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Abstract
Despite the wide use of the global navigation satellite system (GNSS), its performance can be severely degraded due to 
blockage and vulnerability to interference. Stand-alone ground-based positioning systems can provide positioning services 
in the absence of GNSS signals and have tremendous application potential. For precise point positioning in ground-based 
systems, ambiguity resolution (AR) is a key issue. On-the-fly (OTF) AR methods are desirable for reasons of convenience. 
The existing methods usually linearize a nonlinear problem approximately by a series expansion that is based on an initial 
position estimation obtained by code measurements or measuring instruments. However, if the initial position estimation 
contains relatively large errors, the convergence of existing methods cannot be ensured. We present a new OTF-AR method 
based on the double difference square (DDS) observation model for ground-based precise point positioning, which involves 
only carrier phase measurements. The initial solution obtained from the DDS model is sufficiently accurate to obtain a float 
solution by linearization, and this step only requires the frequency synchronization of base stations. Further, if the clock dif-
ferences of the base stations are accurately calibrated, a fixed solution can be obtained by employing the LAMBDA algorithm. 
Numerical simulations and a real-world experiment are conducted to validate the proposed method. Both the simulations 
and the experimental results show that the proposed method can achieve high-accuracy positioning. These results enable 
precise point positioning to be applied in situations where no reliable code measurements or other measuring instruments 
are available for stand-alone ground-based positioning systems.
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Introduction

Global navigation satellite systems (GNSSs) can provide 
all-weather worldwide positioning service, and have been 
widely used in various fields. However, in some challeng-
ing situations, GNSSs cannot provide precise and reliable 
positioning service. For example, when GNSS satellites are 
not visible due to occlusion, the accuracy of GNSS posi-
tioning service is significantly reduced, or even completely 
unavailable.

Ground-based positioning systems broadcasting GNSS-
like signals can enhance the performance of GNSS, or even 
provide stand-alone positioning service, as a supplement or 
backup (Wang 2002). A large number of such systems have 
been designed for various applications, including aircraft 
landing (Cobb 1997; Kiran and Bartone 2004; Lee et al. 
2008), land/marine vehicle navigation (Jiang et al. 2015; 
Montillet et al. 2014), and indoor positioning (Guo et al. 
2018; Jiang et al. 2014; Kee et al. 2003; Lee et al. 2010).

These systems include a number of base stations and 
provide regional positioning services. The concept of base 
stations in this research is different from that in GNSS aug-
mentation systems. The base stations can be transmitters 
broadcasting navigation signals. In some systems, the base 
stations include receivers for wireless time synchronization.

Some ground-based systems work without GNSS and 
provide stand-alone precise positioning service, such as 
Locata (Barnes et al. 2003). In precise point positioning, 
the carrier phase measurements need to be used, for which 
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ambiguity resolution (AR) is a key issue. Existing AR 
methods for ground-based systems usually follow those in 
GNSS precise positioning, such as antenna swap methods, 
known-point-initialization (KPI) methods, and on-the-fly 
(OTF) methods (Ge et al. 2008; Gourevitch et al. 1995; 
Hofmann-Wellenhof and Remondi 1988; Teunissen 1995).

Among them, the KPI methods and OTF methods have 
been widely used for single point positioning in stand-
alone ground-based systems. The KPI methods require 
other measuring instruments to obtain accurate initial 
coordinates, based on which the receiver resolves the inte-
ger ambiguities (Montillet et al. 2009). Due to its stringent 
requirements for accurate initial coordinates, however, the 
KPI method is quite limited in practice.

The dynamic key point initialization (DKPI) method 
requires a number of initial points and determines ambigu-
ities via the change of geometry (Guo et al. 2018). Unlike 
the KPI methods, the DKPI method allows approximate 
coordinates of initial points. It can be said that the more 
accurate initial points a method requires, the more incon-
venient it will be. In this regard, the DKPI method is more 
convenient than the KPI methods.

The OTF methods resolve ambiguities via geometric 
changes. OTF methods do not depend on a priori infor-
mation obtained by measuring instruments, and so are 
very convenient in practice. There have been a number of 
related research studies for ground-based systems. Amt 
(2006) and Bertsch et al. (2009) proposed OTF-AR meth-
ods based on the nonlinear batch least squares estimation. 
AR methods based on an extended Kalman filter are pro-
posed in Jiang et al. (2013) and Lee et al. (2005). Some 
OTF-AR methods have been verified by experiments, 
which demonstrate that ground-based systems are able to 
provide high-precision positioning services (Jiang et al. 
2013; Montillet et al. 2009).

For existing OTF methods, the AR problem is usually 
considered to be a nonlinear integer-mixed problem. The 
approximated linear expansion is widely used, based on ini-
tial position estimation obtained from code measurements. 
As a result, the performance of existing OTF-AR methods 
depends greatly on the accuracy of code measurements. On 
the one hand, due to the much closer distance between the 
receiver and the base stations than in GNSS, the nonlinear 
effect is quite significant in ground-based positioning (Dai 
et al. 2001). Therefore, if the accuracy of the initial position 
estimation is poor, the nonlinear error caused by lineariza-
tion can be severe.

On the other hand, multi-path effects are more severe in 
ground-based positioning than in GNSS, so the error of the 
code measurement could be relatively large, resulting in a 
low-accuracy initial position estimation. In this case, exist-
ing OTF methods will suffer from convergence difficulties, 
thereby limiting their application (Jiang et al. 2013).

It must be pointed out that the discussion in Amt (2006) 
and Bertsch et al. (2009) assumes accurate time synchro-
nization and integer values of ambiguities. However, the 
DKPI method allows ambiguities that are not integers and 
was verified with an experimental system without accurate 
synchronization in Guo et al. (2018). We will consider 
both cases.

Recently, an OTF method with the idea of double dif-
ferencing and squaring is proposed in Wang et al. (2018), 
which avoids using code measurements. However, in their 
system model, a transceiver is required to perform two-
way ranging to eliminate the clock differences of the rover 
and base stations. The additional transceiver increases the 
size, expense and power consumption of the user equip-
ment and the total number of users is limited by the com-
munication capacity. In this regard, such a system is not 
desirable for practical applications and quite different from 
others (Amt 2006; Bertsch et al. 2009; Guo et al. 2018; 
Jiang et al. 2014; Montillet et al. 2009).

We present a new double difference square (DDS) 
observation model of carrier phase measurement for 
ground-based navigation systems without two-way rang-
ing, based on which a new OTF-AR method only involv-
ing the carrier phase measurement is proposed for precise 
point positioning. With a clock model introduced, the pro-
posed method obtains the linear DDS observation model 
by double differencing and squaring, and then solves it to 
obtain an initial solution with decimeter-level accuracy. 
Based on this solution, the float solution with higher accu-
racy can be solved, which only requires the frequency syn-
chronization of base stations. Further, if the clock differ-
ences of base stations are accurately calibrated, the fixed 
solution can be obtained by employing the LAMBDA 
algorithm.

The performance of the proposed method is first vali-
dated by numerical simulations, and then a point position-
ing experiment is carried out with an in-house-developed 
prototype ground-based positioning system. The results 
show that the positioning accuracy of the proposed method 
can achieve centimeter-level accuracy and enable precise 
point positioning in situations without reliable code meas-
urements or other measuring instruments.

First, a basic system model is introduced and the single 
difference (SD) observation of carrier phase measurement 
is reviewed. Then, the DDS model is established, based on 
which a new OTF-AR method is proposed. The proposed 
method is verified by numerical simulations. In addition, 
with an in-house-developed prototype ground-based navi-
gation system, a real-world experiment is conducted to 
demonstrate the proposed method. Conclusions and future 
work are summarized in the last section.
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Basic system model

A typical ground-based positioning system usually con-
sists of a number of base stations and receivers. Generally, 
the base stations are stationary and broadcast GNSS-like 
ranging signals. For the proposed method, the base sta-
tions do not have to be accurately synchronized in time, 
although frequency synchronization is required. The base 
stations can simply be transmitters if they share a com-
mon clock source by a wire connection. Otherwise, the 
synchronization can be realized by wireless links and the 
base station would then need to include a receiver.

Receivers process signals broadcast by base stations 
and obtain the carrier phase measurements, which are 
used to determine positions. At the kth epoch, the carrier 
phase measurement �i

k
 between the ith base station and the 

receiver is expressed as

where si represents the coordinates of the ith base station 
and uk represents the receiver’s coordinates at kth epoch. � 
and fc denote the carrier wavelength and frequency, respec-
tively. Ni denotes the ambiguity values. It is assumed that 
all base stations are frequency synchronized and there is no 
loss of signal lock and cycle slip, so Ni is considered to be 
constant. �ti and �tu

k
 represent the clock biases of the ith base 

station and the kth receiver, respectively. The base stations 
are assumed to be synchronized, so �ti is also considered 
to be constant. For ground-based navigation systems, the 
observation is free of ionospheric delay. wi

k
 represents other 

unmodeled errors, including thermal noise and multipath 
error.

The term �tu
k
 can be eliminated by differencing between 

base stations, and the SD observation Δ�ij

k
 between the ith 

and jth base stations is defined as

where Nij = Ni − Nj , �tij = �ti − �tj , and wij

k
= wi

k
− w

j

k
.

To utilize the SD observation, one of the key issues is 
to resolve integer ambiguities Nij. Existing ambiguity ini-
tialization methods usually require an initial position esti-
mation which can be obtained by measuring instruments 
or code measurements (Jiang et al. 2013; Montillet et al. 
2009). Then, based on the initial position estimation, the 
approximated expansion is performed to resolve ambiguities.

As stated previously, a relatively large error in the ini-
tial position estimation will make existing algorithms dif-
ficult to converge. This means that existing methods will 
fail if measuring instruments are unavailable or the code 
measurements have a large error.

(1)�i
k
= �−1‖‖�i − �k

‖‖ + Ni − f��ti + f��t
u
k
+ wi

k
,

(2)
Δ�

ij

k
= �i

k
− �

j

k
= �−1

(‖‖�i − �k
‖‖ − ‖‖‖�j − �k

‖‖‖
)
+ Nij − f��tij + w

ij

k
,

To solve this problem, a new AR method involving only 
carrier phase measurements is proposed for ground-based 
precise positioning. The proposed positioning method 
introduces a new DDS observation model, which is the 
core innovation.

Precise point positioning methods based 
on DDS model

In this section, we first propose a double difference square 
(DDS) observation model, which only involves carrier phase 
measurements and is proven to be linear. Based on the initial 
solution obtained from the DDS model, the float solution and a 
fixed solution with higher accuracy are obtained. The complete 
algorithm is then summarized.

DDS observation model

The DDS model is defined as

With the above definition, the derivation of the DDS model 
is explained in the following. First, the original carrier meas-
urements are squared as follows:

In (4), the clock bias of the receiver �tu
k
 can be further mod-

eled as

where �tu
0
 is the initial clock bias and etk is the unmodeled 

error. In addition, � = feTs, where fe is the clock drift and Ts 
is the sampling interval. Although this model is relatively 
simple, it has been proven in later experiments that it is suf-
ficient to help resolve ambiguities.

It should be noted that it is not necessary to obtain the spe-
cific receiver clock bias. In (5), �tu

0
 is a constant term and will 

be incorporated in the ambiguities in the following discussion. 
Therefore, the specific value of �tu

0
 is not required.

However, the estimate of � is important. If the base stations 
are frequency synchronized, � can be obtained from the carrier 
Doppler frequency when the receiver is static.

A generalized ambiguity zi is defined as

Putting (5) and (6) into (4), it can be shown that

Then, with some manipulations, it can be shown that

(3)∇Δ2�
ij

km
=

[(
�i
k

)2
−

(
�
j

k

)2
]
−

[(
�i
m

)2
−
(
�j
m

)2]
.

(4)
[
�i
k
− (Ni − fc�ti + fc�t

u
k
+ wi

k
)
]2

= �−2‖‖�i − �k
‖‖2.

(5)�tu
k
= �tu

0
+ �k + etk ,

(6)zi = Ni − fc�ti + fc�t
u
0
.

(7)
[
�i
k
− (zi + fc�k + fcetk + wi

k
)
]2

= �−2‖‖�i − �k
‖‖2.
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Here, the higher order terms of etk and wi
k
 are ignored 

since they are considered to be far less than the true dis-
tance. As seen from (6), two clock difference terms are 
absorbed into zi, and as a result, the generalized ambiguity 
zi is not an integer.

Through the double difference defined in (3), the square 
terms of uk and zi which are unknown can be eliminated. 
Through the difference between the different base stations, 
we have:

where �ij

k
= �i

k
− �

j

k
 and nij

k
= 2

(
�i
k
− zi − fc�k

)(
wi
k
+ fcetk

)
−2

(
�
j

k
− zj − fc�k

)(
w
j

k
+ fcetk

)
 . It can be seen that the 

square term of uk has been eliminated in (9).
Further, through differencing across positions, the 

square terms of zi and zj are eliminated and the DDS obser-
vation can be written as

where �i
km

= �i
k
− �i

m
 , and nij

km
= n

ij

k
− n

ij
m.

It is not hard to show that the unknown terms in (10) 
are �k − �m , zi and zj, which means the DDS observation 
model is linear. Therefore, by combining DDS observations 
between multiple base stations and the receiver’s locations, 
all generalized ambiguities z1, z2,… , zL can be estimated. 
It should be noted that according to the definition (6), 
z1, z2,… , zL are not necessarily integers. In other words, the 
estimate given by the DDS model should be float values.

It should be pointed out that the presented DDS model 
is different from the one in Wang et al. (2018), although 
the idea of double difference and square has similarities. In 
addition to the receiver, the system in Wang et al. (2018) 
requires a transceiver for the user equipment, and the clock 
differences are eliminated by two-way ranging.

However, in this research, we are dealing with general 
receivers and the clock differences are taken into account. 
If the method in Wang et al. (2018) is simply adopted, the 
unknown clock differences will be multiplied by the unknown 
ambiguities, resulting in a nonlinearity of the model.

To solve this problem, we introduced the clock model in 
(5) and defined the generalized ambiguities incorporating 

(8)

(
�i
k

)2
= �−2‖‖�i − �k

‖‖2 + 2�i
k

(
zi + fc�k

)
−
(
zi + fc�k

)2
+ 2

(
�i
k
− zi − fc�k

)(
wi
k
+ fcetk

)
.

(9)

(
�i
k

)2
−

(
�
j

k

)2

= �−2
[
�T
i
�i − �T

j
�j − 2(�i − �j)�k

]

+ 2(�i
k
+ fc�k)zi − 2(�

j

k
+ fc�k)zj

+ 2�
ij

k
fc�k − z2

i
− z2

j
+ n

ij

k
,

(10)

∇Δ2�
ij

km
= −2�−2(�i − �j)

T(�k − �m)

+ 2
[
�i
km

− fc�(k − m)
]
zi − 2

[
�
j

km
− fc�(k − m)

]
zj

+ 2fc�(�
ij

k
k − �ij

m
m) + n

ij

km
,

a part of the clock differences in (6). Hence, the DDS 
model (10) including � and the generalized ambiguities is 
more complicated than that in Wang et al. (2018).

Solution of DDS model

Without loss of generality, let j = 1 and m = 1 , and then at the 
kth epoch, the L − 1 observations are written in vector form as

w h e r e  �k =

⎡⎢⎢⎢⎣

∇Δ2�21
k1
− 2fc�(�

21
k
k − �21

1
)

∇Δ2�31
k1
− 2fc�(�

31
k
k − �31

1
)

⋮

∇Δ2�L1
k1

− 2fc�(�
L1
k
k − �L1

1
)

⎤⎥⎥⎥⎦
 ,  �k = 2

⎡
⎢⎢⎢⎢⎢⎣

−�1
k1
+ fc�(k − 1) �2

k1
− fc�(k − 1)

−�1
k1
+ fc�(k − 1) �3

k1
− fc�(k − 1)

−�1
k1
+ fc�(k − 1) ⋱

−�1
k1
+ fc�(k − 1) �L

k1
− fc�(k − 1)

⎤
⎥⎥⎥⎥⎥⎦

 , 

� =
[
z
1
z
2
⋯ zL

]T
 , �k = −2�−2

[
�
2
− �

1
�
3
− �

1
⋯ �L − �

1

]T ,  
�k = �k − �1 , and �k=

[
n21
k1

n31
k1

⋯ nL1
k1

]T.
As can be seen from (10), if the receiver’s position is 

unchanged, i.e., �k − �m = � , the DDS observation ∇Δ2�
ij

km
 

is trivial. That is to say, observations obtained at a single posi-
tion are not sufficient to solve (11). Similar to other OTF-AR 
methods, the geometric changes between the receiver and base 
stations are quite important. The receiver needs to move, and 
multiple DDS observations at different positions can constitute 
a solvable problem.

Assuming that during the receiver’s motion, KL origi-
nal carrier phase measurements are obtained at K different 
positions. Then, the total number of DDS observations is 
(L − 1)(K − 1) , and all DDS observations can be written in 
vector form as

where � =
[
�T
2
�T
3
⋯ �T

K

]T , � =
[
�T

2
�T

3
⋯ �T

K

]T , � =

⎡⎢⎢⎢⎣

�
2

�
3

⋱

�
K

⎤⎥⎥⎥⎦
  ,  � =

[
�T
2
�T
3
⋯ �T

K

]T   ,  a n d 

� =
[
�T
2
�T
3
⋯ �T

K

]T.
Therefore, the generalized ambiguities can be estimated by 

solving the following equation:

For D-dimensional positioning, the unknown values include 
L generalized ambiguities and D(K − 1) difference coor-
dinates. Then, the solvability condition for a DDS model is 
obtained as

This condition can be decomposed into two inequalities:

(11)�k = �k� + �k�k + �k,

(12)� = �� + �� + �,

(13)𝐳̂ = argmin
{𝐳,𝐱}

‖𝐲 − 𝐀𝐳 − 𝐁𝐱‖2.

(14)(L − 1)(K − 1) ≥ L + D(K − 1).

(15)L ≥ D + 2,
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It can be seen that to make the DDS model solvable, the 
minimum number of base stations is D + 2.

It should be pointed out that the data incorporation proce-
dure here is more sophisticated than that in Wang et al. (2018), 
in which case the problem is simply composed by the double 
difference and square. However, in our method, the receiver 
needs to estimate � first in the static state, and this procedure is 
necessary since the coefficient matrix Ak in (11) is related to � . 
Then, as shown in (11), some terms related to � are subtracted 
from the DDS observations.

Float solution and fixed solution

In Wang et al. (2018), the float solution and fixed solution 
can be directly obtained since the clock differences are elimi-
nated by two-way ranging. However, due to the square and 
double difference, the noise level increases, and most of the 
error comes from the clock model in this research. To improve 
the performance of the ambiguity resolution, the float solution 
and fixed solution are then obtained from single difference 
observations.

According to (6), due to the clock bias, the generalized 
ambiguity values 𝐳̂ obtained from (13) are float values. After 
the single differencing in (2), the clock difference of the 
receiver can be eliminated, and the SD observation is rewrit-
ten as

where zij is the SD generalized ambiguity.

Denote the generalized ambiguity in vector form as

With 𝐳̂ obtained from (13), the initial solution of zij can 
be directly obtained. Then, the receiver’s coordinates at the 
kth epoch are determined by iteratively solving the follow-
ing equation:

w h e r e  �k =
[
Δ�21

k
Δ�31

k
⋯ Δ�L1

k

]T  ,  �k(�k)=

�k(�k)=
[ ‖‖�2 − �k

‖‖ − ‖‖�1 − �k
‖‖ ‖‖�3 − �k

‖‖ − ‖‖�1 − �k
‖‖ ⋯

‖‖�L − �k
‖‖ − ‖‖�1 − �k

‖‖
]T , ‖⋅‖2

�
=(⋅)T�−1(⋅) and �k denotes 

the covariance matrix. If the covariance of the SD observa-
tions is assumed to be half the autocovariance, �k can be 
deduced to be:

(16)K ≥
L

L − D − 1
+ 1.

(17)Δ�
ij

k
= �−1

(‖‖�i − �k
‖‖ − ‖‖‖�j − �k

‖‖‖
)
+ zij + w

ij

k
,

(18)zij = zi − zj = Nij − fc�tij.

(19)�sd=
[
z21 z31 ⋯ zL1

]T
.

(20)𝐮̂k=argmin
𝐮k

‖‖𝛗k − 𝛒k(𝐮k) − 𝐳̂sd
‖‖2𝐑k

,

It is worth noting that the ambiguity values are invariant 
as long as there are no cycle slips or loss of signal lock. 
Therefore, all SD observations can be incorporated into a 
joint equation. Then, using 𝐳̂sd and 𝐮̂k as the initial input, the 
following equation can be solved iteratively:

w h e r e  � =
[
�T
1
,�T

2
,⋯ ,�T

K

]T  ,  � =
[
�T
1
, �T

2
,⋯ , �T

K

]T  , 
�(�) =

[
�T
1
(�), �T

2
(�),⋯ , �T

K
(�)

]T and

The float solution 𝐳̃sd obtained from (22) has higher accu-
racy than the initial solution 𝐳̂sd.

If base stations are accurately time synchronized, then 
we have �tij = 0 for all i and j . In this case, it can be seen 
from (18) that zij = Nij and zij are integer values. Then, a 
fixed solution can be further obtained by employing integer 
ambiguity searching methods, such as the LAMBDA method 
(Teunissen 1995).

It is worth noting that even though the base stations are 
not accurately synchronized, i.e., they are frequency syn-
chronized but the clock differences �tij are nonzero, the float 
solution 𝐳̃sd can still be used to determine positions, which 
is similar to the DKPI method (Guo et al. 2018). The pro-
posed method allows the base stations to be only frequency 
synchronized. The following simulations and experiments 
will prove that the float solution has high accuracy and can 
be directly used for precise point positioning.

Here, we summarize the proposed method in the follow-
ing algorithm.

Algorithm 1

Initialization The receiver remains stationary for a short period of 
time to estimate �

DDS model The receiver moves and obtains the DDS observa-
tions from original carrier phase measurements. 
Then, solve (13) that integrates all the DDS obser-
vations by the least squares method

Initial solution The initial solution 𝐳̂sd is obtained directly from the 
previous result

Float solution With the results of the previous two steps, the float 
solution 𝐳̃sd is obtained by solving (22)

(21)�k =
1

2

⎡
⎢⎢⎢⎢⎣

2�2
Δ�

�2
Δ�

⋯ �2
Δ�

�2
Δ�

2�2
Δ�

⋯ �2
Δ�

⋮ ⋮ ⋱ ⋮

�2
Δ�

�2
Δ�

⋯ 2�2
Δ�

⎤
⎥⎥⎥⎥⎦
.

(22)
{
𝐳̃sd, 𝐮̃

}
= argmin

{𝐳sd , 𝐮}

‖‖𝛗 − 𝛒(𝐮) − 𝐳sd
‖‖2𝐑,

(23)� =

⎡⎢⎢⎢⎣

�1

�2

⋱

�K

⎤⎥⎥⎥⎦
.
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Algorithm 1

Fixed solution If accurate time synchronization is achieved between 
all base stations, the search for the fixed solution is 
performed

Numerical simulations

In this section, the proposed method is verified by numerical 
simulations. Six base stations located in the space of 20 m by 
20 m by 4 m are marked by blue triangles with coordinates 
shown in Fig. 1.

The trajectory of the receiver is a horizontal circle cen-
tered at (10, 10, 0), and the receiver is assumed to traverse 
the trajectory one time. To study the influence of geometric 
changes on the accuracy of ambiguity solutions, 100 trials 
were carried out with various R.

The minimum radius for R is 3 m, depicted by the red 
dashed line in Fig. 1, and in this case, the ranges of HDOP 
and VDOP are 0.89–0.94 and 2.6–4.0, respectively. The 
maximum value of R is 6 m, depicted by the yellow dashed 
line with stars in the figure, and HDOP ranges from 0.88 to 
1.0, while VDOP ranges from 1.9 to 4.8. R is increased in 
0.5-m increments and there are seven different radii.

In addition, the square trajectory circumscribed to each 
circular trajectory described above is simulated. The small-
est square trajectory is indicated by a purple solid line in 
Fig. 1, and HDOP ranges from 0.89 to 0.95 while VDOP 
ranges from 2.5 to 4.2. The largest square is represented by 
dotted green line and HDOP ranges from 0.88 to 1.0, while 
VDOP ranges from 1.9 to 5.2.

The signal carrier frequency is set to 2465.43 MHz, 
which means the carrier wavelength is about 12.2 cm. It 
is assumed that the standard deviation (STD) of the carrier 
measurement noise in (1) is 0.05 cycle. For the clock model 
(5), the STD of the unmodeled error is assumed to be 0.05 
cycle, and the parameter � is randomly generated in each 

trial. For a specific trajectory, 100 trials are performed and, 
in each trial, 100 evenly distributed observations are used 
for resolving ambiguities.

Comparison of float solution accuracy

First, the root mean square error (RMSE) of the initial solu-
tion is shown in Fig. 2. It is clearly shown that, as the trajec-
tory radius increases, i.e., the geometric change increase, 
the accuracy of the initial solutions significantly improves. 
When the receiver’s trajectory radius is greater than 5 m, 
the estimation error is less than one cycle. Even in the worst 
case with R = 3 m, the RMSE of the initial solutions is still 
no larger than 3.5 carrier cycles, which means a decimeter-
level accuracy.

Another phenomenon is that the base station positions 
have some impact on the accuracy of the initial solutions 
and the float solutions. In Fig. 2, the RMSE of initial solu-
tion for z51, which is marked by violet bars, is the largest, 
and when R = 3 m, it is about 3.2 cycles. More importantly, 
the RMSE of the initial solution for z31 is obviously lower 
than that of the others, and it is always less than 0.5 cycles 
when the radius is changed from 3 to 6 m.

Further, the estimation error of the float solutions is 
given in Fig. 3. As can be seen, compared with the ini-
tial solution, the accuracy of the float solution is signifi-
cantly improved. The RMSE of the float solution is within 
0.1 cycles in all cases. In other words, the float solutions 
achieve centimeter-level accuracy. As shown in the figure, 
similar to the initial solution, the estimation accuracy of 
the float solution significantly improves with increasing 
trajectory radius. In addition, the accuracy of z51 and z61 
with R = 6 m is worse than that with R = 5.5 m, but the 
difference is not obvious. This may be due to the fact that 
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the VDOP is poor when the trajectory is closer to the edge, 
which can be seen from the parameter description of the 
simulation. The specific impact of trajectory geometry is 
still a problem to be studied.

The above results are also observed in the simulation 
using square trajectories. It can be seen from Figs. 4 and 
5 that the accuracy improves as the trajectory expands. 
Furthermore, the base station positions have some impact 
on accuracy.

By comparing Figs. 2 and 4, it can be seen that the 
accuracy using a circle trajectory is slightly worse than 
that using the circumscribed square trajectory. Similar 
conclusions can be drawn by comparing Figs. 3 and 5. 
This is mainly because the square trajectory is slightly 
larger, which can be clearly seen in Fig. 1.

Comparison of positioning accuracy

The horizontal and vertical positioning error of the initial, 
float, and fixed solutions are compared in Figs. 6 and 7. It 
should be mentioned that for all trials, the proposed method 
correctly obtains fixed solutions.

As shown in Figs. 6 and 7, although the positioning accu-
racy of the initial solutions can only reach the decimeter 
level, both the float and the fixed solutions achieve centime-
ter-level accuracy. Moreover, the accuracy of the float solu-
tion is only slightly lower than that of the fixed solution.

It can be seen that in most cases, the positioning accu-
racy using the square trajectory is better than that using the 
circle trajectory. This is consistent with the previous dis-
cussion on the accuracy of ambiguity solutions. However, 
when R = 6 m, the vertical error using the square trajectory is 
worse. In fact, in addition to the accuracy of ambiguity solu-
tions, the DOP value will influence the positioning accuracy. 

The largest square trajectory has poor DOP values since it is 
close to the edge of the field.

As mentioned at the end of the previous section, when 
the base stations are not accurately synchronized, i.e., the 
clock differences �tij are nonzero, the float solutions can be 
used in precise positioning. Here, our simulations show that, 
compared with the fixed solution, the accuracy of the float 
solution does not decrease significantly, which means that 
the proposed method allows the base stations to be only fre-
quency synchronized.

In summary, geometric change has a key influence on the 
performance of the proposed method. With an increase of 
the trajectory radius, the accuracy of the ambiguity solution 
significantly improves. To test the practical performance of 
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the proposed method, a real-world experiment is conducted 
and the results are introduced in the next section.

Experiments

The real-world experiment was conducted based on an in-
house-developed prototype ground-based navigation system 
deployed on the rooftop of a building in Beijing, in June 
2018. The simplified system configuration is depicted in 
Fig. 8. A base station can receive signals from other sta-
tions and the time synchronization is realized by the wireless 
links. Figure 9 shows the main hardware of six base stations, 

BS1–BS6, except for their antennas. The signal carrier fre-
quency is set to 2465.43 MHz. As shown in Fig. 10, the 
receiver is installed on a wheeled robot. The output rate of 
observations is 10 Hz, i.e., the epoch interval is 0.1 s.

Figure 11 depicts the robot’s trajectory and the experi-
ment configuration. The antennas of the six base stations are 
marked by the blue triangle in Fig. 11, for which the coor-
dinates are measured by reference to the total station and 
listed in Table 1. The experimental environment is shown 
in Fig. 12, in which the antennas of BS2, BS3 and BS6 are 
identified by yellow arrows. In Fig. 11, the robot’s trajectory 
during the ambiguity resolution process and the subsequent 
precise point positioning are marked by the red dotted line 
and the solid orange line, respectively.

In the experiment, four reference points are measured by 
reference to the total station to validate the proposed method 
and evaluate positioning accuracy. These reference points 
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are identified by P1–P4 in Fig. 11 and their coordinates and 
DOP values are given in Table 2.

The robot’s moving process is as follows:

1.	 First, at the starting point shown in Fig. 11, the receiver 
performed the initialization step to estimate � . The fit-
ting residual is shown in Fig. 13. As can be seen from 
the figure, the fitting residual is no larger than 0.15 
cycles, and the fitting RMSE is about 0.056 cycle.

2.	 Subsequently, the robot started to move clockwise and 
obtained the initial, float and fixed solutions. This was 
completed in the first lap marked by the red dotted line 
in Fig. 11.

3.	 To evaluate the positioning accuracy, the robot moved to 
the four reference points P1–P4 in turn, and these points 
are marked by the squares in Fig. 11. When the robot 

was stationary near a predetermined point, we used the 
total station to measure its coordinates. The trajectory 
during this process is marked by the solid orange line in 
Fig. 11.

At each reference point, the positioning results were 
recorded for at least 30  s and compared with the true 
position. During the robot’s movement, HDOP changes 
were between 1.46 and 2.00, while VDOP changes were 
between 4.55 and 8.99.

From 100 to 330 s, the robot was always moving and 
its trajectory is the first lap marked by the red dotted line 
in Fig. 11. During this process, the receiver continues 
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Fig. 10   Wheeled robot with a receiver installed on it
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Table 1   Coordinates of the six base stations

Base station East (m) North (m) Elevation (m)

BS1 − 13.65 − 5.04 3.23
BS2 15.03 − 6.03 3.26
BS3 15.39 1.77 3.19
BS4 − 9.95 5.43 3.27
BS5 − 3.34 6.52 4.56
BS6 4.62 6.53 4.81

Table 2   Coordinates and DOP values of the four reference points

Refer-
ence 
point

East (m) North (m) Elevation (m) HDOP VDOP

P1 − 3.36 1.37 1.04 1.72 5.09
P2 6.59 1.38 1.07 1.87 4.91
P3 4.89 − 4.81 1.09 1.57 8.43
P4 − 2.79 − 4.37 1.07 1.51 8.56
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resolving ambiguities. Figures 14 and 15 show the abso-
lute error of the initial solution and the float solution, and 
logarithmic coordinates are used for ease of observation.

As can be seen from Figs. 14 and 15, with the robot’s 
motion, the error of both solutions decreases rapidly until 
about 150 s. However, the robot’s motion after 150 s does 
not bring significant improvement as it had done before. 
It can be said that at the beginning, the geometry changes 
can effectively improve the accuracy of solutions.

The error of the initial solution seems to be quite small 
at 200 s but increases slightly latter. It is a coincidence that 
the signs of the errors changed at about 200 s, which is not 
shown by the absolute values.

After 250 s, the error of the two solutions varies slightly 
with the robot’s motion. At the end of the first lap, the 
error of the initial solution is about several cycles, while 
that of the float solution is less than one cycle.

The east, north and elevation positioning errors at the four 
points P1–P4 are given in Figs. 16, 17 and 18, respectively. 
The blue dotted lines indicate the positioning error of the 
float solutions, while the red solid lines indicate that of the 
fixed solutions. The statistical results are given in Tables 3 
and 4, and the bold and underlined numbers indicate the 
largest RMSE.

From these data, it can be said that both the position-
ing results of the float solutions and the fixed solutions are 
of high accuracy. As can be seen from Table 3, the worst 
RMSE in the north direction is about 3 cm, while that in 
the east direction is about 1.67 cm. The horizontal results 
show better accuracy than the vertical results, and the worst 
RMSE in elevation is about 22 cm, which occurred at P3. 
This is because the VDOP is larger than the HDOP.

By contrast, the positioning results of the fixed solu-
tion have better positioning accuracy. As can be seen from 

Table 4, the fixed solutions achieve centimeter-level posi-
tioning accuracy at all four known points. The worst vertical 
RMSE of the fixed solutions is about 8 cm, which occurred 
at P3.

The positioning results of the initial solution and the fixed 
solution are compared for the whole trajectory, and their 
differences are shown in Fig. 19. It can be seen that the 
differences in both north and east directions are no more 
than 2 cm, while the differences in elevation range from 5 
to 15 cm.

The test results at the four reference points show that 
the positioning accuracy varies at these points. As shown 
in Table 2, the maximum DOP value is at P4, but the larg-
est positioning error of both the float solution and the fixed 
solution is at P3. It is believed that this is most likely due 
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to the multipath effect on carrier measurements, which is 
more obvious in ground-based positioning than GNSS. Our 
future work will try to improve the system’s ability to resist 
the multipath effect. In addition to the receiver’s algorithms, 
solutions by taking advantage of the flexible design of trans-
mitters and signals will also be considered.

In conclusion, this experiment demonstrates that the pro-
posed method is able to resolve ambiguities by only using 

carrier phase measurements and is not dependent on code 
or other measurements. It is also proven that in practical 
applications, with a fixed solution, our system can achieve 
centimeter-level positioning accuracy. Even if the base sta-
tions are not accurately synchronized, the float solution, 
whose accuracy is slightly lower than the fixed solution, can 
also be used in precise positioning.

Fig. 16   East positioning errors 
of the float solutions and fixed 
solutions at the four reference 
points

390 400 410 420

Time (s)

-4

-2

0

E
as

t e
rr

or
 (

cm
)

Results at P1

Float solution Fixed solution

490 500 510 520 530 540 550

Time (s)

1

2

3

4

E
as

t e
rr

or
 (

cm
)

Results at P2

Float solution Fixed solution

630 640 650 660 670 680

Time (s)

-1

0

1

2

E
as

t e
rr

or
 (

cm
)

Results at P3

Float solution Fixed solution

760 780 800 820 840

Time (s)

-4

-2

0

E
as

t e
rr

or
 (

cm
)

Results at P4

Float solution Fixed solution

Fig. 17   North positioning errors 
of the float solutions and fixed 
solutions at the four reference 
points
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Conclusions

We present a new OTF-AR method for ground-based posi-
tioning systems, which is based on a new DDS observation 
model that solely relies on carrier phase measurements 
without two-way ranging. The new DDS observation 
model is proposed with a definition of generalized ambi-
guities. One of the important advantages of our method is 
that it applies to cases where code or other measurements 
are unavailable or not sufficiently accurate.

The proposed method is validated by numerical simula-
tions and a real-world experiment. The results show that 
geometric changes have a significant impact on its per-
formance. In the experiment, the proposed method was 
successfully applied to an in-house-developed prototype 
ground-based navigation system, and the positioning 
accuracy achieved centimeter-level accuracy. This work 
enables ground-based precise positioning to be applied 
in situations where no reliable code measurements or other 
measuring instruments are available and allows the base 
stations to be only frequency synchronized.

Fig. 18   Elevation errors of the 
float solution and fixed solution 
at the four reference points
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Table 3   Positioning error of the 
float solution at four measured 
points (unit: cm)

East North Elevation

Mean STD RMSE Mean STD RMSE Mean STD RMSE

P1 − 2.76 0.07 2.76 1.05 0.23 1.08 − 1.15 0.75 1.37
P2 2.06 0.09 2.06 0.54 0.25 0.60 − 10.02 0.67 10.04
P3 − 0.22 0.13 0.25 − 1.65 0.28 1.67 − 22.12 1.25 22.16
P4 − 3.09 0.06 3.09 − 0.46 0.13 0.48 − 15.70 0.89 15.73

Table 4   Positioning error of the 
fixed solution at four measured 
points (unit: cm)

East North Elevation

Mean STD RMSE Mean STD RMSE Mean STD RMSE

P1 − 0.92 0.07 0.92 0.32 0.23 0.40 4.44 0.75 4.50
P2 2.77 0.09 2.77 − 0.26 0.25 0.36 − 2.22 0.68 2.32
P3 0.65 0.13 0.66 − 1.63 0.28 1.65 − 8.14 1.27 8.24
P4 − 1.07 0.06 1.07 − 1.09 0.13 1.09 − 3.09 0.90 3.22
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