.030

Geng J, Chen X, Pan Y, Zhao Q (2019) A modified phase clock/bias 
model to improve PPP ambiguity resolution at Wuhan University. 
J Geodesy. https ://doi.org/10.1007/s0019 0-019-01301 -6

Gu DF, Ju B, Liu JH, Tu J (2017) Enhanced GPS-based GRACE base-
line determination by using a new strategy for ambiguity resolu-
tion and relative phase center variation corrections. Acta Astro-
naut 138:176–184. https ://doi.org/10.1016/j.actaa stro.2017.05.022

Guo X, Zhao Q, Ditmar P, Sun Y, Liu J (2018) Improvements in 
the monthly gravity field solutions through modeling the 
colored noise in the GRACE data. J Geophys Res Solid Earth 
123(8):7040–7054. https ://doi.org/10.1029/2018J B0156 01

Hatch R (1982) The synergism of GPS Code and carrier measure-
ments. IN: Proceedings of the third international symposium 
on satellite doppler positioning, Physical Sciences Laboratory 
of New Mexico State University, 8–12 February, pp 1213–1231

Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit 
determination for GRACE using undifferenced or doubly dif-
ferenced GPS data. Adv Space Res 39(10):1612–1619. https ://
doi.org/10.1016/j.asr.2007.03.012

Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler 
G (2009) Phase center modeling for LEO GPS receiver anten-
nas and its impact on precise orbit determination. J Geodesy 
83(12):1145–1162. https ://doi.org/10.1007/s0019 0-009-0333-2

Kouba J (2009) A guide to using International GNSS Service (IGS) 
products. ftp://www.igs.org/pub/resou rce/pubs/Using IGSPr 
oduct sVer2 1.pdf

Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, 
Zink M (2007) TanDEM-X: a satellite formation for high-res-
olution SAR interferometry. IEEE Trans Geosci Remote Sens 
45(11):3317–3341. https ://doi.org/10.1109/tgrs.2007.90069 3

Kroes R, Montenbruck O, Bertiger W, Visser P (2005) Precise 
GRACE baseline determination using GPS. GPS Solutions 
9(1):21–31. https ://doi.org/10.1007/s1029 1-004-0123-5

Laurichesse D, Mercier F, Berthias JP, Bijac J (2008) Real time 
zero-difference ambiguities fixing and absolute RTK. In: Pro-
ceedings of ION NTM 2008, Institute of Navigation, San Diego, 
California, USA, 28–30 January, pp 747–755

Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Inte-
ger ambiguity resolution on undifferenced GPS phase meas-
urements and its application to PPP and satellite precise orbit 
determination. Navigation 56(2):135–149

Li P, Zhang X, Ren X, Zuo X, Pan Y (2015) Generating GPS satel-
lite fractional cycle bias for ambiguity-fixed precise point posi-
tioning. GPS Solutions 20(4):771–782. https ://doi.org/10.1007/
s1029 1-015-0483-z

Liu J, Ge M (2003) PANDA software and its preliminary result of 
positioning and orbit determination. Wuhan Univ J Nat Sci 
8(2):603–609

Loyer S, Perosanz F, Mercier F, Capdeville H, Marty J-C (2012) 
Zero-difference GPS ambiguity resolution at CNES–CLS IGS 
Analysis Center. J Geodesy 86(11):991–1003. https ://doi.
org/10.1007/s0019 0-012-0559-2

Mao X, Visser PNAM, van den Ijssel J (2017) Impact of GPS 
antenna phase center and code residual variation maps on 
orbit and baseline determination of GRACE. Adv Space Res 
59(12):2987–3002. https ://doi.org/10.1016/j.asr.2017.03.019

Marshall JA, Luthcke SB (1994) Modeling radiation forces acting 
on Topex/Poseidon for precision orbit determination. J Spacecr 
Rockets 31(1):99–105. https ://doi.org/10.2514/3.26408 

Melbourne WG (1985) The case for ranging in GPS-based geodetic 
systems. In: Proceedings of the first international symposium on 
precise positioning with the global positioning system, Rock-
ville, 15–19 April, pp 373–386

Mendes VB, Pavlis EC (2004) High-accuracy zenith delay predic-
tion at optical wavelengths. Geophys Res Lett. https ://doi.
org/10.1029/2004g l0203 08

Mendes VB, Prates G, Pavlis EC, Pavlis DE, Langley RB (2002) 
Improved mapping functions for atmospheric refraction correc-
tion in SLR. Geophys Res Lett 29(10):53-51-53-54. https ://doi.
org/10.1029/2001g l0143 94

Montenbruck O, Hackel S, Jäggi A (2017) Precise orbit determina-
tion of the Sentinel-3A altimetry satellite using ambiguity-fixed 
GPS carrier phase observations. J Geodesy 92(7):711–726. 
https ://doi.org/10.1007/s0019 0-017-1090-2

Montenbruck O, Hackel S, van den Ijssel J, Arnold D (2018) 
Reduced dynamic and kinematic precise orbit determination for 
the swarm mission from 4 years of GPS tracking. GPS Solutions 
22:79. https ://doi.org/10.1007/s1029 1-018-0746-6

Pearlman MR, Degnan JJ, Bosworth JM (2002) The international 
laser ranging service. Adv Space Res 30(2):135–143. https ://doi.
org/10.1016/S0273 -1177(02)00277 -6

Petit G, Luzum B (2010) IERS Conventions (2010). IERS Technical 
Note No. 36. Verlag des Bundesamts für Kartographie und Geodä-
sie, Frankfurt am Main, Germany. http://www.iers.org/TN36/

https://doi.org/10.1007/s00190-009-0326-1
https://doi.org/10.1029/2001jc001224
https://doi.org/10.1029/2001jc001224
https://doi.org/10.1029/Jb094ib04p03949
https://doi.org/10.1016/j.asr.2006.10.008
https://doi.org/10.1007/s00190-005-0447-0
https://doi.org/10.1007/s00190-007-0187-4
https://doi.org/10.1007/s00190-007-0187-4
https://doi.org/10.1007/s00190-015-0879-0
https://doi.org/10.1007/s00190-015-0879-0
https://doi.org/10.1016/j.asr.2010.03.030
https://doi.org/10.1016/j.asr.2010.03.030
https://doi.org/10.1007/s00190-019-01301-6
https://doi.org/10.1016/j.actaastro.2017.05.022
https://doi.org/10.1029/2018JB015601
https://doi.org/10.1016/j.asr.2007.03.012
https://doi.org/10.1016/j.asr.2007.03.012
https://doi.org/10.1007/s00190-009-0333-2
ftp://www.igs.org/pub/resource/pubs/UsingIGSProductsVer21.pdf
ftp://www.igs.org/pub/resource/pubs/UsingIGSProductsVer21.pdf
https://doi.org/10.1109/tgrs.2007.900693
https://doi.org/10.1007/s10291-004-0123-5
https://doi.org/10.1007/s10291-015-0483-z
https://doi.org/10.1007/s10291-015-0483-z
https://doi.org/10.1007/s00190-012-0559-2
https://doi.org/10.1007/s00190-012-0559-2
https://doi.org/10.1016/j.asr.2017.03.019
https://doi.org/10.2514/3.26408
https://doi.org/10.1029/2004gl020308
https://doi.org/10.1029/2004gl020308
https://doi.org/10.1029/2001gl014394
https://doi.org/10.1029/2001gl014394
https://doi.org/10.1007/s00190-017-1090-2
https://doi.org/10.1007/s10291-018-0746-6
https://doi.org/10.1016/S0273-1177(02)00277-6
https://doi.org/10.1016/S0273-1177(02)00277-6
http://www.iers.org/TN36/


 GPS Solutions (2020) 24:14

1 3

14 Page 12 of 12

Priestley KJ, Smith GL, Thomas S, Cooper D, Lee RB, Walikainen D, 
Hess P, Szewczyk ZP, Wilson R (2011) Radiometric performance 
of the CERES earth radiation budget climate record sensors on the 
eos aqua and terra spacecraft through April 2007. J Atmos Ocean 
Technol 28(1):3–21. https ://doi.org/10.1175/2010j techa 1521.1

Rieser D, Mayer-Gürr T, Savcenko R, Bosch W, Wünsch J, Dahle 
C, Flechtner F (2012) The ocean tide model EOT11a in spheri-
cal harmonics representation. Institute of Theoretical Geodesy 
and Satellite Geodesy (ITSG), TU Graz, Austria; Deutsches 
Geodätisches Forschungsinstitut (DGFI), Munich, Germany; GFZ 
German Research Centre for Geosciences, Potsdam, Germany. 
https ://www.tugra z.at/filea dmin/user_uploa d/Insti tute/IFG/satge 
o/pdf/TN_EOT11 a.pdf

Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Gen-
eration of a consistent absolute phase-center correction model for 
GPS receiver and satellite antennas. J Geodesy 81(12):781–798. 
https ://doi.org/10.1007/s0019 0-007-0148-y

Švehla D, Rothacher M (2005) Kinematic precise orbit determination 
for gravity field determination. In: Sansò F (ed) A window on the 
future of geodesy. International Association of Geodesy Sympo-
sia, vol 128. Springer. Berlin, Heidelberg, pp 181–188. https ://doi.
org/10.1007/3-540-27432 -4_32

Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) 
GRACE measurements of mass variability in the earth system. 
Science 305(5683):503–505. https ://doi.org/10.1126/scien 
ce.10991 92

Wu JT, Wu SC, Hajj G, Bertiger WI, Lichten SM (1993) Effects 
of antenna orientation on GPS carrier phase. Manuscr Geod 
18(2):91–98

Wübbena G (1985) Software developments for geodetic positioning 
with GPS using TI-4100 code and carrier measurements. In: Pro-
ceedings of the first international symposium on precise position-
ing with the global positioning system, Rockville, 15–18 April, 
pp 403–412

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Xiang Guo is currently doing his 
post-doctoral research at GNSS 
Research Center, Wuhan Univer-
sity. He received his Ph.D. 
degree with distinction in Geod-
esy and Engineering Surveying 
at School of Geodesy and Geo-
matics in Wuhan University. His 
main research interests include 
precise orbit determination and 
earth’s gravity field recovery 
from satellite-to-satellite track-
ing data.

Jianghui Geng has been a profes-
sor in GNSS geodesy at Wuhan 
University since 2015. He gradu-
ated from the University of Not-
tingham in the UK in 2011. 
Afterward, he had an enterprise 
fellowship from the Nottingham 
Geospatial Institute in 2011 and 
a Green scholarship from 
Scripps Institution of Oceanog-
raphy from 2012 to 2014. He 
was promoted as an assistant 
project scientist in 2015 (see 
homepage: pride.whu.edu.cn). 
His major research interest is 
high-precision GNSS.

Xingyu Chen is currently a Ph.D. 
candidate at GNSS Research 
Center, Wuhan University. He 
received his master’s degree in 
geomatics engineering from 
Zhengzhou Institute of Survey-
ing and Mapping in 2016. His 
current research mainly focuses 
on phase clocks/biases and high-
precision positioning using 
GNSS.

Qile Zhao is a professor at GNSS 
Research Center of Wuhan Uni-
versity. He received his Ph.D. 
degree in Wuhan University in 
2004. In 2006–2007, as a post-
doctoral fellow, he did his post-
doctoral program in DEOS, 
Delft University of Technology, 
the Netherlands. His current 
research interests are precise 
orbit determination of GNSS and 
low earth orbit satellites, and 
high-precision positioning using 
GNSS.

https://doi.org/10.1175/2010jtecha1521.1
https://www.tugraz.at/fileadmin/user_upload/Institute/IFG/satgeo/pdf/TN_EOT11a.pdf
https://www.tugraz.at/fileadmin/user_upload/Institute/IFG/satgeo/pdf/TN_EOT11a.pdf
https://doi.org/10.1007/s00190-007-0148-y
https://doi.org/10.1007/3-540-27432-4_32
https://doi.org/10.1007/3-540-27432-4_32
https://doi.org/10.1126/science.1099192
https://doi.org/10.1126/science.1099192

	Enhanced orbit determination for formation-flying satellites through integrated single- and double-difference GPS ambiguity resolution
	Abstract
	Introduction
	POD strategy
	Integer ambiguity resolution
	Observation model
	Undifferenced float ambiguities
	SD ambiguity resolution
	DD ambiguity resolution
	Integrated SD and DD ambiguity resolution
	Fixing decision
	Ambiguity constraint

	Results
	Quality of FCB products
	Orbit comparison
	SLR validation
	KBR validation

	Discussion
	Conclusions
	Acknowledgements 
	References




