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Abstract
A generalized Kalman filtering estimator with nonlinear models is derived based on correlational inference, in which a new 
target function with constraint equation is established. Hence, a new unscented Kalman filter (UKF) expression is deduced 
from this target function. In this new expression, the state estimator is directly related to the predicted states vector, predicted 
residuals vector, and their covariance matrices as well as their cross-covariance matrix. Furthermore, a new estimator, called 
adaptive unscented Kalman filter (AUKF), is extended directly from the derived target function to reduce the impact of dis-
turbances of dynamic model and system noise. Simulation and a field test have been conducted to compare the performance 
of AUKF and conventional UKF, as well as the innovation-based adaptive estimation (IAE) method. The simulation proves 
that the AUKF outperforms the conventional UKF regarding positioning and velocity estimates. Similarly, the field test also 
proves the superiority of the AUKF against the conventional UKF. This test also shows that the adaptive factor-based AUKF 
has similar performance with IAE-based AUKF, but requires less computation time.

Keywords Integrated navigation · Unscented Kalman filter · Adaptive estimation · Correlational inference

Introduction

In kinematic geodetic positioning and navigation, Kalman 
filtering has been widely applied because of its optimality 
in linear systems and simplicity in the recursive calcula-
tion process. For nonlinear systems, however, the standard 
Kalman filter may provide biased state estimates due to 
the nonlinear model approximation (Yang et al. 2016). In 
addition, the standard Kalman filter may lead to failure if 
inaccurate prior state estimates or unreasonable statistical 
information is used.

For the inaccurate prior state estimate and their covari-
ance matrices, the adaptive Kalman filters (AKFs) are 

applied, two of which are the innovation-based adaptive 
estimation (IAE) and residual-based adaptive estimation 
(RAE) (Sage and Husa 1969). These two algorithms use 
a re-evaluation technique, called Sage window method, to 
estimate the covariance matrices of the predicted state and 
measurement vectors by a moving window. The Sage win-
dow method is also applied to integrate Global Position-
ing System (GPS) and an inertial measurement unit (IMU) 
(Mohamed and Schwarz 1999). A more flexible AKF was 
proposed by introducing an adaptive factor based on the 
discrepancy between the estimated and predicted states or 
based on the innovation vectors (Yang et al. 2001; Yang and 
Gao 2006). In addition, a combined AKF was constructed 
by integrating the moving window method with an adaptive 
factor (Yang and Xu 2003). Furthermore, an optimal AKF 
was derived based on both the predicted state errors and the 
innovation vectors (Yang and Gao 2006). Geng and Wang 
(2008) reported an alternative adaptive Kalman filter with 
multiple adaptive factors. Chang and Liu (2015) proposed 
an adaptive filter using Mahalanobis distance to detect the 
model errors, in which the covariance matrix of the related 
covariance matrix is inflated by a fading factor. In addition, 
an adaptive federated Kalman filter was also proposed for 
the PPP/INS integrated system (Li et al. 2017). By applying 
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the adaptive estimation method, the performance of Kalman 
filtering is improved. It should be mentioned that all the vari-
ations on adaptive Kalman filtering are based on the linear 
state-space model.

For dealing with nonlinearity of the state-space model, 
many approximation methods have been developed. A 
widely accepted method is the extended Kalman filter 
(EKF), which approximates the nonlinear model by lin-
earization (Sorenson 1985). The EKF uses the first-order 
Taylor series expansion to linearize the nonlinear model. 
Thus, the Jacobian matrices of the nonlinear models have 
to be obtained, and the higher order terms of the deriva-
tives are truncated. Unscented Kalman filter (UKF), pro-
posed by Julier et al. (1995), is another method to deal 
with the nonlinear state-space model. Julier and Ulhmann 
(1997) demonstrated that the performance of the UKF was 
comparable to that of the second-order Gauss filter. Wan 
and van der Merwe (2000) pointed out that the unscented 
transform (UT) could capture the state posterior mean and 
covariance accurately to the third order of Taylor expansion 
using a sigma point approach. They found that the UKF has 
better performance than EKF in a number of application 
domains, including state estimation, dual estimation, and 
parameter estimation. The performance of the UKF and 
EKF on solving the problem of optimal estimation of noise-
corrupt input and output sequences has also been studied 
(Zhou et al. 2009). Gustafsson and Hendeby (2012) found 
that the EKF based on the second-order Taylor expansion 
was closely related to UKF. Yang et al. (2016) carried out a 
comparative study of UKF and EKF on integrated vehicle 
navigation with different integration strategies. The results 
also indicated that UKF outperforms the EKF in terms of 
estimation accuracy.

To improve the UKF efficiency, a deterministic sampling 
approach to capture the state parameters and their covari-
ance matrices with a minimal set of sample points was pro-
posed (Wan and van der Merwe 2000). In addition, Liu et al. 
(2014) studied high order moment matching filter, like a 
quadrature rule-based filter and cubature rule-based filter, 
to improve the UKF efficiency in dealing with the nonlinear 
state-space model. The UKF and its alternatives, however, 
do not have adaptation ability between the measurement and 
kinematic models.

Many researchers have discussed the adaptation methods 
for UKF. Han et al. (2009) described two distinctive adaptive 
methods. In the first method, a cost function is constructed 
to minimize the difference between theoretical covariance 
and actual covariance matrices of the innovation vector; the 
adaptive process noise covariance matrix is then estimated 
by the adaptive law, which is derived by the Massachusetts 
Institute of Technology (MIT) rule. The presented algorithm, 
however, requires calculation of partial derivatives. In the 
second method, two parallel UKFs run in master and slave 

manners, in which the master UKF estimates system states 
and the slave UKF estimates the noise covariance matrix for 
the master UKF in parallel. The computational demand of the 
algorithm increases obviously due to parallel computations. 
Hajiyev and Soken (2014) presented a window-based robust 
adaptive unscented Kalman filter (AUKF). The filter uses 
the innovation and residual sequences to construct an adap-
tive matrix and an adaptive factor to adjust the covariance 
matrices of measurement and process noise, respectively. 
Gao et al. (2015) also developed an AUKF with the weighted 
moving window approach using the historical innovation 
sequences and residual sequences. Li et al. (2016) proposed 
a robust adaptive UKF with the ability to tune both process 
and measurement noise covariance matrices. An adaptive 
algorithm that combines the maximum likelihood principle 
and moving horizon estimation to improve the performance 
of UKF regarding inaccurate system noise has been studied 
(Gao et al. 2018). The moving horizon estimation uses a fixed 
number of historical measurements to produce estimates of 
state parameters and smooth the previous estimates by itera-
tion (Robertson et al. 1996). The adaptive estimation methods 
mentioned above improved the filter performance, because 
the measurements and the process noise covariance matrices 
are adjusted according to the real data. However, the heavy 
burden of theoretical covariance matrix calculation is still a 
problem and contaminated predicted information, which is 
caused by disturbances of dynamic model and uncertainties 
of noise information, has not been well considered.

We first present an alternative derivation and expression 
of UKF, by which any adjustment for the measurement and 
process noise covariance matrices is easy to be expressed 
and explained. The derivation is based on the correlational 
inference, which uses the predicted state covariance matrix, 
predicted measurement covariance matrix, and measurement 
noise covariance matrix to construct a constrained target func-
tion. By minimizing this target function, then UKF is derived. 
Furthermore, the robust and adaptive factors can be embedded 
in this derived UKF estimator directly and easily. Considering 
that the disturbances of the dynamic model could contaminate 
the predicted mean and predicted covariance matrices, the 
contribution of the predicted state information from UT thus 
should be controlled. In this case, the adaptive methodology 
proposed by Yang et al. (2001) can be integrated with derived 
UKF estimator to reduce the influences of dynamic model 
errors and to handle the nonlinear state-space model on the 
state estimation. The corresponding adaptive UKF estimator 
is deduced, and the adaptive factor is presented in a simple 
expression and an easy form for calculation.

In the following section, correlational inference and 
analysis are presented first. An adaptive algorithm based on 
correlational inference is introduced then. The numerical 
experiments are analyzed afterward. The last part concludes 
the findings of the study.
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New expression of Unscented Kalman filter

A new derivation and expression of the UKF is presented in 
this section; the theoretical analysis of the derivation is per-
formed. The derivation focuses on the general state-space 
model and aims to reveal the relationships among the meas-
urements, predicted states, and predicted measurements, as 
well as their cross-covariance matrices.

Correlational inference

To derive the UKF without loss of generality, we start with 
nonlinear equation and estimate the state vector with Kalman 
filter. Considering the following discrete nonlinear system:

where Lk is the m × 1 measurement vector; ek is the corre-
sponding error vector; Xk and Xk−1 are n × 1 state vector at 
epoch tk−1 and tk , respectively; wk is the n × 1 noise vector 
of dynamic model; and hk(⋅) and fk(⋅) denote the nonlin-
ear function of measurements and dynamic state. The error 
equation of measurement is

where L̂k = hk
(
X̂k

)
; X̂k is the estimated state vector; and Vk 

is the residual vector of Lk . The predicted state vector X̄k can 
be obtained by (2):

The residual vector of X̄k is denoted by VX̄k
:

The predicted measurement vector L̄k is then given by

with the corresponding covariance matrix Σ*

L̄k
 at epoch tk . If 

the measurement vector Lk at epoch tk is available, the inno-
vation vector V̄k can be obtained at epoch tk:

Given that the two vectors Lk and L̄k are independent, the 
covariance matrix ΣV̄k

 can be calculated by

(1)Lk = hk
(
Xk

)
+ ek

(2)Xk = fk
(
Xk−1

)
+ wk,

(3)Vk = hk
(
X̂k

)
− Lk = L̂k − Lk,

(4)X̄k = fk
(
X̂k−1

)
.

(5)VX̄k
= X̂k − X̄k.

(6)L̄k = hk
(
X̄k

)
,

(7)V̄k = Lk − hk
(
X̄k

)
= Lk − L̄k.

where Σ*

L̄k
 is the covariance matrix of the predicted measure-

ment vector. If the measurement model is nonlinear, the UT 
can be applied to acquire the covariance matrix Σ*

L̄k
 . If the 

measurement model is linear or linearized, then the covari-
ance matrix of innovation vector can be obtained by vari-
ance–covariance propagation law, which is

where Ak is the linearized form of the measurement func-
tion hk(⋅) , and ΣX̄k

 is the covariance matrix of the predicted 
state vector X̄k.

In theory, the following equation is valid:

where L̂k is the estimated measurement vector; ̂̄Lk denotes 
the estimated vector of the predicted measurement vector L̄k . 
The error equation of ̂̄Lk is

where VL̄k
 is the residual vector of L̄k . Substituting (3) and 

(11) into (10), we have

Thus

Considering (7), Eq. (13) can be written as

Equations  (10) or (14) can be regarded as constraint 
equations.

Considering that L̄k contains the predicted state vector X̄k 
from a nonlinear function as shown in (6), the vectors L̄k and 
X̄k are thus correlated with the cross-covariance matrix ΣX̄kL̄k

 . 
To estimate the state vector X̂k from the measurement vector 
Lk , predicted state vector X̄k and predicted measurement vec-
tor L̄k with their covariance and cross-covariance matrices Σk , 
ΣX̄k

 and Σ∗

L̄k
 , as well as ΣX̄kL̄k

 , the Lagrange objective function 

can be constructed, considering the constraints (10) and (14):

(8)ΣV̄k
= Σk + Σ*

L̄k
,

(9)ΣV̄k
= Σk + AkΣX̄k

AT
k
,

(10)E
(
L̂k −

̂̄Lk

)
= 0,

(11)̂̄Lk = L̄k + VL̄k
,

(12)̂̄Lk = L̂k = hk
(
X̂k

)
= L̄k + VL̄k

= Lk + Vk.

(13)Vk − VL̄k
+
(
Lk − L̄k

)
= 0.

(14)VL̄k
− V̄k − Vk = 0.

(15)VT
k
Σ−1

k
Vk +

[
VT

L̄k
VT

X̄k

][ Σ∗

L̄k
ΣL̄kX̄k

ΣX̄kL̄k
ΣX̄k

]−1[
VL̄k

VX̄k

]
− 2𝜆T

(
VL̄k

− V̄k − Vk

)
= min,
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where � is Lagrange multiplier vector. Taking the partial 
derivatives of (15) with respect to Vk , VL̄k

 , VX̄k
 , � , and setting 

them to 0, we can obtain

From (17), we obtain the solution

Based on (16) and (18), and considering (14), we can 
obtain

Substituting (20) into (18), the residual vectors of the pre-
dicted measurements and predicted state vector are obtained, 
respectively, as follows:

Because of (8)

and

where Kk is the Kalman gain matrix

It should be stressed that in the above equations, the esti-
mated state vector X̂k and its Kalman gain matrix Kk con-
tain neither Jacobian matrices of the nonlinear measurement 
model nor dynamic model. Furthermore, since L̄k and Lk are 
stochastically independent, then

(16)Vk = −Σk�,

(17)
[
VL̄k

VX̄k

]
=

[
Σ∗

L̄k
ΣL̄kX̄k

ΣX̄kL̄k
ΣX̄k

][
𝜆

0

]
=

[
Σ∗

L̄k
𝜆

ΣX̄kL̄k
𝜆

]
.

(18)
VL̄k

= Σ∗

L̄k
𝜆

VX̄k
= ΣX̄kL̄k

𝜆.

(19)Σk𝜆 + Σ∗

L̄k
𝜆 − V̄k = 0,

(20)𝜆 =

(
Σ∗

L̄k
+ Σk

)−1

V̄k.

(21)VL̄k
= Σ∗

L̄k

(
Σ∗

L̄k
+ Σk

)−1

V̄k,

(22)VX̄k
= ΣX̄kL̄k

(
Σ∗

L̄k
+ Σk

)−1

V̄k.

(23)VX̄k
= ΣX̄kL̄k

Σ−1

V̄k

V̄k,

(24)

X̂k = X̄k + VX̄k

= X̄k + ΣX̄kL̄k

(∑∗

Lk
+Σk

)−1(
Lk − L̄k

)

= X̄k + KkV̄k,

(25)Kk = ΣX̄kL̄k

(
Σ∗

L̄k
+ Σk

)−1

= ΣX̄kL̄k
Σ−1

K̄k

.

(26)ΣX̄kL̄k
= ΣX̄kV̄k

.

Thus, from (23)

The posterior covariance matrix of the estimated state 
vector reads

The above expression shows that the covariance matrix 
of the estimated state vector is smaller than that of the pre-
dicted state vector because of the second term of (29); the 
matrix product KkΣV̄k

KT
k

 is positive definite. In addition, the 
posterior covariance matrix of the state vector is not related 
to any linearization process, since Kk is obtained from (25) 
which is not related to linearization.

Theoretical analysis

From the above derivations, the following interesting facts 
are obtained:

 (i) The derivation presented above illustrates a more 
generalized theoretical framework of Kalman filter-
ing. In this framework, the estimated state vector 
relates to the innovation vector, predicted state vector 
and their covariance matrices as well as their cross-
covariance matrix. Thus, the estimator expressed by 
the prior covariance and cross-covariance matrices 
makes the Kalman filtering more generalized and 
more flexible.

 (ii) In the new expression (28), the predicted state vec-
tor X̄k with ΣX̄k

 can be obtained by approximation 
method, such as UT (Julier and Uhlmann 1997). 
Then, UKF can be easily expressed. In addition, the 
correlational inference has proven that the state esti-
mate is not difficult to obtain by the approximation 
method, and furthermore, the estimate does not need 
any computation of Jacobian matrix for measurement 
equation or dynamic equation.

 (iii) The innovation vector V̄k reflects the consistency 
between the predicted state and the measurement. 
The Kalman gain matrix Kk is determined by ΣX̄kL̄k

 
and Σ−1

V̄k

 . Hence, the cross-covariance matrix between 

X̄k and V̄k as well as the weight matrix Σ−1

V̄k

 of V̄k are 

crucial in determining the gain matrix Kk . The esti-
mated state vector X̂k can also be easily obtained 
when the cross-covariance matrices ΣX̄kL̄k

 or ΣX̄kV̄k
 are 

determined. In UKF, the matrix ΣX̄kL̄k
 is generated 

(27)VX̄k
= ΣX̄kV̄k

∑−1

V̄k

V̄k,

(28)X̂k = X̄k + ΣX̄kV̄k

∑−1

V̄k

V̄k = X̄k + KkV̄k.

(29)ΣX̂k
= ΣX̄k

− KkΣV̄k
KT
k.



GPS Solutions (2018) 22:100 

1 3

Page 5 of 14 100

according to the sample dispersion of X̄k and L̄k , with 
the predicted state vectors not related to the actual 
linearized models, and ΣX̄kL̄k

 being usually much 
more accurate than that propagated from the line-
arized equations (Yang et al. 2016).

 (iv) Equation (27) expresses the relationship between the 
two correlated stochastic vectors VX̄k

 and V̄k . This 
relationship illustrates that the stochastic unknown 
vector VX̄k

 , which does not appear in the system 
model, can be derived from the related estimated vec-
tor V̄k , using the cross-covariance matrix ΣX̄kL̄k

 . This 
relationship has also appeared in collocation (Moritz 
1980; Koch 1977; Yang et al. 2009). If two correlated 
stochastic vectors s and s1 with expectations E(s) = 0 
and E

(
s1
)
= 0 and with the covariance matrices Σs 

and Σs1
 as well as cross-covariance matrix Σss1

= ΣT
s1s

 

exist, the relationship between the two estimated vec-
tors ŝ and ŝ1 is

(v) If the state-space model is linear, the basic expression 
of the newly derived estimator from the correlational 
inference is equivalent to Kalman filter. Both the linear 
form of error Eq. (3) and the form of predicted state 
Eq. (4) are as follows:

with the covariance matrix ΣX̄k

where Φk,k−1 is the transition matrix, ΣX̂k−1
 is the estimated 

state covariance matrix, and ΣWk
 is the process noise covari-

ance matrix. Thus, the Kalman filter is obtained (Koch and 
Yang 1998):

The innovation vector, or the predicted residual vector, in 
the above linear form is expressed as

and the corresponding predicted measurement vector is

The following equations can be easily obtained from (33) 
and (36):

(30)ŝ = Σss1
Σ−1

s1
ŝ1 or ŝ = Σs1s

Σ−1

s1
ŝ.

(31)Vk = AkX̂k − Lk,

(32)X̄k = Φk,k−1X̂k−1,

(33)ΣX̄k
= Φk,k−1ΣX̂k−1

ΦT
k,k−1

+ ΣWk
,

(34)X̂k = X̄k + ΣX̄k
AT
k

(
AkΣX̄k

AT
k
+ Σk

)−1(
AkX̄k − Lk

)
.

(35)V̄k = AkX̄k − Lk,

(36)L̄k = AkX̄k.

The conventional Kalman gain matrix then reads

The derivation suggests that the state estimator (24) 
derived by the correlational inference is equivalent to the 
standard Kalman filter estimator (34) in the case of the linear 
system model.

This correlational inference deduces the generalized 
expression of Kalman filtering by the relationship among 
the predicted measurement vector Lk and the predicted state 
vector X̄k , as well as the cross-covariance matrix ΣX̄kL̄k

 . The 
deduction avoids the linear model requirement of Kalman 
filter. With the use of the new expression of Kalman filter-
ing, different methods can be deduced in the same frame-
work based on the revealed relationships between the meas-
urement and the state vectors. If the state-space model is 
linear, the relationship of the measurement vector L and the 
state vector X can be easily obtained with variance propa-
gation law; the Kalman filter estimator is then obtained. If 
the state-space model is nonlinear and the first-order Taylor 
expansion is used to approximate the nonlinear equation, the 
covariance matrix can also be obtained by variance–covari-
ance propagation, we obtain the EKF estimator; if UT is 
employed to approximate the covariance matrix, we arrive at 
UKF. The Cubature Kalman filter (CKF) can also be estab-
lished by generating the sigma points based on the spheri-
cal–radial cubature rule (Arasaratnam and Haykin 2009).

Adaptively unscented Kalman filtering 
based on correlational inference

After new expression of UKF is presented, we then develop 
an AUKF based on the correlational inference to reduce the 
influences of the dynamic model disturbances. An adaptive 
factor is introduced for AUKF to adjust the contribution of 
the dynamic model and the measurement model.

Unscented Kalman filter

UKF samples a set of sigma points to match the current 
statistics properties and then propagates the points through 
the nonlinear function. The predicted mean and covariance 
matrices of the state parameters and measurements are then 
estimated by the weighted transformed sigma points (Julier 
and Uhlmann 1997; Cui et al. 2005). The sigma points are 

(37)ΣX̄kV̄k
= ΣX̄kL̄k

= ΣX̄k
AT
k
,

(38)ΣV̄k
=
∑∗

L̄k
+Σk = AkΣX̄k

AT
k
+ Σk.

(39)Kk = ΣX̄k
AT
k

(
AkΣX̄k

AT
k
+ Σk

)−1
= ΣX̄kV̄k

Σ−1

V̄k

.
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chosen based on the estimated state covariance matrix with 
a deterministic method (LaViola 2003; Kandepu et al. 2008):

where n is the dimension of the state vector, i denotes the i th 
column of covariance matrix, the square root of covariance 
matrix is normally obtained by Cholesky decomposition, 
and � is a scale factor:

where parameter � is a secondary scale parameter which is 
usually greater than or equal to 0 (Kandepu et al. 2008). A 
good choice of this scale factor is � = 0 . The predicted state 
vector can be derived by the weighted transformed sigma 
points:

where wi is the weight of the sigma points (Liu et al. 2014; 
LaViola 2003):

where N is the number of the sigma points, N = 2n + 1.
The corresponding covariance matrix of the predicted state 

vector is followed by

(40a)
(
X̃k−1

)
0
= X̂k−1

(40b)
(
X̃k−1

)
i+n

= X̂k−1 + 𝛾

(
ΣX̂k−1

) 1

2

i
i = 1, 2, ⋯ , n

(40c)
(
X̃k−1

)
i−n

= X̂k−1 − 𝛾

(
ΣX̂k−1

) 1

2

i
,

(41)� =
√
n + �,

(42)
(
X̃k

)
i
= fk

[(
X̃k

)
i

]

(43)X̄k =

2n∑
i=0

wi

(
X̃k

)
i
,

(44a)w0 =
�

N + �
,

(44b)wi =
�

2(N + �)
i ≠ 0,

(45)ΣX̄k
= Σwk

+

2n∑
i=0

wi

[(
X̃k

)
i
− X̄k

][(
X̃k

)
i
− X̄k

]T
.

The predicted measurement vectors corresponding to the 
predicted state vector X̄k are

The weighted averaged predicted measurement vector is

with the corresponding covariance matrix:

The cross-covariance matrix ΣX̄kL̄k
 between the predicted 

state vector X̄k and predicted measurement vector L̄k , which is 
expressed in (26), is required. The approximation equation is 
similar to formulae (45) and (48):

Substituting the predicted state vector X̄k and the predicted 
measurement vector L̄k with their covariance matrices ΣX̄k

 and 
ΣL̄k

 as well as their cross-covariance matrix ΣX̄kL̄k
 into the esti-

mator, Eq. (24), we obtain the UKF estimated state vector X̂k . 
The estimated covariance matrix can be obtained by (29).

Adaptive unscented Kalman filter

The UKF described above depends on the approximation 
method for the nonlinear system model. The method, how-
ever, is very difficult to accurately predict the distribution or 
the dynamic errors. In addition, the inaccurate estimation of 
the last epoch will affect the selection of sigma points at the 
present epoch. Thus, the state prediction X̄k is influenced, in 
the same way as the predicted measurement vector L̄k from (5). 
To control the influences of the dynamic model disturbances, 
an adaptive factor �k 

(
0 < 𝛼k < 1

)
 is introduced. The AUKF 

estimator can be constructed based on the correlational infer-
ence. The predicted state vector is assumed to be contaminated 
by some kinematic disturbing phenomenon; the contribution 
of X̄k , therefore, should be weakened. Thus, Eq. (15) can be 
rewritten with an adaptive factor �k:

(46)
(
L̃k
)
i
= hk

[(
X̃k

)
i

]
, i = 1, 2,… , 2n + 1.

(47)L̄k =

2n∑
i=0

wi

(
L̃k
)
i
,

(48)ΣV̄k
= Σk +

2m∑
i=0

wi

[(
L̃k
)
i
− L̄k

][(
L̃k
)
i
− L̄k

]T
.

(49)ΣX̄kL̄k
=

2m∑
i=0

wi

[(
X̃k

)
i
− X̄k

][(
L̃k
)
i
− L̄k

]T
.

(50)VT
k
Σ−1

k
Vk +

[
VT

L̄k
VT

X̄k

]
⋅ 𝛼k ⋅

[
ΣL̄k

ΣL̄kX̄k

ΣX̄kL̄k
ΣX̄k

]−1[
VL̄k

VX̄k

]
− 2𝜆T

(
VL̄k

− V̄k − Vk

)
= min,
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and (18) is updated as

The AUKF estimator is

This equation can also be expressed as

where K̃k is the adaptive Kalman gain matrix, which is 
expressed as

and

where Σ̃V̄k
 is the covariance matrix of innovation vector 

based on the adaptive estimation.
The larger the errors of X̄k generated from the sigma points, 

the larger the covariance matrices, ΣX̄kL̄k
 and ΣV̄k

 . Thus, the 
adaptive factor �k plays a role in weakening the contribution 
of disturbed or contaminated predicted state vector X̄k , or 
strengthen the contribution of the measurement vector Lk.

The adaptive factor can be constructed as (Yang and Gao 
2006)

where ΔX̄k is the discrepancy between the predicted state 
and the robust estimated state, and

where X̃k is the robust estimate from the measurement 
information at the present epoch. The robust estimate can 

(51)
VL̄k

=
1

𝛼k
ΣL̄k

𝜆

VX̄k
=

1

𝛼k
ΣX̄kL̄k

𝜆.

(52)
X̂AK = X̄k +

1

𝛼k
ΣX̄kL̄k

(
1

𝛼k
Σ∗

L̄k
+ Σk

)−1(
Lk − L̄k

)

= X̄kΣX̄kL̄k

(
Σ∗

L̄k
+ 𝛼kΣk

)−1(
Lk − L̄k

)
.

(53)X̂k = X̄k + K̃k

(
Lk − L̄k

)
,

(54)K̃k = ΣX̄kL̄k
Σ̃−1

V̄k

,

(55)Σ̃V̄k
=

2n∑
i=0

wi

[(
L̃k
)
i
− L̄k

][(
L̃k
)
i
− L̄k

]T
+ 𝛼kΣk,

(56)𝛼k =

⎧⎪⎨⎪⎩

1 tr
�
Σ̂X̄k

�
< tr

�
ΣX̄k

�
∑n

i=1
𝜎2

X̄ki∑n

i=1
ΔX̄2

ki

otherwise
,

(57)ΔX̄k = X̃k − X̄k,

(58)tr
(
Σ̂X̄k

)
≈ tr

(
ΔX̄kΔX̄

T
k

)
= ΔX̄T

k
ΔX̄k =

n∑
i=1

ΔX̄2

ki
,

be derived with the linearized measurement model by robust 
least squares method (Yang et al. 2002):

The robust estimated state from the measurements is then

where P̄k denotes the measurement equivalent weight matrix, 
which is determined by the robust estimation principle.

The robust state is estimated by the linearized measure-
ment model, and the linearization process increases the cal-
culation burden. Thus, another adaptive factor is given by 
Yang and Gao (2006):

where nk represents the number of the measurements and 𝜎2

V̄ki

 

can be calculated as

where 𝜎2

V̄ki

 , 𝜎2

L̄∗
ki

 , and �2

ki
 are the i th diagonal element of ΣV̄k

, 

ΣL̄k
 , and Σk , respectively. ΣV̄k

 is the covariance matrix of the 
innovation vector. This covariance matrix can be obtained 
based on (38) by means of the linearized measurement 
model or by UT for nonlinear equations. The above two 
approaches to calculate the adaptive factor, Eqs. (56) and 
(61), lead to the same result, since the vector solution is a 
linear equation. The matrix Σ̂V̄k

 is the estimated covariance 
matrix of the innovation vector V̄k , which can be obtained 
using Sage window method:

where m is the length of the window. Then, the IAE-based 
AUKF has been established. The Sage window method, 
however, evaluates the current system noise characteris-
tic within a time window. Thus, the adaptive mechanism 
response is delayed. In addition, the historical information 
is equally contributed by the window method to evaluate 
the current noise characteristic. The outliers in the historical 
information are thus averaged over all the epochs within the 
window. Therefore, in this manuscript, the adaptive factor is 
constructed based on the predicted residuals at the present 
epoch:

(59)Vk = AkX̂k − Lk,

(60)X̃k =
(
AT
k
P̄kAk

)−1
AT
k
P̄kLk,

(61)𝛼k =

⎧
⎪⎨⎪⎩

1 tr
�
Σ̂V̄k

�
< tr

�
ΣV̄k

�
∑nk

i=1
𝜎2

V̄ki∑nk
i=1

V̄2

ki

otherwise
,

(62)𝜎2

V̄ki

= 𝜎2

L̄∗
ki

+ 𝜎2

ki
,

(63)Σ̂V̄k
=

1

m − 1

m∑
i=1

V̄k−iV̄
T
k−i

,

(64)Σ̂V̄k
= V̄kV̄

T
k
.
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Thus, the historical data storage and the influences of the 
historical outliers are avoided.

When the discrepancy between the predicted measure-
ment vector and the measurement vector is large, the value 
of the adaptive factor �k is less than 1. Therefore, the contri-
bution of the predicted information to the estimation results 
from the UT is weakened.

Discussion

The very core of the window-based adaptive estimation is 
the matching of the estimated covariance matrices with the 
theoretical covariance matrix, which is derived by window-
ing approximation. The two popular windowing approxi-
mation methods for adaptive estimation are IAE and RAE. 
The former uses the innovation vector sequences to approxi-
mate the theoretical covariance matrix Σ̂V̄k

 , while the latter 
approximates the theoretical covariance matrix of measure-
ment by residual vector sequences Vk . In these two meth-
ods, i.e., IAE and RAE, the innovation or residual vectors 
must be known for several epochs, the storage burden has 
thus been increased. Furthermore, the windowing method 
requires that number of measurements at each epoch must 
be identical and be of the same distribution, which is difficult 
to achieve in a highly dynamic environment. In contrast, the 
theoretical covariance matrix, approximated by the innova-
tion vector at the present epoch, can be obtained directly. 
We derived the adaptive estimator analytically based on the 
new proposed target function, which is constructed based 
on the relationships among the covariance matrices of the 
innovation vector and predicted state vector. Hence, the 
proposed adaptive estimator does not need any functional 
model linearization. Compared to the window-based adap-
tive method, the proposed method is designed to weaken the 
prior information based on the system discrepancy, while 
the window-based adaptive schemes balance the noise infor-
mation of dynamic or measurement models. The proposed 
method avoids the need to store the historical information 
and is more sensitive to the discrepancy of the filter at the 
present epoch.

Mathematical models of the integrated system

The classical linear Strapdown Inertial Navigation System 
(SINS) error propagation model is derived with the assump-
tion of small misalignment angles, i.e., less than 5° (Kong 
et al. 1999). However, the environmental disturbances and 
sensor errors may break this assumption and degrade the 
filter estimation accuracy (Cao and Guo 2012). Therefore, a 
nonlinear error model is employed to perform the analysis 
and thus avoids the small angle assumption and improves the 
filter stability (Kong et al. 1999; Sun et al. 2015). The model 

derivation can be found in Yan et al. (2008). The nonlinear 
IMU dynamic model is

where C−1
�

 in (65a) is

The rotation matrix Cp

l
 relates the local level frame l and 

the platform frame p , ��l
il
 is the angular velocity error of 

local level frame with respect to the inertial frame, and ��b
ib

 
is the bias of the gyroscope. �̃�l

ie
 is the earth rotation velocity 

at local level frame, and �̃�l
ie
 is the rotation velocity of local 

level frame with respect to the earth fixed frame at local 
level frame. f b is the measurement of the accelerometer, 
and �f b is the bias of the accelerometer. ṽl =

[
VE VN VU

]T 
are the velocity components in east, north and up directions, 
and �pl =

[
� L �� �h

]T are the position error components 
in latitude, longitude, and height. Thus, the state vector can 
be expressed as X =

[
�1×3 �v1×3 �p1×3 d1×3 b1×3

]T  . The 
Jacobian matrix of this model has seldom been derived or 
accurately calculated, and by contrast, the UKF has advan-
tages in estimating the state with this nonlinear model (Yan 
et al. 2008).

The velocity and position output from GPS receivers are 
taken as measurements. Therefore, the design matrix for the 
measurement equation is

where 03×3 denotes the 3 by 3 null matrix; and I3×3 is the 3 by 
3 identity matrix. Thus, the design matrix A is of size 15 × 6 
matrix. The IMU error model expressed by (65) is derived 
from the time derivative of the rotation matrix Cl

b
 , which 

relates to the rotation from body frame (b) to local level 
frame (l) . From the attitude error Eq. (65a), the small angle 

(65a)�̇� = C−1
𝜔

[(
I − C

p

l

)
𝛿𝜔l

il
− C

p

b
𝛿𝜔b

ib

]
,

(65b)

𝛿v̇l =
[
I −

(
C
p

l

)T]
C
p

b
f b +

(
C
p

l

)T
C
p

b
𝛿f b −

(
2𝛿𝜔l

ie
+ 𝛿𝜔l

el

)
× ṽl

−
(
2�̃�l

ie
+ �̃�l

el

)
× 𝛿vl +

(
2𝛿𝜔l

ie
+ 𝛿𝜔l

el

)
× 𝛿vl + 𝛿gl,

(65c)𝛿ṗl =

⎡
⎢⎢⎢⎣

0
1

M+h
0

cos𝜙

N+h
0 0

0 0 1

⎤
⎥⎥⎥⎦
𝛿vl,

(65d)ḋi = 0,

(65e)ḃi = 0,

(66)C−1

�
=

1

cos�x

⎡⎢⎢⎣

cos�y cos�x 0 sin�y cos�x

sin�y sin�x cos�x − cos�y sin�x

− sin�x 0 cos�y

⎤⎥⎥⎦
.

(67)A =

[
03×3 I3×3 03×3 03×3 03×3
03×3 03×3 I3×3 03×3 03×3

]
,
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assumption does not exist. The simulation and field test are 
presented in the next section.

Numerical experiment and analysis

In this section, a simulation and a field test of integrated nav-
igation are discussed to evaluate the performance of AUKF 
in comparison with that of UKF. In addition, the IAE-based 
AUKF is also used in the field test and compared with the 
proposed AUKF in terms of computation time, positioning 
and velocity estimation accuracy. The loosely coupled con-
figuration is employed to integrate the IMU and GPS. Both 
the simulation and field test are carried out without initial 
alignment. The tests are processed in the Matlab R2010a 
64-bit program on a PC with Intel Core i7-4600U CPU at 
2.10-GHz, 8-GB RAM equipped with Windows 10.

Simulation and analysis

The simulation was based on the moving vehicle with dif-
ferent driving behaviors. The constant gyro drift was set to 
100°/h; the angular random walk was 5°/√h; the acceler-
ometer bias was 2000 mg; the velocity random walk was 
1000 mg/√Hz. The initial local geographic latitude was 
22.31°, longitude was 114.18°, and height was 41 m. The 
measurement accuracy was 1 m for horizontal positioning 
and 3 m for the height; the velocity accuracy was 0.2 m/s. 
Thus, the noise of measurement was e = [1 1 3 0.2 0.2 0.2]T . 
The simulation was processed without initial align-
ment. The initial misalignment angle was randomly set as 
[−20◦37◦80◦]T . Simulation duration was 3000 s.

To compare the performance of the AUKF and UKF, the 
estimated results are compared with the simulated real value. 
The simulated trajectory is presented in Fig. 1 (blue line), 
including two circular curves to simulate the traffic circle in 
real situation, which are marked in red circles in area 1 and 
area 2. The simulation results of the positioning error are 
illustrated in Fig. 2. The red dotted line indicates AUKF esti-
mation error, and the blue line represents UKF estimation 

Fig. 1  Simulated trajectory (top), area 1 (middle), and area 2 (bot-
tom). The longitude and latitude values of the plotted trajectory are 
relative to 114° and 22°, respectively

Fig. 2  Position error in latitude (top), longitude (middle), and height 
(bottom)
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error. From this figure, it can be observed that the AUKF 
estimated results have fewer peak values than those esti-
mated by UKF. By comparing the epochs of the error spikes 
with the simulated trajectory, these epochs coincide with the 
positions exactly in the marked areas in Fig. 1. From Fig. 2, 
it also found that the UKF height estimate has a bias, caused 
by both measurement noise and disturbed predicted infor-
mation; while AUKF reduces the weight of the predicted 
information by an adaptive factor, driving the estimate to 
rely on the measurements. The Root Mean Squares Error 
(RMSE) of the state estimate by UKF in latitude, longitude, 
and height components are 1.94, 2.45, and 26.14 m, while 

the RMSE of those of AUKF are 1.04, 0.98, and 1.61 m. In 
addition, the maximum state error estimated by UKF in the 
east, north, and height components are 12.87, 19.12, and 
75.94 m, respectively, while those estimated by AUKF are 
3.70, 5.01, and 7.93 m.

The velocity errors from the two filters are illustrated in 
Fig. 3. The errors reveal a similar phenomenon to that of 
the positioning errors. The oscillations of state estimates 
by AUKF are fewer than those by UKF, and the velocity 
estimates by UKF in the height direction are divergent. 
The reason is that the predicted information obtained by 
the dynamic model is disturbed by IMU error; the inaccu-
rate predicted information creates biased UKF estimates. 
The AUKF, however, uses an adaptive factor to weaken the 
contribution of inaccurate predicted information and in turn 
reduce the bias.

The RMSE of the state estimates from UKF and AUKF 
are illustrated in Table 1, which also prove that the perfor-
mance of AUKF is superior to UKF in terms of positioning 
and velocity estimate.

Experiments and analysis

This subsection presents experimental results to demonstrate 
the performance of the proposed AUKF applied to IMU/
GPS integrated vehicle navigation. In addition, the IAE-
based AUKF and conventional UKF are also presented to 

Fig. 3  Velocity error in east (top), north (middle), and up (bottom)

Table 1  RMSE of filter 
solutions

UKF AUKF

Position (m)
 Latitude 1.94 1.04
 Longitude 2.45 0.98
 Height 26.14 1.61

Velocity (m/s)
 East 1.64 0.19
 North 1.60 0.20
 Up 2.73 0.19

Fig. 4  Vehicle trajectory. The longitude and latitude values of the 
plotted trajectory are relative to 114° and 22°, respectively

Fig. 5  Visible satellites number, the second of week (SOW) is used to 
represent the GPS time epoch on X axis
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compare the performance with the proposed AUKF. The 
window length of the IAE method was set to 10 epochs. The 
experiment lasted approximately one and a half hours. The 
IMU and GPS sampling frequencies were 100 and 10 Hz, 
respectively. The bias variances of gyro and accelerometer 
were 1°/h and 500 µg, respectively. The initial position error 
was set to [7 m, 7 m, 7 m], initial velocity error [0.1 m/s, 
0.1 m/s, 0.1 m/s] and initial attitude error was [16ʹ, 16ʹ, 83ʹ]. 
The estimated results are compared with GPS measured 
position and velocity, which are solved by IGGIII robust 
estimation (Yang 1994).

The vehicle trajectory acquired by GPS positioning is pre-
sented in Fig. 4. The number of satellites used for positioning 

and the corresponding Geometric Dilution of Precision 
(GDOP) values are presented in Figs. 5 and 6. The position 
errors are shown in Fig. 7, in which the estimated positions 
of the AUKFs are much closer to GPS measured position 
than those estimated by UKF. The IAE-based AUKF has 
similar performance with that of the proposed AUKF. Com-
pared with those of UKF results, the AUKFs constrained 
the errors at the east component during the process period. 
The peak value of UKF estimate error at the east component 
is 2.66 m during the time period (283980s, 284070s), and 
the peak value of those estimated by the proposed AUKF 
at the same period is 1.53 and 2.05 m for the IAE-based 

Fig. 6  GDOP Values

Fig. 7  Positioning error in latitude (top), longitude (middle), and 
height (bottom)

Table 2  RMSE of two filter solutions

UKF AUKF IAE

Position (m)
 Latitude 0.55 0.24 0.27
 Longitude 1.30 0.69 0.74
 Height 13.73 3.23 3.39

Velocity (m/s)
 East 0.68 0.04 0.05
 North 0.79 0.04 0.05
 Up 1.21 0.05 0.06

Fig. 8  Velocity error in east (top), north (middle), and up (bottom)
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AUKF estimate. In the north component, the largest spikes 
of the three estimators occur during the same time period 
(283980s, 284080s) as the east component, at which the vis-
ible satellite number is 5 and the GDOP value is larger than 
4, and even up to 17. In such a situation, the GPS-positioning 
results are not accurate. Thus, the three estimated results are 
fluctuating in this period. The UKF height error fluctuates 
between − 40 and 58 m during the process time, while the 
AUKFs error moves between − 15 and 25 m. The estimation 
error at the height component is significantly improved by 
AUKFs. The remaining oscillations around epoch 283300s 
to 283600s and 283900s to 284200s are caused by GPS 
measured fluctuations. According to the RMSE of the posi-
tioning results presented in Table 2, it can be proven that the 
overall performance of the proposed AUKF and IAE-based 
AUKF have similar superior performance than UKF.

The velocity errors are shown in Fig. 8. It is seen that 
the state estimate by UKF is influenced by the disturbances 
of dynamic model and the AUKFs confine the error effects 
to the velocity. It is also noticed that the proposed AUKF 
converges much faster compared with that of UKF or the 
IAE-based AUKF. Since UKF operates under the Kalman 
framework and employs the UT to deal with the nonlinear 
equation, the disturbances of the dynamic model have not 
been restricted by any strategies. In contrast, the IAE-based 
AUKF uses the windowing method to estimate the noise 
stochastic characteristic, which adjusts the contribution of 
the state parameters produced from the UT. Thus, the per-
formance of IAE-based AUKF is nearly the same as that of 
UKF at the beginning epochs. The proposed AUKF dynami-
cally adjusts the measurement statistic during the filtering 
process; thus, the contribution of inaccurate prior informa-
tion has been reduced at each epoch and the effects of dis-
turbances of the dynamic model are also controlled, which 
results in much higher accurate state estimates than the 
standard UKF and shorter converge time than the IAE-based 
AUKF. The RMSE of velocity estimates are also presented 
in Table 2, which also proves that the overall performance 
of AUKFs is superior to that of UKF.

The run times of three filters, standard UKF, the proposed 
AUKF, and IAE-based AUKF, are listed in Table 3. The 
IAE-based AUKF obtains the theoretical covariance matrix 
using window method to average the storage innovation 
sequences. Thus, the data process requires the longest pro-
cess time. The proposed AUKF, which uses the innovation 
vector at the present epoch to approximate the theoretical 

covariance matrix, needs slightly longer process time than 
the standard UKF.

Conclusions

We presented the new derivation and expression of the 
Unscented Kalman filter (UKF) based on correlational infer-
ence, which has been further used to construct an adaptive 
Unscented Kalman filter (AUKF). The simulation and field 
test with a loosely coupled configuration and nonlinear 
dynamic model have been used to validate the proposed 
AUKF. Therefore, from our theoretical derivation, analysis 
and numerical tests, the following conclusions can be drawn:

1. The new Kalman filtering estimator reveals the funda-
mental relationship among the estimated state vector, 
the innovation vector, and the predicted state vector, as 
well as their covariance and cross-covariance matrices. 
Therefore, this new expression is a generalized estimator 
which can be easily simplified to the standard Kalman 
filter, EKF, and UKF.

2. The new generalized Kalman filtering expression is 
based on the constrained target function. This target 
function is not related to any approximation methods of 
the linear or nonlinear models by which the UKF estima-
tor can be rigorously derived.

3. The adaptive UKF estimator is directly deduced from 
the constrained target function by introducing an adap-
tive factor for balancing the contribution between the 
predicted information and the measurements. This kind 
of estimator not only approximates the state parameters 
and their covariance matrices by UT, but also controls 
the influences of the contaminated predicted information 
on the estimated state.

4. The simulation and field test have proven that AUKF 
outperformed the UKF in terms of positioning and 
velocity accuracy. In the simulation, the UKF RMSE in 
latitude, longitude and height components estimate are 
1.94, 2.45, and 26.14 m, respectively, while the RMSE 
of those of AUKF are 1.04, 0.98 and 1.61 m. In the field 
test, the RMSE of UKF in positioning estimation are 
0.55, 1.30 and 13.73 m, while the RMSE of those of 
AUKF are 0.24, 0.69 and 3.23 m.

5. The field test has also revealed that the two kinds of 
AUKF have similar performance in terms of RMSE 
of positioning and velocity components. However, the 
adaptive factor-based AUKF has less converge time than 
the IAE-based AUKF, especially in velocity estimate. 
In addition, the process time of the three filters, UKF, 
adaptive factor-based AUKF, and IAE-based AUKF, 
are, respectively, 652.08, 654.53, and 660.78 s. Thus, 

Table 3  Running time of filters in seconds

UKF AUKF IAE

Running time 652.08 654.53 660.78
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the IAE-based AUKF requires the longest process time 
among the three filters.
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