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Abstract
A new approach for deformation monitoring of super high-rise building using GPS/BDS technology is proposed for the case 
when prior coordinates are known and the baseline is short but has a large height difference. The approach is based on the 
ambiguity function method (AFM). Considering that the double-differenced (DD) troposphere delay residual error cannot 
be ignored, the relative zenith tropospheric delay (RZTD) parameter is introduced into the original AFM equation. Thus, 
the RZTD and 3D coordinate parameters are together obtained through the modified AFM (MAFM). Due to the low com-
putational efficiency of conventional AFM, an improved particle swarm optimization (IPSO) algorithm is used to search the 
four optimal parameters X/Y/Z/RZTD and replaces the grid search method. In this study, GPS/BDS deformation monitoring 
data for buildings with approximately 290 m height difference were used to verify the feasibility of the proposed MAFM. 
Numerical results show a single-epoch average computation time of approximately 0.3 s, which meets the requirements of 
near-real-time dynamic monitoring. The average accuracy of the GPS single-epoch RZTD solution is better than 1 cm, the 
combined GPS/BDS MAFM performance outperforms the GPS-only system, and using multi-epoch observations can fur-
ther improve the accuracy of the RZTD solution. After RZTD correction, GPS/BDS monitoring precision can be improved, 
particularly the height dimension, whose precision is improved by approximately 6 cm.

Keywords GPS/BDS · Super high-rise · Modified AFM (MAFM) · Relative zenith tropospheric delay (RZTD) · Improved 
particle swarm optimization (IPSO)

Introduction

Super high-rise buildings are an important aspect of mod-
ern cities and deformation monitoring is essential during 
both construction and completion (Huang et al. 2011; Xia 
et al. 2014). Due to its simple operation, all-weather avail-
ability, and high precision, GNSS technology is ideal for 
monitoring the deformation of super high-rise buildings. 
GPS/BDS super high-rise deformation monitoring gener-
ally adopts the relative positioning mode. Although the 
baseline between the reference and monitoring station is 
relatively short, the meteorological differences are often 
significant due to the large difference in height, and the 

traditional double-difference (DD) mode cannot completely 
eliminate the effect of the tropospheric delay error (Dodson 
et al. 1996; Beutler et al. 1998). Thus, the influence of the 
residual troposphere delay must be taken into account when 
monitoring deformation in super high-rise buildings using 
GPS/BDS technology.

The tropospheric delay is generally divided into a hydro-
static delay and a wet delay. The former can be corrected by 
a precise model (Tralli and Lichten 1990), while the latter 
is mainly caused by atmospheric humidity, which is diffi-
cult to accurately model. In GPS/BDS data processing, we 
usually estimate the residual tropospheric delay using the 
least squares (LS) or extended Kalman filter (EKF) methods 
(Zhang and Lachapelle 2001; Yong et al. 2008). However, 
the relative zenith tropospheric delay (RZTD) is strongly 
correlated to height component, usually leading to the ill-
conditioned problem in LS estimation, which seriously 
affects the result of the final height estimate (Li et al. 2010). 
In response to this problem, the negative impact can be 
somewhat reduced by long-term accumulated observations 
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(Dach et al. 2015). In fact, high-precision GPS research 
software such as GAMIT usually employs the residual 
troposphere delay parameter as a constant during a period 
of time (e.g., 2 h), and adopts the piece-wise linear (PWL) 
estimation strategy to reduce the influence of the residual 
troposphere error for long baseline resolution, usually with 
millimeter-level precision. Unfortunately, this does not meet 
the requirements of real-time single-epoch dynamic defor-
mation monitoring.

Li et  al. (2010) proposed a regularization method to 
achieve stable epoch solutions when conducting LS estima-
tion. The method and experimental results were convincing, 
despite some complexity. Yong et al. (2008) estimated the 
RZTD and height parameter together and determined their 
correlation coefficient to separate RZTD and height; however, 
this method only specifies the correlation between RZTD and 
height, the correlations between the RZTD and the horizontal 
components are not adequately taken into account although 
they are relatively smaller. When conducting RZTD param-
eter estimation using EKF, a relatively accurate RZTD initial 
state value and variance should be provided. If the initial val-
ues are inaccurate, the convergence time might be long and 
the solution might not converge (Xu et al. 2013). In addition, 
to improve filtering precision and the ambiguity fixed rate, 
RZTD is generally assumed as the first-order Gauss–Markov 
random walk process (Takasu and Yasuda 2010). However, 
filtering RZTD solutions based on a random walk process 
cannot reflect real-time, real variations in the troposphere 
delay, especially when the troposphere delay changes sud-
denly due to atmospheric mutations or other outliers. Kim 
et al. (2004) used a forgetting factor to balance the RZTD 
estimate for the current epoch and the previously filtered res-
olution. This forgetting factor mainly depends on the tempo-
ral and spatial correlations; however, it should be empirically 
determined beforehand. Thus, this method cannot adapt to 
real-time true troposphere delay variations.

In many cases, GNSS deformation monitoring is essen-
tially a quasi-static positioning process (Nickitopoulou 
et al. 2006); the monitoring station typically has relatively 
precise known coordinates, and relatively small ampli-
tude variations over a short span. Therefore, the ambigu-
ity function method (AFM) (Remondi 1984) based on the 
coordinate domain is a well-suited approach for GNSS 
deformation monitoring. The advantage of AFM is that it 
can achieve high positioning accuracy without intractable 
cycle slip detection and complex ambiguity resolution. 
However, the AFM performance is easily affected by the 
multipath and unmodeled errors (Mader 1990; Hedgecock 
et al. 2014). Fortunately, GPS/BDS survey receivers are 
usually used for deformation monitoring under a relatively 
good observation environment, so the multipath effect can 
be largely avoided. Generally, the deformation monitoring 
baseline is very short; thus, many error sources such as 

the ionospheric delay and clock and orbital errors can be 
eliminated by the DD model. In addition, with the avail-
ability of multi-system and multi-frequency GNSS, an 
increased number of observations can further improve the 
AFM performance.

Unlike other deformation monitoring, the DD tropo-
spheric residual error in super high-rise deformation 
monitoring cannot be neglected. Therefore, in this study, 
we first change the traditional AFM equation by adding 
a RZTD parameter, which will be searched together with 
the 3D coordinate parameters in a pre-determined four-
dimensional search space, resulting in a modified AMF 
(MAFM). Considering the low computational efficiency 
of AFM with the conventional grid search method (Eling 
et al. 2013; Han and Rizos 1996), especially with an addi-
tional RZTD parameter, we adopt a new intelligent opti-
mization search algorithm, namely particle swarm opti-
mization (PSO) (Kennedy and Eberhart 1995; Clerc and 
Kennedy 2002), to replace the conventional grid search 
method. Because the searching results obtained by PSO 
algorithm are easy to fall into locally optimal resolu-
tion (Higashi and Iba 2003; Chen et al. 2016), we first 
improve the PSO algorithm by drawing on the idea of the 
genetic variation method (Shi et al. 2005). The particles 
are divided into three groups, i.e., optimal, suboptimal, 
and poor populations, and a random mutation is conducted 
with a certain probability for the optimal particles with 
the purpose of increasing the diversity of optimal parti-
cles. To further improve the search reliability of MAFM, 
a loose constraint on the baseline length is used to reduce 
the opportunity for multiple local optimal solutions. Com-
pared with the conventional grid searching method, the 
improved PSO (IPSO) can significantly increase the com-
putational efficiency of MAFM, and has a more elaborate 
search capability (Li et al. 2017).

The proposed MAFM for GPS/BDS super high-rise 
deformation monitoring is immune to cycle slips and, as a 
nonlinear parameter resolution method, it can avoid the ill-
posed problems caused by the strong correlation between 
RZTD and the height component parameter in LS estima-
tion. In addition, it only requires a relatively safe and rea-
sonable pre-determined search space instead of a specific 
initial value; thus, to some extent, it can reduce the depend-
ence on the initial state when conducting EKF estimation. 
The RZTD parameter can be resolved independently epoch 
by epoch; thus, on the condition of good observations, the 
MAFM is expected to adapt to sudden changes of tropo-
spheric delay caused by typhoons, heavy rain, and other 
emergencies. In practice, if the weather status is relatively 
stable, the precision and reliability of the MAFM RZTD 
resolution can be further improved by multi-epoch accumu-
lative observations when conducting GPS/BDS super high-
rise deformation monitoring.
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Methods

The GPS/BDS positioning model for monitoring deforma-
tion in super high-rise buildings is given first, especially the 
relative zenith tropospheric delay (RZTD) parameter estima-
tion model. Then the modified AFM (MAFM) for RZTD 
resolution is investigated in detail. A new RZTD parameter 
is innovatively introduced into the conventional AFM equi-
tation; an improved PSO (IPSO) algorithm is proposed and 
applied to replace the conventional AFM grid search method, 
called MAFM. Finally we give the flowchart of the MAFM 
data process.

GPS/BDS DD observation equation for monitoring 
deformation in super high‑rise buildings

GPS/BDS observations mainly include the pseudorange and 
carrier phase. In this study, only the high-precision carrier 
phase observation is used for GPS/BDS super high-rise defor-
mation monitoring. The observation equation is as follows:

where �jr denotes the geometric range of the receiver–satel-
lite r − j , Tj

r and Ijrdenote the tropospheric delay and iono-
spheric delay, �tjr denotes the receiver–satellite clock error, 
c denotes the speed of light, � is the wavelength, denotes the 
carrier phase ambiguity, and Nj

r�
j
r is the remaining error.

To simplify the data processing, the relative positioning 
model is typically used, canceling the residual ionospheric 
and clock errors. The tropospheric delay ( Tj

r ) cannot be elimi-
nated thoroughly using the DD model because of the typically 
large height difference. Thus, the DD observation equation 
for deformation monitoring of super high-rise buildings is as 
follows:

where the subscript b denotes the reference station, r 
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tamoinen (1972), is usually first used to accurately correct 
the dry delay part; thus, the residual ionospheric delay is 
mostly the wet component and taken as a parameter to be 
estimated. Generally, the zenith tropospheric delay (ZTD) is 
introduced. The expression for Tij
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 is as follows:
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length is short, satisfying ei
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r , the average eleva-

tion angle, � , is introduced to replace e . Thus, Eq. (3) can 
be expressed as:

The relative zenith tropospheric delay (RZTD) is defined 
as Tz,br = Tz,r − Tz,b . The residual delay can be expressed 
as a function of RZTD and wet mapping function with the 
assumption of azimuthal symmetry:

where fT (�
j) − fT (�

i) denotes the relative mapping 
coefficient.

Modified AFM (MAFM) with additional RZTD 
parameter

AFM is an ambiguity resolution (AR) method based on the 
coordinate domain. The basic idea is that, with a pre-deter-
mined searching space and searching step, by calculating 
the corresponding ambiguity function value (AFV) point 
by point, realizing the process of optimal coordinate search, 
only rounding is required to obtain the DD integer ambigu-
ity solution. Figure 1 shows an example 2-D contour map of 
GPS/BDS AFV for one epoch. Because more observations 
are used for AFM, the multi-peak characteristic of the com-
bined GPS/BDS AFV is not as obvious as in the GPS-only 
system. As a result, more observations generally translate to 
more reliable AFM performance.
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Fig. 1  2-D contour map of the GPS/BDS AFV for one epoch
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As shown in (2), the DD observation equation still con-
tains the DD tropospheric delay; therefore, we introduce the 
RZTD parameter into the original AFM equation, as follows:

where AFV denotes the ambiguity function value, Xr, Yr, Zr
denote the 3D coordinate parameters, Tz,br is the RZTD 
parameter, �br

obs
 denotes the DD observation, �br

cal
 is the 

calculated DD observation of the candidate points (cor-
responding to different Xr, Yr, Zr and RZTD values), and 
n denotes the total number of DD observations, including 
nt ≥ 1 epochs and nf  carrier frequencies ( 1 ≤ nf ≤ 3 ). Within 
a pre-determined 4D searching space, if the searched candi-
date Xr, Yr, Zr and RZTD values are close to the truth value, 
then �br

obs
[b|r] − �ls

cal

[
r|Xr, Yr, Zr, Tz,br

]
 is also close to the 

correct ambiguity, considering the integer characteristics 
of the DD ambiguity. Thus, the AFV is close to 1 in such a 
case. In practice, due to the effect of observation noise and 
multipath, the AFV is usually less than 1.

PSO search method for improving MAFM efficiency

The point by point grid search method is usually of very low 
efficiency, which severely restricts AFM application. Since 
the modified AFM (MAFM) adds another parameter, the 
RZTD parameter, the conventional grid search method will 
be even more inefficient when applied to MAFM. There-
fore, a new intelligent search algorithm, namely the particle 
swarm optimization (PSO) algorithm, is used to solve this 
problem effectively.

PSO algorithm overview

Particle swarm optimization (PSO) is derived from the study 
of bird predation. It employs information of individuals in 
shared groups so that the whole group’s motion can evolve 
from disorder to order in the problem-solving space, to 
obtain the optimal solution for the problem. For an N-dimen-
sional space, the total population size is n . Assuming that 
xi = (xi1 xi2 … xiN), ui = (vi1 vi2 … viN) denote the posi-
tion vector and velocity vector of the particle i , respectively, 
the current optimal position of particle i denotes pBesti , and 
the total population current optimal position denotes gBest . 
The standard PSO algorithm can be expressed as follows:
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where the superscript k denotes the current iteration number 
and � denotes the inertia weight. The particle self-cognitive 
part and the social-cognition part are balanced via the two 
learning factors, c1 and c2 . Random numbers between 0 and 
1, r1 and r2 , are introduced to maintain the diversity of the 
group.

Looking at (7) and Fig. 2, the particle velocity update is 
mainly determined by three parts, i.e., the particle previous 
inertia velocity, the particle self-perception ( pBesti ), and the 
social-perception part ( gBest ), by continuous iterative updat-
ing of particle pBesti and gBest until a certain iterative con-
vergence condition is satisfied.

The advantage of PSO is that it is easy to achieve and has a 
profound intelligence background. It is suitable for scientific 
research, particularly engineering applications. However, the 
PSO and other intelligent search algorithms are vulnerable to 
local optimization. To solve this problem, we first improve the 
PSO algorithm, and then employ the baseline length constraint 
to further enhance the reliability of PSO.

Improved PSO (IPSO) algorithm

Due to its fast convergence speed, and with a rapid decrease in 
population diversity, PSO easily represents the local optimum 
solution. Thus, the genetic variation method is introduced (Shi 
et al. 2005; Li et al. 2017). First, the particles are divided into 
three groups according to the fitness function value: optimal, 
suboptimal, and poor populations 

(
S1, S2, S3

)
 , then, a random 

mutation with a certain probability Pm is generated for S1 . The 
random mutation can be expressed as

where the subscript d = (1, 2, … N) , ad and bd denote the 
parameter search upper and lower bounds, and r3 is a ran-
dom number between 0 and 1. With the random mutation, 
the population diversity is enhanced, and PSO reliability 
is improved to some extent, but the computation time is 

(8)Xk+1
id

= ad + r3(bd − ad)

Fig. 2  Schematic diagram of particle evolution
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increased. In practice, the Pm should be selected consider-
ing both search efficiency and reliability.

Baseline length constraint

Considering the deformation monitoring characteristics, 
generally, the monitoring station coordinates display rela-
tively small variation amplitudes in a short time span, the 
baseline length constraint is used to improve the reliabil-
ity of PSO search results further. The specific method is as 
follows:

where � denotes AFV attenuation, which can be obtained 
from the baseline length difference between the current 
epoch’s calculated baseline length computed with the 
searched Xr∕Yr∕Zr∕Tz,br solution and the previous epoch’s 
precise calculated baseline length. The specific expression 
is as follows:

where Δlt denotes the threshold of Δl and � denotes the 
attenuation factor.

For the PSO local optimal solution, after applying the 
baseline length constraint, the corresponding AFV is 
reduced to different extents; thus, the opportunity for local 
optimal solution is substantially reduced.

MAFM process

With GPS/BDS observations, the DD observation and rela-
tive mapping coefficient ( fT (�j) − fT (�

i) ) are first obtained. 
Equation (9) shows the fitness function of IPSO. The MAFM 
convergence conditions are such that the difference in gBest 
corresponding parameters between two successive iterations 
is less than a given threshold � . The specific MAFM process 
is as given in Fig. 3.

Experiments, results and analysis

The experiment was performed in Wuhan City, Hubei 
Province, on June 14, 2016, and fine weather conditions 
lasted during the entire observation session. The reference 
station S1 was installed on a low building approximately 
16 m from the ground, reference station S2 was placed on 
the ground, and monitoring station S3 was installed on a 
super high-rise building approximately 290 m from the 

(9)
AFV(Xr, Yr, Zr, Tz,br) =

1

n

n∑

i=1

cos 2�[�br

obs
(b|r)

− �br

cal
(r|Xr, Yr, Zr, Tz,br)] − �

(10)𝜉 =

{
0 (Δl ≤ Δlt)

𝛼 ⋅ Δl (Δl > Δlt)

ground. The GPS/BDS multi-frequency observable signal 
was received by Trimble NETR9 boards. Figure 4 shows 
the experimental data acquisition scene and the baselines 
formed by S1/S2/S3 stations.

The observation lasted for approximately 7 h, the data 
sampling rate was 5  s, including approximately 5200 
epochs, the cutoff elevation was set to 15°, and dual-fre-
quency GPS/BDS data were used in the data processing. 

Fig. 3  Flowchart of MAFM
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Figure 5 shows the number of visible GPS/BDS satel-
lites and PDOP value of monitoring station S3. These 
two indexes partly reflect the experimental environment. 
Compared with the GPS-only system, the combined 
GPS/BDS increases the number of visible satellites and 
improves the geometric satellite distribution.

Search procedure of IPSO

For the first epoch DD observation and the relative map-
ping coefficient of baseline B2, the IPSO is used to search 
for optimal S3 3D coordinates and B2 RZTD solutions. The 
initial prior coordinates of S3 are known, with an accuracy 
of better than 2 m. In this experiment, the search space is set 
to [− 2 m, 2 m], and the search space of the RZTD param-
eter is set to [− 0.1 m, 0.1 m]. The IPSO parameters are 
set so that P = (90, 30, 0.5, 0.5, 0.5, 0.6, 0.03, 3, 0.001) . This 
ensures that the total number of particles is 90; the number 
of optimal 

(
S1
)
 , suboptimal

(
S2
)
 , and poor 

(
S3
)
 particles is 

30; the two learning factors and the inertia weight are 0.5; 
the probability of the optimal particle 

(
S1
)
 random mutation 

is 0.6; the baseline length constraint is 0.03 m; the AFV 
attenuation factor is 3; the particle convergence condition is 
that the corresponding parameter difference of gBest in two 
successive iterations is less than 0.001 m. In general, the 
larger the total number of particles, the higher the reliability 
of the search optimal solution, and lower the correspond-
ing calculation efficiency. In practical applications, the effi-
ciency and reliability should be considered before selecting 
the reasonable IPSO parameters.

According to the calculation flow introduced above, 
Fig. 6 shows the evolutionary (iterative) procedure of the 
four parameters, dX, dY, dZ, and RZTD. In the first itera-
tion, the particles corresponding to the four parameters are 
generated randomly; thus, the global optimal particle (gBest) 
deviates from the true value. As the iterations increase, with 
continuous positioning and velocity updating of pBset and 
gBest, the positioning of gBest also trends gradually towards 
the truth value. Its corresponding AFV increases until the 
28th iteration, satisfying the convergence condition. In other 
words, the difference in gBest (dX, dY, dZ, RZTD) between 
the last two iterations is less than 1 mm; therefore, in theory, 
the optimal search resolution of parameters using IPSO is 
higher than 1 mm. The entire search takes a total of 0.0981 s. 
In comparison, the conventional grid search method applied 
in Fig. 1, referring to a 2D search space [− 1 m, 1 m] only, 
with a search step of 0.005 m, the search time was 0.1739 s. 
Thus, the IPSO significantly improves MAFM efficiency and 
has a high search resolution.

MAFM result analysis

We use three baselines to verify the proposed MAFM, i.e., 
baseline B1, B2, B3 in Fig. 4. B1 is a short baseline on 
the ground, so in theory, the truth value of RZTD should 
be closer to 0, and the solved B1 RZTD is the accuracy 
of MAFM. The baseline height of B2 and B3 is close to 
each other. Thus, the truth value of the corresponding RZTD 

Fig. 4  Experimental data acquisition scene

Fig. 5  Number of visible GPS/BDS satellites and PDOP values
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should be almost the same, which can be an effective verifi-
cation method for the MAFM RZTD resolution reliability. 
The influence of the resolved RZTD on monitoring precision 
is also analyzed.

Baseline B1 validation

To verify the feasibility of MAFM, the baseline B1 is pro-
cessed using MAFM. The total number of particles is set to 
300, and the number of S1, S2, S3 is 100, and other parameter 
settings are the same as above. Figure 7 shows the GPS/BDS 
MAFM single-epoch RZTD resolution using the IPSO and 
PSO searching method. The accuracy of the GPS MAFM 
RZTD solutions is better than 1 cm for most epochs, and the 
combined GPS/BDS solutions are further improved, with 
an average computation time of 0.31 s. Compared with the 
IPSO searching method, the PSO computational efficiency 
is higher; however, some jumps exist in the RZTD solutions, 

Fig. 6  Evolution of the global 
optimal particle (gBest) 3D 
coordinate and RZTD

Fig. 7  B1 GPS/BDS single-epoch RZTD resolution using the IPSO 
(top) and PSO (bottom) searching method

Fig. 8  GPS/BDS single-epoch gBest AFV
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especially for the GPS-only system. This is due to the multi-
peak characteristics of AFM, resulting in the PSO search 
falling into local optimum solutions on the RZTD jump-
ing epochs. However, the IPSO conducts a random muta-
tion with a certain probability for the optimal particle and 
increases the diversity of particles, and the additional base-
line length constraint strategy can avoid the PSO falling into 
the locally optimal solution, although some computational 
efficiency is sacrificed.

Figure 8 shows the GPS/BDS corresponding AFV of 
gBest using MAFM epoch by epoch. The GPS AFV exceeds 
0.97 for most epochs and, on these epochs, the combined 
GPS/BDS AFV is slightly lower than in the GPS-only sys-
tem. This is because the BDS observation accuracy is cur-
rently slightly lower than that of GPS. As a result of an 
enlarged denominator n in (9), the corresponding AFV is 
also lower. For some epochs with heavy observation noise 
or multipath effects, the corresponding GPS AFV is reduced 
to a different extent. For these epochs, the combined GPS/
BDS increases the number of observations and improves the 
geometric structure of the satellites, also improving MAFM 
reliability. Thus, the corresponding AFV increases to a dif-
ferent extent than the GPS-only system. Figures 7 and 8 
indicate that epochs with low accuracy of the MAFM RZTD 
solution have a relatively low corresponding AFV. In fact, 
AFV can be used as a precision evaluation index for MAFM; 
generally, the higher the AFV, the higher the accuracy and 
reliability of the MAFM. Figure 5 shows that during the 
period from 5:00 to 6:00 the number of visible satellites is 
relatively large and the change of PDOP is relatively stable. 
Therefore, during this period, the corresponding AFV and 
accuracy of the MAFM RZTD solution are relatively high.

The computer processor used in our experiment is an 
“Intel(R) Pentium(R) CPU G620@2.60 GHz”, and the RAM 

is 4.0 G. The entire program is written in standard C lan-
guage. Figure 9 shows the single-epoch consumed CPU time 
of MAFM. The average GPS computation time is 0.32 s, 
although the combined GPS/BDS increases the DD obser-
vation, its corresponding average computation time is less 
than that of GPS. This is because the combined GPS/BDS 
multi-peak characteristic of MAFM is not as obvious as in 
the GPS-only system (Fig. 1), and it is easier to satisfy the 
iterative convergence condition; thus, the overall computa-
tion time is reduced. In fact, the efficiency of MAFM pre-
dominantly depends on the total number of particles and the 
convergence threshold. It is also partly related to the number 
of DD observations.

Under static conditions, the AFM reliability can be 
improved by accumulating observations. In our experiment, 
the monitoring of the super high-rise building is quasi-static 
positioning, so the 3D coordinates of the monitoring sta-
tion and the relative tropospheric delay are expected to 
change slightly with time. The accuracy and reliability of the 
MAFM can, therefore, be improved using reasonable multi-
epoch accumulative observations. Figure 10 shows the com-
bined GPS/BDS MAFM results during 15 min of accumula-
tive observation (a total of 180 epochs). The corresponding 
accuracy of the RZTD solution is further improved com-
pared with the single-epoch solution. The average accuracy 
is 0.0013 m, and the maximum error is less than 0.005 m. 
Due to the increased number of DD observation during 180 
epochs, the efficiency of MAFM is reduced, and the aver-
age computation time is 2.6864 s. In practical applications, 
the accumulative observation interval should be reasonably 
determined considering factors such as the prior regularity 
of deformation and the weather conditions.

Fig. 9  GPS/BDS single-epoch computation time of MAFM

Fig. 10  B1 GPS/BDS MAFM results for 15  min of accumulative 
observations
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Baseline B2/B3 validation

The baseline B2/B3 is processed to further verify the effec-
tiveness of MAFM. All parameter settings are the same as 
above. Figure 11 shows the B2/B3 GPS/BDS single-epoch 
N/E/U baseline vector solution using MAFM. The fluctua-
tion range of the plane N/E solutions is within 2 cm, and 
the height direction (U) is within 4 cm for most epochs. The 
combined GPS/BDS positioning accuracy outperforms that 
of the GPS-only system, especially under relatively poor 

observation conditions. Considering the influence of GPS/
BDS observation noise and the computed time sequence of 
the 3D N/E/U, the station S3 was determined to have no 
deformation during the entire monitoring period.

Figure 12 shows the B2/B3 GPS/BDS MAFM RZTD 
solutions epoch by epoch. As for the N/E/U solutions above, 
the combined GPS/BDS RZTD solutions outperform the 
GPS-only system. Both the value and variation trend of B2 
GPS/BDS MAFM RZTD solutions agree well with those 
of B3, which indirectly proves the reliability of the MAFM 
RZTD solution. In sunny weather conditions, the RZTD can 
reach 2–3 cm. While for a rainy day, or for a baseline with a 
larger height difference, the RZTD is expected to be larger. 

Fig. 11  B2/B3 GPS/BDS 
single-epoch N/E/U solutions 
using MAFM

Fig. 12  B2/B3 GPS/BDS single-epoch MAFM RZTD solutions

Fig. 13  B2/B3 GPS/BDS MAFM RZTD solutions with 15  min of 
accumulative observations
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After mapping with the elevation angle, the DD troposphere 
residual delay is more significant. Therefore, the influence 
of the residual troposphere must be taken into account in 
high-precision GPS/BDS deformation monitoring of high-
rise buildings.

Figure 13 shows the B2/B3-combined GPS/BDS RZTD 
solutions using MAFM with 15 min of accumulative obser-
vations. The RZTD solutions agree well with the single-
epoch results shown in Fig. 12. The maximum difference 
between B2 and B3 solutions is only 0.0047 m. We propose 
that the precision of the inner coincidence of the MAFM 
RZTD solutions with 180 epochs of accumulative observa-
tions reaches millimeter levels in this experiment.

Influence of RZTD on monitoring precision

For GPS/BDS deformation monitoring of super high-rise 
buildings, the most interesting aspect is generally the moni-
toring precision of the 3D coordinates. In this study, the 
influence of the tropospheric residual error is taken into 
account in MAFM with the aim of improving the monitor-
ing precision of super high-rise buildings. To analyze the 
influence of the residual tropospheric error on the 3D coor-
dinate positioning result, we used KinPos software, devel-
oped by Wuhan University and based on LS estimation, to 
deal with the baseline B2 without considering the residual 
troposphere error. We then compared the final N/E/U values 
with the MAFM results, shown in Fig. 14. After residual 
tropospheric error correction, the MAFM corresponding 3D 
coordinate solutions are more stable. The difference between 
the MAFM and traditional LS solutions in the horizontal 
direction is slight; however, there is a systematic deviation 
in the height direction of up to approximately 6 cm. This sys-
tematic deviation is predominantly caused by the neglected 
tropospheric residual error.

To quantitatively analyze the effect of the residual tropo-
spheric error on the height direction, we make a seven-order 
polynomial fitting to the time series of the single-epoch 
MAFM RZTD solutions with B2-combined GPS/BDS data, 
and the positioning difference between the MAFM and LS 
solution in the U direction (dU), which are shown in Fig. 15. 
The temporal variation of the filtered RZTD is consistent 
with the filtered dU, showing a strong linear relationship. 
After calculation, the dU is approximately 3.14 times the 
RZTD, which is very consistent with the results of Dach 
et al. (2015) and Hong (2013). This demonstrates that, if 
the conventional short baseline positioning model is used 
to monitor the deformation of super high-rise buildings, the 
positioning result in the U direction will be approximately 
three times the systematic deviation of the RZTD. For urban 
super high-rise buildings, the RZTD errors are often up to 
decimeter level. With the residual tropospheric error correc-
tion using our proposed MAFM, the monitoring precision in 
the U direction can achieve decimeter-level improvements.

The optimal X/Y/Z/RZTD solutions are searched in a 
relatively large and safe 4D searching space. Therefore, it 
can somewhat reduce the dependence of the traditional EKF 
on the accuracy of the initial value. Moreover, the MAFM 
is expected to adapt better to sudden changes in the tropo-
spheric delay, caused by typhoons, heavy rains, and other 
meteorological outliers, indicating the MAFM is more capa-
ble of achieving relatively reliable RZTD solutions epoch by 
epoch. However, the solutions obtained from the conven-
tional random walk model used in EKF may deviate from the 
actual values, generally are lower, especially in the begin-
ning period of these cases, because the estimated results of 

Fig. 14  Comparison of B2 GPS/BDS LS and MAFM N/E/U solu-
tions Fig. 15  Comparison of MAFM RZTD and dU
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any two continuous epochs are not independent, with strong 
temporal correlation and spatial correlation. Unfortunately, 
there is a lack of monitoring data related to weather (RZTD) 
mutations. A possible advantage of MAFM in such cases 
was not reflected in our experiment.

Conclusions

We proposed a new GPS/BDS tropospheric delay resolu-
tion approach for monitoring deformation in super high-
rise buildings, called MAFM. The optimal RZTD and 3D 
coordinate solutions are obtained within a pre-determined 
4D searching space. An improved PSO searching method 
and a baseline length constraint are used to improve MAFM 
efficiency and reliability. The feasibility of MAFM is veri-
fied using measured GPS/BDS baselines with approximately 
290 m height difference, and the following conclusions are 
obtained from the experimental results.

1. Compared with the conventional grid searching method, 
the efficiency of the X/Y/Z/RZTD 4D search with IPSO 
is significantly improved. In addition, compared with 
the PSO algorithm, IPSO can improve the reliability of 
searching results, although it sacrifices some compu-
tational efficiency. The MAFM single-epoch average 
search time is approximately 0.3 s, which meets the 
requirements of near-real-time dynamic positioning for 
deformation monitoring.

2. The average accuracy of the MAFM GPS single-epoch 
RZTD solution is better than 1 cm. The combined GPS/
BDS and reasonable multi-epoch accumulated observa-
tions can further improve MAFM accuracy and reliabil-
ity.

3. Compared with the traditional short baseline position-
ing mode, after correcting for RZTD using MAFM, the 
monitoring precision for super high-rise buildings is 
improved, especially in the height direction, by approxi-
mately three times the RZTD.
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