
Vol.:(0123456789)1 3

GPS Solutions (2019) 23:51 
https://doi.org/10.1007/s10291-019-0843-1

ORIGINAL ARTICLE

An improved atmospheric weighted mean temperature model and its 
impact on GNSS precipitable water vapor estimates for China

Liangke Huang1,2 · Lilong Liu2,3 · Hua Chen4 · Weiping Jiang1

Received: 29 August 2018 / Accepted: 11 March 2019 / Published online: 18 March 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The atmospheric weighted mean temperature, T

m
 , is an important parameter for retrieving precipitable water vapor (PWV) 

from global navigation satellite system (GNSS) signals. There are few empirical, high-precision T
m

 models for China, 
which limit the real-time and high-precision application of GNSS meteorology over China. The GPT2w (Global Pressure 
and Temperature 2 Wet) model, as a state-of-the-art global empirical tropospheric delay model, can provide values for 
T
m

 , surface temperature, surface pressure, and water vapor pressure. However, several studies have noted that the GPT2w 
model has significant systematic errors in the calculation of T

m
 for China, mainly due to the neglect of the T

m
 lapse rate. We 

develop an improved T
m

 model for China, IGPT2w, by refining the T
m

 derived from GPT2w using both gridded T
m

 data and 
ellipsoidal height grid data from the Global Geodetic Observing System (GGOS) Atmosphere. Both gridded T

m
 data from 

the GGOS Atmosphere and radiosonde data from 2015 are used to test the performance of IGPT2w in China. The results 
are compared with the GPT2w model and the widely used Bevis formula. The results show that IGPT2w yields significant 
performance against other models in T

m
 estimation over China, especially in western China, where the significant systematic 

errors of the GPT2w model are largely eradicated. IGPT2w has �
PWV

 and �
PWV

∕PWV values of 0.29 mm and 1.38% when 
used to retrieve GNSS-PWV, respectively. Thus, the IGPT2w has significant potential for real-time GNSS-PWV sounding 
in China, especially when used to retrieve GNSS-PWV values for the study of PWV transportation in the Tibetan Plateau.
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Introduction

Water vapor, an important part of the atmospheric sys-
tem, has attracted great attention in the study of weather 
and long-term climate, such as in research on global water 
cycling and energy balances (Wang et al. 2007; Wang and 
Zhang 2009; Jin and Luo 2009). Traditional water vapor 
monitoring techniques mainly depend on radiosondes, sat-
ellite-based instruments, and water vapor radiometers. Such 

conventional techniques have limitations in capturing fine 
variations due to their low spatiotemporal resolutions. The 
drawbacks of these traditional techniques are increasingly 
clear with the growing demands of modern meteorological 
applications. To overcome the shortages of these techniques, 
a global positioning system (GPS) technique is extensively 
being used to compensate for these disadvantages. Bevis 
et al. (1992) first proposed the use of GPS measurements to 
sense precipitable water vapor (PWV). Great efforts have 
been conducted to sense PWV using GPS/GNSS meas-
urements (Rocken et al. 1995; Li et al. 2015; Manandhar 
et al. 2017). There has been a rapid establishment of GNSS 
monitoring stations network at the regional, national and 
global scales. The PWV data retrieved from GNSS signal 
are widely used for the analysis of severe weather condi-
tions, such as heavy rainfall (Adams et al. 2013; Zhang et al. 
2015; Benevide et al. 2015), flood (Suparta and Rahman 
2016; Huelsing et al. 2017), drought (Jiang et al. 2017) and 
typhoon events monitoring (Zhao et al. 2018).
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Electromagnetic signals sent by a GNSS satellite through 
the neutral atmosphere are affected by troposphere refrac-
tion, resulting in a tropospheric delay. This delay along the 
zenith path is defined as zenith total delay (ZTD). The ZTD 
can be divided into two components, i.e., zenith hydrostatic 
delay (ZHD) and zenith wet delay (ZWD). Bevis et  al. 
(1992) proposed an approach to derive the atmospheric 
weighted mean temperature (Tm) for deriving PWV from the 
ZWD of GNSS signals. The ZTD can be precisely estimated 
from GNSS observations using a precise point positioning 
(PPP) technique or differential approaches. The ZHD can 
also be accurately calculated from an empirical tropospheric 
delay model, and the ZWD can be calculated by subtracting 
ZHD from ZTD. Therefore, once the ZWD is calculated, the 
PWV value can be estimated. The role of Tm in the process 
of PWV estimation is as follows (Davis et al. 1985; Askne 
and Nordius 1987; Bevis et al. 1994; Ross and Rosenfeld 
1997):

where Π is the dimensionless atmospheric conversion factor, 
�w is the density of water, Rv is the specific gas constant for 
water vapor, k′

2
 and k3 are the atmospheric refractivity con-

stants given in Bevis et al. (1994), e denotes the water vapor 
pressure (hPa) and T denotes the absolute temperature (Kel-
vin). The calculating precision of PWV depends on multiple 
error sources. According to the law of error propagation, 
the error of PWV can be deduced from (1) and (2), and the 
following formulas illustrate how the errors can affect PWV 
(Yao et al. 2014a),

where �PWV , �
Tm

 , �ZWD , and �Π denote errors from PWV, 
Tm , ZWD, and Π , respectively. Currently, the International 
GNSS Service (IGS) provides the ZTD product with a pre-
cision of better than 5 mm (Byun and Bar-Sever 2009). 
The ZHD can be accurately estimated using numerical 
weather models or surface pressure observations (Hobiger 
et al. 2008a; Lu et al. 2016). In real-time, one can use a 
short-range forecast from a weather model to derive ZHD 
(Hobiger et al. 2008b; Lu et al. 2017). Thus, the ZWD can 

(1)PWV = Π ⋅ ZWD

(2)Π =
106

�wRv

(

k3

Tm

+ k
�
2

)

(3)Tm =
∫ (e∕T)dH

∫ (e∕T2)dH

(4)�PWV = Π ⋅ �ZWD + ZWD ⋅ �Π

(5)�Π =
106k3

�wRv(k3 + k
�
2
Tm)

2
�
Tm

be accurately obtained. Yao et al. (2014a) noted that the 
estimation error of PWV caused by ZWD error is approxi-
mately 1.5 mm if the ZWD has an estimation error of 1 cm. 
The accuracy of Tm , under this circumstance, is considered 
to have a dominant role in precise PWV calculation. In other 
words, precisely estimating Tm is the key to enhancing the 
precision of PWV estimation.

Multi-source atmospheric profiles, such as radio-
sonde profiles, the America National Centers for Predic-
tion (NCEP) reanalysis data, and the European Center for 
Medium-Range Weather Forecasts (ECMWF) reanalysis 
data, can be used to calculate Tm . The Tm can be accurately 
estimated at a specific position using these atmospheric pro-
files based on the integration method. An accurate empirical 
model for Tm is needed to enhance the efficiency of Tm esti-
mation and provide easy accessibility for users. Numerous 
studies have been conducted on Tm modeling, and a great 
number of empirical Tm models have also been developed 
for retrieving GNSS-PWV. Bevis et al. (1992) first intro-
duced the concept of GPS meteorology and a widely used 
Tm model. The Bevis formula (Tm = a + bTs), was developed 
by investigating the correlation between surface temperature 
(Ts) and Tm . The Bevis model has gained increasing atten-
tion and it has been found that the coefficients of a and b 
are largely depend on location and season and should be 
re-estimated using local observations for use in specific 
areas (Bevis et al. 1992; Ross and Rosenfeld 1997). Yao 
et al. (2014a) analyzed the relationship between Tm and sur-
face meteorological parameters, such as Ts , Ps , and es , and 
then proposed a one-factor and a multi-factor Tm models that 
take geographic and seasonal variations into account. The 
two new empirical models obtained better results around the 
globe. Ding (2018) developed a new global Tm model, the 
NN model, based on the neural network algorithm, which 
only requires surface temperature as input. These empiri-
cal regression Tm models can obtain excellent results if 
in situ surface meteorological observations are available. 
Most GPS/GNSS monitoring stations, however, are initially 
installed for the purposes of geodesy, i.e., no meteorologi-
cal instruments are installed at these GPS/GNSS stations. 
Therefore, these Tm models cannot be used for real-time 
retrieval of the GNSS-PWV due to the lack of in situ mete-
orological observations.

To obtain real-time retrieval of GNSS-PWV, Emard-
son and Derks (2000) proposed an empirical Tm model in 
Europe, which takes the seasonal and latitude variation of 
Tm into account and does not require in situ meteorological 
observations for the determination of real-time GNSS-PWV. 
In recent years, the non-meteorological parameter Tm models 
have received great attention as they are widely used for 
real-time GNSS meteorology. Yao et al. (2015) improved 
the Tm model developed by Emardson et al. and established 
a new empirical atmospheric conversion factor (Π) model for 
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low-latitude China. Yao et al. (2012) developed a global Tm 
model, the Global Weighted Mean Temperature (GWMT) 
model, using the spherical harmonics method. This new 
model can obtain excellent mean results over the globe; 
however, a relatively worse result was observed in parts 
of the southern Pacific Ocean due to the uneven distribu-
tion of the radiosonde stations involved in modeling. Yao 
et al. (2013) improved the GWMT model by combining 
the Bevis formula and the global pressure and temperature 
(GPT) model (Böhm et al. 2007), and an improved global 
Tm model, GTm-II, was proposed. Chen et al. (2014) estab-
lished a new global empirical Tm model, GTm_N, using the 
NCEP reanalysis outputs, which considers both annual and 
semi-annual variations of Tm . Yao et al. (2014b) further 
refined previous models and then constructed a new global 
Tm model (GTm-III). He et al. (2017) developed a global Tm 
model (GWMT-D), which considers the height correction 
of Tm and yields remarkable performance over the globe. 
Furthermore, Huang et al. (2019) constructed a new global 
grid Tm model (GGTm) by employing the sliding window 
algorithm, which takes both latitude and altitude variation 
of Tm into account in modeling and performs excellent and 
reliable performance on a global scale.

Great efforts have been conducted towards developing 
global empirical Tm models. However, high-precision empir-
ical Tm models for China are still lacking, which limits the 
real-time and high-precision application of GNSS meteorol-
ogy for China. China is a vast territory that contains complex 
undulating terrain and diverse climate systems, especially in 
the Qinghai–Tibetan and Yunnan–Guizhou plateaus, where 
only a few radiosonde stations are available. Additionally, 
the GNSS-PWV sounding has not yet been fully conducted 
in China. In recent years, the Crustal Movement Observa-
tion Network of China (CMONOC), which contains over 
260 GNSS monitoring stations, has been gradually applied 
in geodesy and geodynamics and can provide continuous 
long-term GNSS measurements for the potential application 
in PWV retrieval. Thus, there is an urgent need to develop 
a high-precision empirical Tm model for China for real-time 
GNSS-PWV retrieval.

The GPT2w (Global Pressure and Temperature 2 Wet) 
model developed by Böhm et al. (2015) is one of the newly 
released global tropospheric delay models and can also pro-
vide Tm . It should be noted that the GPT2w has excellent 
performance in Tm estimation compared to other existing 
empirical models. Several investigations have been con-
ducted on the GPT2w model showing a systematic bias in 
Tm calculation (Zhang et al. 2017; Huang et al. 2019), mainly 
because the vertical correction of Tm is ignored. Generally, 
understanding the spatial–temporal characteristics of the 
Tm lapse rate is helpful in establishing a more sophisticated 
Tm model. However, the analysis of sophisticated seasonal 
characteristics of the Tm lapse rate is still lacking. In this 

study, we investigate the spatial–temporal characteristics 
of the Tm lapse rate in China using both gridded Tm data 
and ellipsoidal height grid data from the Global Geodetic 
Observing System (GGOS) Atmosphere. An improved Tm 
model, namely, IGPT2w, will be developed by refining the 
Tm derived from GPT2w model for China. The performance 
of IGPT2w will be evaluated using gridded Tm data and radi-
osonde profiles.

Data description and T
m

 calculation

In this work, the gridded data derived of the GGOS Atmos-
phere are used to investigate the spatiotemporal character-
istics of the Tm lapse rate and also to develop the IGPT2w 
model. Both gridded Tm data and radiosonde profiles are 
employed to validate the performance of new model.

Gridded data from GGOS Atmosphere

GGOS Atmosphere can provide continuous long-term global 
surface atmospheric grid products, such as Tm , ZHD, and 
ZWD, which are derived from ECMWF reanalysis data and 
all correspond to the ellipsoidal heights. These surface grid 
data have a temporal resolution of 6 h and a spatial resolu-
tion of 2.5◦ × 2◦ (lon. × lat) (http://ggosa tm.hg.tuwie n.ac.at). 
In addition, the global ellipsoidal height grid data, which 
have the same spatial resolution as the gridded Tm data, are 
also provided by the GGOS Atmosphere. Yao et al. (2014b) 
evaluated global surface gridded Tm data and showed that the 
gridded Tm data are highly accurate and reliable, which can 
be used to investigate spatial–temporal characteristics of Tm 
as well as for Tm modeling. In this study, we utilize gridded 
Tm data from 2007 to 2014 and ellipsoidal height grid data 
to investigate the Tm vertical features and the seasonal vari-
ations of Tm lapse rates and for Tm modeling in China. The 
gridded Tm data in 2015 are treated as reference values for 
validating the IGPT2w model.

Radiosonde profiles

The websites of the University of Wyoming freely provide 
global radiosonde observations (http://weath er.uwyo.edu/
upper air/sound ing.html). Currently, there are in total more 
than 1500 radiosonde stations globally. The radiosonde 
profiles, with a resolution of 12 h, i.e., at UTC 00:00 and 
12:00 every day, mainly include pressure level profiles and 
surface observations. In this study, a total of 89 radiosonde 
stations in China are selected (Fig. 1). The Tm values in 
2015 derived from radiosonde observations based on the 
integration method are regarded as reference values to 
evaluate the IGPT2w for China. Additionally, the Ts data in 
2015 obtained from radiosonde stations are used for the Tm 

http://ggosatm.hg.tuwien.ac.at
http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
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calculation in the Bevis formula (Tm = 70.2 + 0.72Ts) and 
the PWVs in 2015 received from radiosonde profiles are 
used to investigate the impact of Tm on GNSS-PWV. Here, 
for more convenient calculation, the integral formula (3) for 
calculating Tm can be discretized as follows:

where F1(ei, Ti) =
e
i

T
i

 ; F2(ei, Ti) =
e
i

T
2
i

 ; T
i
 and e

i
 are the average 

temperature and water vapor pressure at the ith layer of the 
atmosphere, respectively; ΔH

i
 denotes the thickness of the 

atmosphere at the ith layer (m), and n is the number of lay-
ers. As e cannot directly be obtained from radiosonde pro-
files, it can be calculated by the following formulas (Bolton 
1980; Wang et al. 2016):

where RH is the relative humidity, Pv and Ta are the saturated 
vapor pressure and the atmospheric temperature in celsius 
(T = Ta + 273.15) respectively.

Improving the T
m

 derived from GPT2w 
model in China

The GPT2w model can provide several meteorological 
parameters, such as Tm , Ts, Ps, es, and water vapor pressure 
lapse rate (�) , with two horizontal resolutions of 1◦ × 1◦ 

(6)Tm =
∫ (e∕T)dH

∫ (e∕T2)dH
=

∑n

1
F1(ei, Ti)ΔHi

∑n

1
F2(ei, Ti)ΔHi

(7)e =
RH ⋅ Pv

100

(8)Pv = 6.11 × 10

(

7.5×Ta

237.3+Ta

)

and 5◦ × 5◦ . The Tm can be estimated using the following 
formula:

where T r
m

 is the Tm at the grid height, doy is the day of year, 
and the other coefficients are stored in a regular grid of 
1◦ × 1◦ and 5◦ × 5◦ . The realization of the Tm derived from 
the GPT2w model is accomplished by performing bilin-
ear interpolation for the Tm derived from four surrounding 
grids of the target position. The code and specific use of the 
GPT2w model are provided at the website of GGOS Atmos-
phere (http://ggosa tm.hg.tuwie n.ac.at/DELAY /SOURC 
E/). The goal of this work is to refine the Tm derived from 
GPT2w in China, therefore, a sophisticated investigation 
of spatial–temporal characteristics for the Tm lapse rate is 
needed.

Investigation of the T
m

 lapse rate

Height differences between the grid height and the target 
height have always existed, especially in regions with highly 
undulating terrain such as western China. Several studies 
have shown that Tm has a strong correlation with height 
(Zhang et al. 2017; He et al. 2017). The GPT2w model does 
not consider the height adjustment for Tm calculation, which 
results in significant systematic bias for China (Huang et al. 
2019). Therefore, it is necessary to perform a height adjust-
ment for the Tm derived from GPT2w model. In this section, 
we explore the vertical dependence of Tm using gridded Tm 

(9)

T
r
m
= �0 + �1 cos

(

2�
doy

365.25

)

+ �2 sin

(

2�
doy

365.25

)

+ �3 cos

(

4�
doy

365.25

)

+ �4 sin

(

4�
doy

365.25

)

Fig. 1  Geographic and topographic distribution of the 89 radiosonde 
stations in China. The upward triangles denote the radiosonde stations

Fig. 2  T
m

 changes with height in China. The scatter points indicate 
the annual mean gridded T

m
 data in 2014 in China, and the red line 

indicates the linear fitted line for the vertical dependence of T
m

http://ggosatm.hg.tuwien.ac.at/DELAY/SOURCE/
http://ggosatm.hg.tuwien.ac.at/DELAY/SOURCE/
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data in 2014 and ellipsoidal height grid data in China. The 
results are shown in Fig. 2.

Figure  2 shows an approximate linear relationship 
between Tm and height. The vertical dependence of Tm , 
therefore, can be expressed as a linear formula:

where � indicates the Tm lapse rate (K/km) and �h indicates 
the ellipsoidal height (km).

The Tm lapse rate is undoubtedly a key parameter for 
the vertical correction of Tm . He et al. (2017) performed 
an analysis for the global distribution of the Tm lapse rate 
and showed that the annual mean Tm lapse rate varies with 
latitude and land–sea distribution across the globe. Never-
theless, relatively smaller variations for the annual mean Tm 
lapse rate were observed in China, meaning that a uniformed 
model can be constructed for the vertical correction of Tm 
in China. Similarly, Zhang et al. (2017) investigation on the 
four seasons of the Tm lapse rate revealed a seasonal depend-
ence of the Tm lapse rate. However, a sophisticated investiga-
tion of seasonal characteristics for the Tm lapse rate is still 
lacking. In this section, the gridded Tm data from 2007 to 
2014 and corresponding ellipsoidal height grid data in China 
are used to explore the seasonal variations of the Tm lapse 
rate. In addition, the fast Fourier transform (FFT) algorithm 
is performed to detect the periodicity characteristics of the 
Tm lapse rate. The results are shown in Fig. 3.

Figure 3 shows that the Tm lapse rate clearly has seasonal 
variations. Both annual cycles and semi-annual cycles are 
detected. The Tm lapse rate, therefore, can be modeled as the 
following formula:

(10)Tm = � × �h + k where doy is the day of year; �0 is the annual mean value of 
the Tm lapse rate; and ( �1 , �2 ) and ( �3 , �4 ) are the coefficients 
of the annual and semi-annual periodicity of the Tm lapse 
rate, respectively.

Development of the IGPT2w model in China

The goal of this study is to refine the Tm derived from the 
GPT2w model and to develop an improved Tm model for 
China, named IGPT2w. The model formula is as follows:

where T t
m

 is the Tm derived from the IGPT2w model at the 
target height; T r

m
 is the Tm derived from the GPT2w model 

(9) at the grid height; and �ht and �hr are the target height 
and the grid height in km, respectively. For the Tm lapse 
rate (�), which can be estimated by performing the least 
squares method with gridded Tm data from 2007 to 2014 and 

(11)

� = �0 + �1 cos

(

2�
doy

365.25

)

+ �2 sin

(

2�
doy

365.25

)

+ �3 cos

(

4�
doy

365.25

)

+ �4 sin

(

4�
doy

365.25

)

(12)T
t
m
= T

r
m
+ � × (�ht − �hr)

Fig. 3  Seasonal variations of 
the T

m
 lapse rate from 2007 to 

2014 in China (top) and results 
of periodicity detection for the 
T
m

 lapse rate using the FFT 
algorithm (bottom)

Table 1  Coefficients of the T
m

 lapse rate model calculated using grid-
ded T

m
 data from 2007 to 2014 and ellipsoidal gridded height data for 

China

Coefficients �
0

�
1

�
2

�
3

�
4

Value − 5.3494 − 0.7846 − 0.4209 0.1965 0.2680
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ellipsoidal gridded height data for China based on (11), the 
coefficients of the Tm lapse rate model are shown in Table 1.

Here, a description of the use of the IGPT2w model is 
provided. There are two steps to realize the Tm derived from 
the IGPT2w model. First, the vertical correction values of 
Tm are computed for the four surrounding grids of the target 
position using the Tm lapse rate model. Next, the Tm at the 
target height derived from the IGPT2w model is obtained 
by conducting a bilinear interpolation for the Tm derived 
from four surrounding grids of the target position. The Tm 
is derived from the IGPT2w model with the same horizon-
tal resolution as the GPT2w model, i.e., with resolutions of 
1◦ × 1◦ and 5◦ × 5◦.

Validation of IGPT2w

The Tm values derived from the gridded data from the GGOS 
Atmosphere and the radiosonde data are treated as reference 
values to evaluate the performance of the IGPT2w model. 
The results are also compared with the GPT2w model and 
the Bevis formula (Tm = 70.2 + 0.72Ts). As mentioned 
above, both the IGPT2w and GPT2w models have two 
horizontal resolutions of 1◦ × 1◦ and 5◦ × 5◦ . For conveni-
ence, we defined these two resolutions for each model as 
IGPT2w-1, IGPT2w-5, GPT2w-1, and GPT2w-5, respec-
tively. In this study, the bias and RMS error are regarded as 
criteria to assess the accuracy of the models and are calcu-
lated using the following formulas:

where XM
i

m  indicates the value calculated by the model, XR
i

m 
indicates the reference value, and N indicates the number 
of samples.

Comparison with gridded data from the GGOS 
Atmosphere

In this experimental area, i.e., the longitude and longitude 
vary from 70◦E to 135◦E and 15◦N to 55◦N , there are a total 
of 540 Tm grids. The gridded Tm data in 2015 are treated 
as reference values to evaluate the IGPT2w-1, IGPT2w-5, 
GPT2w-1, GPT2w-5, and Bevis models. For the Bevis for-
mula (Tm = 70.2 + 0.72Ts), since in situ Ts measurements 
at each grid are unavailable, the Ts value derived from 

(13)bias =
1

N

N
∑

i=1

(X
M

i

m − X
R
i

m )

(14)RMS =

√

√

√

√
1

N

N
∑

i=1

(X
M

i

m − X
R
i

m )
2

GPT2w-1 can serve as alternative data for the Bevis formula. 
Therefore, the statistical results of the annual bias and RMS 
values of the different models tested by gridded Tm data for 
2015 can be obtained and are shown in Table 2 and Figs. 4 
and 5.

Table 2 shows that GPT2w-5 and GPT2w-1 have large 
bias values that range from − 13.52 to 17.56 K and − 2.14 
to 10.30 K, respectively. The Bevis formula has the larg-
est annual mean bias, and both IGPT2w-5 and IGPT2w-1 
show stable and small bias values. Similarly, larger RMS 
values are also obtained for GPT2w-5 and GPT2w-1. The 
GPT2w-1 has slightly better results than GPT2w-5, while 
the Bevis formula has the largest annual mean RMS value. 
In terms of RMS, IGPT2w-5 and IGPT2w-1 have improved 
by approximately 1.1 K (25%) and 0.5 K (13%) against 
GPT2w-5 and GPT2w-1, respectively. Thus, the IGPT2w 
shows significant improvement compared to GPT2w in 
calculating Tm . Figure 4 shows large warm biases in parts 
of western China for both GPT2w-5 and GPT2w-1, espe-
cially in the Tibetan area for GPT2w-5. The Bevis formula 
also has large warm biases in parts of northwest China, 
especially in the Qinghai–Tibetan Plateau, while both 
IGPT2w-5 and IGPT2w-1 have stable and small biases 
in China. Figure 5 shows larger RMS in parts of west-
ern China for GPT2w-5 and the Bevis formula, especially 
in the Tibetan, Qinghai, and Xinjiang areas, which are 
mainly affected by the areas’ complex terrain as GPT2w 
and the Bevis formula do not consider the vertical cor-
rection of Tm . GPT2w-1 produces a relatively small RMS 
compared to GPT2w-5 by improving the spatial resolution 
of model parameters, but large RMS values still exist in 
parts of western China. Since the diurnal variations of Tm 
are ignored in all models, relatively larger RMS values are 
observed in parts of northeast China, especially for the 
Bevis formula, where the diurnal variations of Tm are more 
significant than in other areas (Fig. 6). Nevertheless, the 
significant errors of the GPT2w and the Bevis formula in 
high-altitude areas are largely eradicated by the IGPT2w, 
especially western China. Thus, IGPT2w represents a 

Table 2  Statistical results of different models validated using 2015 
gridded T

m
 data from the GGOS Atmosphere

Model Bevis GPT2w-5 GPT2w-1 IGPT2w-5 IGPT2w-1

Bias (in K)
 Max 7.37 17.56 10.30 2.20 1.79
 Min − 4.32 − 13.52 − 2.14 − 2.39 − 2.39
 Mean 1.17 0.19 0.23 − 0.78 − 0.74

RMS (in K)
 Max 8.38 17.87 10.83 5.32 5.21
 Min 1.97 2.10 2.09 1.69 1.70
 Mean 4.79 4.50 3.81 3.36 3.32
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marked improvement relative to other models in areas with 
highly undulating terrain. Besides, for IGPT2w, it appears 
the introduction of the improved altitude correction for 
Tm reduces the need for a high spatial resolution of the 
GPT2w model for Tm.

Comparison with radiosonde data

Radiosonde profiles are in situ observations, which are often 
regarded as the reference values when assessing the perfor-
mance of other meteorological observing networks or mod-
els due to their excellent accuracy and reliability. In this 
study, a total of 89 radiosonde stations evenly distributed 
over China are selected (Fig. 1) to validate the performance 
of IGPT2w and competing Tm models. The Tm values are 

calculated from radiosonde profiles stably providing data 
with 12 h time resolution for half a year. For the Bevis for-
mula, the Ts can also be derived from the radiosonde record. 
The abnormal radiosonde profiles are removed to ensure the 
reliability of the assessment. The statistical results of the 
different models are shown in Table 3 and Figs. 7 and 8.

In Table 3, one can see that GPT2w-5 and GPT2w-1 
show larger mean cold bias, which illustrates that GPT2w 
has a significant systematic bias. The Bevis formula shows 
a relatively larger mean warm bias, while both IGPT2w-5 
and IGPT2w-1 present stable and small biases for China, 
verifying that the systematic errors of GPT2w are largely 
eradicated by IGPT2w. In terms of RMS, GPT2w-5 still 
shows the largest RMS among the models, the Bevis formula 
has similar performance as GPT2w-1, and IGPT2w-5 and 

Fig. 4  Distribution of bias in 
different models validated using 
gridded T

m
 data for 2015 over 

China
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IGPT2w-1 show an approximately 0.95 K (20%) and 0.65 K 
(15%) improvement compared to GPT2w-5 and GPT2w-1, 
respectively. Clearly the IGPT2w model performs better 
than other models for China. Figure 7 reflects the larger cold 
bias in parts of both western China and north of China for 
GPT2w-5 and GPT2w-1, where significant warm biases are 
observed for the Bevis formula. In addition, the Bevis for-
mula shows significant cold bias in parts of southeast China, 
while both IGPT2w-5 and IGPT2w-1 have small and stable 
biases in all of China. In Fig. 8, one can see that for the Bevis 
formula the GPT2w-5 and GPT2w-1 still have larger RMS 
values in parts of western and northern China, especially in 
Xinjiang province, which is mainly due to the highly undu-
lating terrain and the significant diurnal variations of Tm . 
For both IGPT2w-5 and IGPT2w-1, those errors are strongly 

reduced. The largest remaining errors are observed in parts 
of northeast China, which are mainly due to not account-
ing for the diurnal variation of Tm . Overall, both IGPT2w-5 
and IGPT2w-1 show stable and excellent performance over 
China. This further illustrates that IGPT2w shows marked 
improvement compared to GPT2w in China, especially in 
areas with strong topographic fluctuations. Additionally, 
the results of bias and RMS at all radiosonde stations were 
further analyzed, and the error distribution of the different 
models are shown in Fig. 9.

From Fig. 9 one can see that GPT2w-5 and GPT2w-1 
show larger and significant negative biases. Both have a 
great proportion of biases below − 3 K, and the GPT2w-5 
has the largest absolute bias of 13.9 K at the Ruoqiang site, 
located in Xinjiang province. Although the biases of the 

Fig. 5  Distribution of RMS 
error in different models 
validated using gridded T

m
 data 

from 2015 in China
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Bevis formula are relatively concentrated around zero, the 
number of strong negative biases is approximately equal 
to the number of positive ones, resulting in a relatively 
small mean bias. The biases of IGPT2w-5 and IGPT2w-1 
are small and highly concentrated around zero and are less 
than 2 K at almost all stations. In terms of RMS, a large 
proportion of values above 5 K are observed for the Bevis 
formula, GPT2w-5 and GPT2w-1, while for IGPT2w-5 and 
IGPT2w-1 the RMS values have a large proportion below 
4 K and show high concentration. These results further illus-
trate that the large errors of GPT2w in estimating Tm are 
largely removed by IGPT2w.

To analyze the seasonal performance of different models 
the daily results at all selected stations of each model were 
statistically analyzed, and the bias and RMS values of dif-
ferent models are varying with the day of year (DOY) are 
shown in Fig. 10.

In Fig. 10, one can see that both GPT2w-5 and GPT2w-1 
show significant cold bias during most DOYs, and larger 
values are observed during spring and winter days, which 
further indicates that GPT2w has a significant systematic 
bias in calculating Tm . The Bevis formula presents a rela-
tively clear warm bias during the spring and a relatively 
significant cold bias during the summer. Both IGPT2w-5 
and IGPT2w-1 show smaller biases without obvious sea-
sonal variation during most DOYs. In terms of RMS, all of 
these models show relatively clear seasonal variation, with 
relatively larger RMS values during spring and winter days 
and smaller ones during summer days. This is because most 
of the selected radiosonde stations are located in the middle 
latitudes where Tm changes are small during the summer 
and larger during the winter. In addition, both GPT2w-5 
and GPT2w-1 have larger RMS values than other models 
at most DOYs. In all, both IGPT2w-5 and IGPT2w-1 have 
stable and smaller RMS values compared to other models, 
demonstrating superior seasonal performance.

A great number of studies showed that Tm has strong cor-
relations with altitude and latitude (Emardson and Derks 
2000; He et al. 2017; Zhang et al. 2017). To investigate how 
the bias and RMS of different models vary with altitude 
the 89 selected radiosonde stations were sorted into five 
groups in terms of altitude, i.e., lower than 500, 500–1000, 
1000–1500, 1500–2000, and above 2000 m. The results 
of the bias and RMS for each altitude range are shown in 
Fig. 11.

Figure 11 shows that both GPT2w-5 and GPT2w-1 show 
marked cold bias in all altitude ranges, further indicating 
that GPT2w has a clear systematic bias in China. The Bevis 
formula shows larger and significant warm bias in altitudes 
above 500 m. In general, both bias and RMS of the Bevis 
formula increase with altitude. In addition, the Bevis for-
mula, GPT2w-5 and the GPT2w-1 present larger RMS val-
ues in altitudes above 500 m, which is mainly due to the 
strongly undulating terrain, while in terms of bias and RMS, 
IGPT2w-5 and IGPT2w-1 have both stable and excellent 
performance in all altitude ranges. In all, IGPT2w has supe-
rior performance in high-altitude areas compared to other 
models, although a relative smaller improvement is observed 
in the altitude range of 1500–2000 m, which is mainly due 
to the small number of stations located in this altitude range.

Additionally, the relationships between latitude and bias 
and RMS in different models were also investigated. The 89 
selected radiosonde stations were sorted in terms of latitude 
in 5° intervals. The results are shown in Fig. 12.

From Fig.  12, one can see that both GPT2w-5 and 
GPT2w-1 still show larger and significant cold biases in all 
latitude ranges, especially in the areas with a latitude range 
of 30°–40°. The Bevis formula has a clear warm bias in the 
latitudes above 35°, while both IGPT2w-5 and IGPT2w-1 
show stable and smaller biases in all latitude ranges. The 

Fig. 6  Distribution of amplitudes of T
m

 diurnal periodicity across 
China. The amplitude values of T

m
 diurnal periodicity are calculated 

using 2015 gridded T
m

 data from GGOS Atmosphere

Table 3  Statistical results of different models validated using radio-
sonde data for 2015

Model Bevis GPT2w-5 GPT2w-1 IGPT2w-5 IGPT2w-1

Bias (in K)
 Max 6.81 2.24 1.93 2.62 1.79
 Min − 3.55 − 13.89 − 6.63 − 1.80 − 1.68
 Mean 0.93 − 1.67 − 1.39 0.02 0.00

RMS (in K)
 Max 7.52 14.42 8.44 5.26 5.35
 Min 2.35 2.80 2.54 2.80 2.73
 Mean 4.31 4.75 4.43 3.80 3.78
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RMS values of all models, in general, increase with increas-
ing latitude in China because the amplitudes of Tm at low 
latitudes are much smaller than those at high latitudes (Yao 
et al. 2014b). For all models, relatively larger RMS values 
are observed in the latitudes above 40°, where the major-
ity stations are located in northeast China, Xinjiang, and 
Inner Mongolia province, while in these areas the diurnal 
variations of Tm are more significant than in other areas. 
Nevertheless, both IGPT2w-5 and IGPT2w-1 still perform 
significantly superior against other models in the latitudes 
above 30°.

Impact of T
m

 on GNSS‑PWV

The purpose of estimating Tm is to convert the ZWD into 
GNSS-PWV. The GNSS stations and radiosonde stations 
are generally not co-located. In addition, most of the GNSS 
stations are not equipped with meteorological instruments. 
Therefore, it is hard to conduct a reliable and comprehensive 
investigation of the impact of Tm on GNSS-PWV. However, 
several studies have been conducted to investigate the impact 
of Tm on its resultant GNSS-PWV in terms of theoretical 
models (Wang et al. 2005, 2016; Huang et al. 2019). In this 
work, a similar approach is conducted to investigate the 
impact of Tm on GNSS-PWV, and the widely used formula 
of RMS values between Tm and PWV can be written as

Fig. 7  Distribution of bias for 
different models tested using 
radiosonde data for 2015
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where �PWV is the RMS error of PWV, �
Tm

 is the RMS error 
of Tm , Tm and PWV are set to annual mean values, and the 
�PWV∕PWV is defined as the relative error of PWV. Thus, 
�PWV and �PWV∕PWV are employed to assess the impact of 
the errors in Tm on its resultant GNSS-PWV. In this section, 
89 radiosonde stations are also selected throughout China, 
and the distribution of the theoretical results of �PWV and 
�PWV∕PWV is shown in Fig. 13.

Figure 13 shows relatively larger �PWV values in south-
east and south China than other areas for the IGPT2w-5 and 

(15)
�PWV
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=

�Π

Π
=

k3�Tm
(

k
�
2
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)

T2
m
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(

k
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2
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Tm

)

Tm

⋅

�
Tm

Tm

IGPT2w-1 models, and the PWV values are larger than in 
other areas because PWV values play a dominant role in 
�PWV calculation. The �PWV values of the IGPT2w model are 
less than 0.59 mm and with a mean �PWV value of 0.29 mm. 
In terms of �PWV∕PWV , the IGPT2w has a mean value of 
1.38% and ranges from 0.95 to 2.0%, which is more sta-
ble and smaller than when using Tm from the other mod-
els under study. The IGPT2w is an empirical model, which 
can provide an accurate Tm for retrieving accurate real-time 
PWV values. Therefore, IGPT2w has possible potential 
applications in nowcasting or real-time analysis of severe 
weather conditions, such as heavy rainfall, typhoons, and 
flood forecasting in China, and also can be used to retrieve 
high-precision GNSS-PWV values for the study of PWV 
transportation in the Tibetan plateau.

Fig. 8  Distribution of RMS for 
different models tested using 
radiosonde data for 2015
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Conclusions

Tm plays an important role in the process of retrieving PWV 
values from GNSS signals. In real-time GNSS-PWV sound-
ing in China, an accurate and reliable empirical Tm model 

is needed. The GPT2w is one of the state-of-the-art tropo-
spheric models, which has excellent performance compared 
to existing empirical models for Tm calculation. However, 
the GPT2w has a systematic error in Tm estimation for 
China because the vertical correction of Tm is ignored. We 

Fig. 9  Histogram of bias and 
RMS for different models tested 
using radiosonde data for 2015

Fig. 10  Results of different 
models validated using radio-
sonde data during different days 
of the year



GPS Solutions (2019) 23:51 

1 3

Page 13 of 16 51

considered the vertical adjustment of Tm in modeling, and 
the Tm lapse rate model was developed for China using ellip-
soidal height grid data and gridded Tm data from the GGOS 
Atmosphere. Finally, an improved atmospheric weighted 
mean temperature model, IGPT2w, was developed by refin-
ing the Tm derived from GPT2w in China.

The performance of IGPT2w was tested using both grid-
ded Tm data and radiosonde site records in 2015 over China, 
and comprehensive comparisons to GPT2w and the Bevis 
formula were also performed. The results show a strong 
performance enhancement of the IGPT2w model against 
other models for China, especially in western China, where 
larger errors of the GPT2w model were largely removed. 
The impact of Tm derived from IGPT2w on GNSS-PWV was 
also investigated, showing that the mean values of �PWV and 

�PWV∕PWV are 0.29 mm and 1.38% for IGPT2w in terms 
of GNSS-PWV retrieval, respectively.

In this work, the GPT2w had significant systematic 
errors in western China, and poorer results were achieved 
for the Bevis formula in both northwest and north China. 
IGPT2w had significant improvements compared to 
GPT2w in Tm estimation over China, especially in western 
China. IGPT2w is an empirical model and has the ability 
to provide reliable and accurate Tm values for China, mak-
ing it more powerful for estimating real-time Tm values and 
giving it wide potential in real-time GNSS-PWV sound-
ing, especially for application in western China. In future 
work, we will focus on accounting for diurnal variation of 
Tm in the model and will improve the estimation of Tm from 
GPT2w on a global scale.

Fig. 11  Results of bias and 
RMS of the different models at 
different altitude ranges

Fig. 12  Results of bias and 
RMS of the different models at 
different latitude ranges
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