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Abstract
MEMS-based integrated system of a global navigation satellite system (GNSS) and an inertial navigation system (INS) has 
been widely used in various navigation applications. However, such integration encounters some major limitations. On the 
one hand, the noisy MEMS-based INS undermines the accuracy with time during the frequently occurring GNSS outages 
caused by signal blockage or attenuation in certain situations such as urban canyon, tunnels, and high trees. On the other hand, 
the model mismatch between actual GNSS error and the assumed one would also degrade the obtained accuracy even with 
continuous GNSS aiding. To improve the overall performance for GNSS/MEMS-INS, better error models can be obtained 
using Allan variance (AV) analysis technique for modeling inertial sensor errors instead of the commonly recommended 
auto-regressive processes, and on the other hand, the measurement update in Kalman filter is improved using innovation 
filtering and AV calculation. The performance of each method and the combined algorithm is evaluated by a field test with 
either differential GNSS (DGNSS) or single-point positioning (SPP) as external aid. In addition to the considerable naviga-
tion enhancement brought by each method, the experimental results show the combined algorithm accomplishes overall 
accuracy improvements by about 18% (position), 8% (velocity), and 38% (attitude) for integration with DGNSS, and by about 
15% (position), 75% (velocity), and 77% (attitude) for that with SPP, compared with corresponding traditional counterparts.
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Introduction

Traditional loosely coupled (LC) GNSS/INS integration 
uses GNSS position and velocity to correct the INS state 
and calibrate the inertial sensors, in which a Kalman filter 
(KF) is usually adopted to realize the data fusion between 
GNSS and INS. The standard KF requires both system and 
measurement noises to be white. For most integration algo-
rithms, this assumption contributes to simplified implemen-
tation (Shin 2001). However, this will lead to a severe mis-
match between the computed covariance matrix in the KF 
and the actual estimation error level. As a consequence, the 

integrated navigation accuracy is greatly restricted. Some 
researchers suggest that this discrepancy can be some-
how relieved by tuning the process and measurement error 
covariance, i.e., Q and R matrix (Groves 2008). But this is 
just a compromise. In fact, the inertial error is colored noise 
(Nassar and El-Sheimy 2006), and the GNSS position error 
is time- and space-correlated (Niu et al. 2014). This means 
white noise is not always optimal to model the inertial error 
and GNSS position error. However, vehicular navigation 
requires optimal GNSS/INS integration to meet real-time 
and high-accuracy demands, which entails accurate mod-
eling of both inertial and GNSS errors.

From the perspective of the KF time update, the naviga-
tion state and its covariance will undergo time-dependent 
error growth until GNSS update is available. The predicted 
navigation estimates can be improved if an accurate inertial 
error model is implemented, especially when GNSS outage 
happens for a relatively long time. Generally, the inertial 
error can be divided into systematic error and stochastic 
error. The former error can be depicted by discretizing the 
INS mechanization (Groves 2008) or by directly nonlinear 
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approaches (Shin and El-Sheimy 2007), while the latter 
mainly refer to the residual biases after laboratory calibra-
tion, depicted by a series of stochastic models. Both errors 
are included in total error state to describe the INS error 
dynamics. Closely related to inertial sensors itself, the sto-
chastic error modeling has raised much attention in current 
research. The first-order Gauss–Markov (GM) stochastic 
process is widely used using auto-correlation sequence 
(ACS) analysis (Brown and Hwang 1997; Shin 2001). 
However, it is unrealistic to acquire accurate ACS from 
finite experimental data. Moreover, the required stationar-
ity assumption may not hold true for inertial sensor residual 
biases (El-Sheimy et al. 2004). To overcome the limitations 
of traditional GM model, it has been suggested to model the 
stochastic errors using auto-regression (AR) processes of 
high orders (Nassar and El-Sheimy 2006; Noureldin et al. 
2009). Although recommended in post-processing for direct 
georeferencing, this method may encounter difficulties in 
real-time navigation due to the higher order. Moreover, the 
estimation accuracy will be easily deteriorated with some 
model parameters identified improperly by the overly data-
dependent AR method (IEEE 2008). Another popular tech-
nique for inertial sensor error is the Allan variance (AV) 
analysis approach (El-Sheimy et al. 2008; Han and Wang 
2011). Its validity is tested with both relative inertial meas-
urement (Chen et al. 2015) and absolute INS-based naviga-
tion (Quinchia et al. 2013; Zhang et al. 2013, 2017). The 
newly developing generalized method of wavelet moments 
(GMWM) is also attempting to analyze and model the iner-
tial stochastic noise better (Stebler et al. 2014; Radi et al. 
2017). However, the above-mentioned AV-based methods 
are mainly focused on post-processing position errors, ignor-
ing real-time navigation accuracy evaluation, especially 
for velocity and attitude. In addition, computation burden 
and numerical stability may also suffer from the AV-based 
method if five main identified stochastic errors, i.e., quanti-
zation noise (QN), white noise (WN), bias instability (BI), 
random walk (RW), and rate ramp (RR), are all included in 
the KF. It is still necessary to provide a practical guideline 
for colored inertial noise modeling in real-time navigation.

From the perspective of KF measurement update, the 
enhanced estimated state can be obtained with proper 
measurement error modeling, which favors INS in turn. 
Recently, the time/temporal correlation of GNSS position-
ing has been widely recognized. The colored noise should 
be appropriately addressed to remedy the standard KF for 
potential accuracy enhancement. Either the state-augmen-
tation (Wang et al. 2012) or measurement time-differencing 
approach (Petovello et al. 2009) cannot tackle the problem 
effectively. In practice, it is impossible to accurately model 
the colored GNSS position errors (Chang 2014b). However, 
the AV analysis for 1 Hz GNSS position errors justifies 
the simplified white model in either stand-alone GNSS or 

differential GNSS mode (Niu et al. 2014). Therefore, accu-
rate covariance parameters are essential for proper integra-
tion between GNSS and MEMS-INS. Adaptive Kalman 
filter (AKF) technique is usually used for systems with the 
unknown process and measurement noises, which estimates 
the noise covariances based on innovation sequences to 
adaptively adjust the Kalman gain (Mohamed and Schwarz 
1999; Ding et al. 2007). However, implicit estimation cou-
pling between state and noise parameters may result in 
negative-definite covariance matrix or even divergence. To 
guarantee the stability and reliability, an adaptively robust 
Kalman filter (ARKF) scheme is proposed by combining 
robust M estimation with the technique of adaptive factor 
(Yang et al. 2001; Yang and Gao 2006). The key to ARKF 
is to obtain the robust estimation solution of the total state, 
which is used to form adaptive factor based on the dis-
crepancies between the robust solution and predicted state. 
Unfortunately, the robust solution of attitude and inertial 
biases cannot be obtained solely by GNSS, leading to the 
failure of the adaptive factor formation in GNSS/INS navi-
gation. In addition, robust KF can be established based on 
innovation sequence to resist the adverse effects of outliers 
(Chang 2014a), but it is short of experimental validations. 
Although these works provide instructive references, it is 
still a challenge for accurate GNSS/MEMS-INS navigation 
with unknown noise parameters.

From the perspective of frequency domain, the high-fre-
quency components in INS state are eliminated by the sum 
or integral operation of white system noise (Yan et al. 2012; 
Ban et al. 2013), resulting in low-frequency system noise 
component in KF measurement output, while the wideband 
white noise is directly superimposed upon the external meas-
urement. Therefore, the measurement noise can be separated 
by the frequency division of measurement outputs. In fact, 
AV calculation is equivalent to a band-pass filter, suitable for 
such frequency division. It should also be noted that the tra-
ditional variance of white noise equals to its AV value. This 
paves the way for estimating measurement noise parameters. 
Motivated by the above studies, we propose an AV-based 
adaptive GNSS/MEMS-INS integrated navigation approach 
to improve stochastic model and noise parameter estimation 
for overall accuracy enhancements.

This study differs from previous research in the following 
aspects. First, we focus on analyzing the real-time overall 
navigation performance (i.e., position, velocity, and attitude) 
in a field test rather than only on post-processing position 
accuracy, aiming to provide a complete evaluation for differ-
ent methods. Second, the Allan variance is not only used to 
identify and model the inertial sensor errors but also adap-
tively estimate the measurement noise parameters online. 
Precise model structures and parameters of both process and 
measurement noises are definitely instructive for fulfilling 
the potential accuracy of GNSS/INS navigation.
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Methodology

The objective is to improve GNSS/MEMS-INS navigation 
accuracy. To accomplish this, the following aspects should 
be improved:

1. The error state covariance prediction accuracy,
2. The measurement noise parameter optimization,

since both subjects depend on the used models of both INS 
sensor error and GNSS error. Better inertial sensor error 
models are used with an AV-based method instead of the 
commonly recommended AR process. In addition, the 
quality of measurement update is controlled by eliminating 
GNSS outliers using the proposed innovation-based robust 
approach, especially for SPP results. Meanwhile, enhanced 
accuracy is further achieved by adaptively estimating the 
unknown measurement covariance based on AV calcula-
tion. The combined algorithm is also evaluated with a field 
test. In the following, each method will be discussed and 
analyzed.

AV analysis method

First proposed for the frequency stability of atomic clock, 
the time-domain AV analysis technique is increasingly 
used for potential stochastic process identification and 

modeling in various devices such as inertial sensors (El-
Sheimy et al. 2008; Han and Wang 2011) and GNSS (Niu 
et al. 2014; Zhang et al. 2013).

The Allan variance definition can be found in IEEE 
(2008):

where NC is the number of clusters corresponding to cluster 
time τ; ȳi is the mean of ith cluster; �2(�) is the Allan vari-
ance. The typical log–log plot is shown in Fig. 1 with dif-
ferent noise types. As indicated in IEEE (2008), five types 
of typical stochastic processes can be identified by the slope 
in the specified time regions for inertial sensors. The related 
parameters are listed in Table 1.

The AV calculation accuracy is dependent on the data 
length N and the cluster length k. The relative accuracy 
�(k) of �(�) corresponding to � = k�0 is given by

where �(k) means the percentage error in estimating �(�) 
using clusters with � = k�0 from an N-point dataset. Equa-
tion (2) indicates that for fixed data length N, the estimation 
error is small when cluster number is large (i.e., short cluster 
time). In other words, the improvement in estimation accu-
racy for �(�) requires increased data length N. Assuming 
the estimation error is required to be less than �min at the 
maximum cluster time �max = kmax�0 , the corresponding 
data amount Nmin is given by,

where Nmin means the least points needed for required accu-
racy in calculating Allan variance.

(1)𝜎2(𝜏) =
1

2(NC − 1)
⋅

NC−1∑
i=1

(
ȳi+1 − ȳi

)2

(2)
�(k) =

1√
2

(
N

k
− 1

)

(3)Nmin ≥ kmax ⋅

(
1 +

1

2�2
min

)

Fig. 1  Sample plot of Allan variance analysis results

Table 1  Five types of stochastic 
errors with related parameters

Noise types Coefficients Allan variance Power spectral density (PSD)

Quantization noise (QN) Q �2
Q
(�) =

3Q2

�2
SQ(f ) = (2�f )2Q2�

White noise (WN) N �2
N
(�) =

N2

�
SN (f ) = N2

Bias instability (BI) B �2
B
(�) =

2 ln 2

�
B2

SB(f ) =
B2

2�f

Random walk (RW) K �2
K
(�) =

K2�

3
SK(f ) =

K2

(2�f )2

Rate ramp (RR) R �2
R
(�) =

R2�2

2
SR(f ) =

R2

(2�f )3
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Improving stochastic modeling for inertial sensor 
errors with AV analysis

For GNSS/INS integration, the error state equation is 
obtained by discretizing the INS mechanization (Groves 
2008):

where �r , �v , and � represent errors in position, velocity, 
and attitude, CB

A
 represents transformation matrix from 

A-frame to B-frame, �C

AB
 is the angular rate of B-frame 

relative to A-frame resolved in C-frame, and ��b
ib
, �f b are 

the stochastic errors of gyros and accelerometers, which can 
be expressed as:

where ��b
Q∕N∕B∕K∕R

 and �f b
Q∕N∕B∕K∕R

 are the equivalent noise 

components in angular rate and specific acceleration accord-
ing to AV analysis.

Among these noises, white noise can be directly regarded 
as system noise in KF, and quantization noise can be trans-
formed into the form of white noise by state transformation. 
The other three noises should be augmented into the KF 
error state with the derived differential stochastic equations.

Transformation of quantization noise

The state transformation is defined as

where �vb
Q
 and ��b

Q
 are the velocity quantization noise and 

angle quantization noise, i.e., 𝛿𝜔b
Q
=𝛿�̇�b

Q
, 𝛿f b

Q
=𝛿v̇b

Q
 . Substitute 

(6) into (4), then

(4)

⎧
⎪⎨⎪⎩

𝛿ṙn = −𝜔n
en
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2𝜔n

ie
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b
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�
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b
𝛿𝜔b
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(5)

{
��b
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Q
+ ��b
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Q
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The above-modified error state equation is driven by equiva-
lent white noises.

Comparing (7) with (4), the equivalent white noises are 
enhanced as the underlined terms. It can be observed that 
the state transformation only affects the covariance prop-
agation in KF. This manipulation for quantization noise 
actually magnifies the process noise covariance.

Stochastic modeling of colored noises

The stochastic differential equation for colored noise can 
be derived by Fourier inversion transform of the shaping 
filter’s transfer function, which can be obtained from the 
spectral factorization of PSD function. The AV-based sto-
chastic model for colored noise is presented briefly here; 
see Han and Wang (2011) for detailed derivations.

(a) Bias instabilityIts differential equation can be approxi-
mated as

where u(t) is unit white noise, and β is the reciprocal of 
the correlation time. Coincidently, this is standard first-
order Gaussian–Markov (GM) process with correlation 
time and variance as 1∕� and �B2

/
2 , in which β and B 

are determined using AV analysis.
(b) Random walkIts stochastic differential equation is:

where K can be obtained from AV analysis.
(c) Rate rampThe approximate differential equation is:

where �0 is the natural frequency parameter; both �0 
and R can be determined using AV analysis. In fact, 
Eq. (10) is exactly a second-order GM process.

(8)ḋB(t) + 𝛽dB(t) = 𝛽Bu(t)

(9)ḋK(t) = Ku(t)

(10)d̈R(t) +
√
2𝜔0ḋR(t) + 𝜔2

0
dR(t) = Ru(t)
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Discussions on augmentation of the KF with AV‑based 
models

Instead of the fourth-order differential equation of all 
identified noise terms for each sensor as employed in Han 
and Wang (2011), it is suggested to model the primary 
stochastic errors here, considering the balance between 
real-time implementation and accuracy. On the one hand, 
higher state order brought by modeling minor error terms 
exacerbates computation burden and undermines real-time 
implementation. Moreover, the solution of high-order 
equation is prone to numerical instability by small distur-
bances in some model parameter, deteriorating the estima-
tion accuracy, which is also encountered by higher-order 
AR models (Quinchia et al. 2013). On the other hand, 
the subsequent results show that only a little accuracy 
enhancement could be accomplished with all identified 
errors modeled, in contrast to the method with only major 
errors modeled.

Among the above-mentioned five error types, the rate 
ramp is more like a systematic error instead of stochastic 
noise, caused by gradual temperature changes. Quantiza-
tion noise can be transformed to the form of white noise. As 
a result, the stochastic error modeling is focused on three 
noises, i.e., white noise, bias instability, and random walk. 
The AV analysis results of actual accelerometers or gyros 
can give us the possible combination of these noises, result-
ing in corresponding stochastic error model and augmented 
Kalman filter.

Improving GNSS stochastic modeling with AV 
calculation

GNSS positioning provides the position of antenna phase 
center r̂n

GNSS
 . But INS outputs the position of IMU center 

r̂n
INS

 . Both positions are different and form a lever-arm vector 
which needs compensation:

where �b is the lever-arm vector referenced in body-frame 
from IMU center to GNSS center, and er is GNSS position 
error.

The velocity v̂n
GNSS

 can be obtained by GNSS Doppler 
observations. The KF velocity measurement is constructed:

where the gyro bias ��b
ib

 relates to inertial sensor error 
model, and ev is GNSS velocity error. Generally, GNSS posi-
tion and velocity errors in less than 1 Hz are modeled as 

(11)Z
r
= r̂n

INS
+ Cn

b
�
b − r̂n

GNSS
≈ 𝛿rn +

(
Cn
b
�
b×

)
𝜓 + er

(12)Zr = v̂n
INS

−
(
𝜔n
in
×
)
Cn
b
�
b − Cn

b
(�b×)𝜔b

ib
− v̂n

GNSS

≈ 𝛿vn −
(
𝜔n
in
×
)(
Cn
b
�
b×

)
𝜓 − Cn

b

(
�
b × 𝜔b

ib

)
× 𝜓 − Cn

b

(
�
b×

)
𝛿𝜔b

ib
+ ev

white noise with covariance E
[
[eT

ri
, eT

vi
]T ⋅ [eT

rk
, eT

vk
]
]
= Rk�ik 

(Niu et al. 2014).
The standard KF algorithm uses constant measurement 

covariance matrix Rk by experiences. For example, in open 
areas, the accuracy of SPP position ranges from a few meters to 
several decameters, while it is within several centimeters for the 
carrier phase-based DGNSS position, i.e., real-time kinematic 
(RTK). However, this simplification cannot guarantee proper 
integration between GNSS and MEMS-INS. Moreover, accu-
racy degradation or outliers could occur due to signal blockage, 
attenuation, or interference in urban areas. To overcome these 
adverse effects, the following two-tier approach is proposed.

Robust Kalman filtering based on normalized measurement 
innovation

The KF innovation sequence {vk = Zk − Hkx
−
k
} satisfies the 

following property:

However, if there is some violation to assumed models, e.g., 
measurement outliers or contaminated noise, Eq. (13) will 
no longer hold. The hypothesis test can be conducted to 
detect such modeling errors. Assuming the null hypothesis 
as vk ∼ N(0,Ck) , the test statistics �k is devised as the square 
of the Mahalanobis distance between measurement Zk and 
its predicted mean Hkx

−
k
,

where  Mk =

√(
Zk − Hkx

−
k

)T
C−1
k

(
Zk − Hkx

−
k

)
 i s  t he 

Mahalanobis distance. If the innovation sequence vk satisfies 
the null hypothesis, the test statistics should be of the �2 dis-
tribution with the degree of freedom as m, i.e., �k ∼ �2(m) , 
in which m represents the measurement dimension. For a 
given small significance level, say 0.01%, the null hypothesis 
is rejected under the condition that the computed statistics 
�̃�k with actual measurement Z̃k is larger than the α-quantile 
�2
�
(m) . Considering the reliability and short-term accuracy 

of INS, the test rejection means some violations of the 
assumed model or outliers are detected with the misjudg-
ment risk of α, which is written mathematically as:

where Pr(⋅) represents the probability of a random event. 
Equation (15) indicates that the occurrence of �̃�k > 𝜒2

𝛼
(m) 

is a small probability event. If this event happens, it is 

(13)
E
[
vk
]
= 0, ∀k

E
{
vkv

T
j

}
= Ck�kj, Ck = HkP

−
k
H

T
k
+ Rk

(14)�k = M2

k
= vkC

−1
k
vT
k

(15)Pr
{
�̃�k > 𝜒2

𝛼
(m)

}
= 𝛼
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reasonable to conclude that the measurement is inconsistent 
with the assumption, i.e., an outlier is detected. In order to 
resist the adverse effects of outliers, a robust KF (RKF) with 
scaling factor �k is devised based on �̃�k and �2

�
(m) . It runs the 

same way as the standard KF when no outlier is detected, 
i.e., �̃�k < 𝜒2

𝛼
(m) . Otherwise, the scaling factor �k is used to 

inflate the covariance matrix Ck:

So the following should be satisfied,

where

This analytical solution to �k avoids the iterations in Chang 
(2014a). This factor is used in measurement update to adjust 
the KF gain adaptively.

It should be noted that the centimeter-level accuracy of 
RTK position mainly relies on the quality of cycle slip detec-
tion and ambiguity resolution. By contrast, the pseudo-range 
measurements are very coarse in the level of several meters. 
Moreover, the multi-path effect will affect pseudo-range 
observations more than carrier phase observations. Conse-
quently, observation outliers may cause a greater influence 
on SPP positions (Xie 2009). Therefore, the above robust KF 
is indispensable for SPP/MEMS-INS integration.

AV‑based adaptive estimation for measurement covariance

For MEMS-INS, the inertial sensor noises are generated by 
an internal mechanism, meaning the parameters are rela-
tively stable and should be determined in advance by inertial 
stochastic error modeling as accurately as possible. As for 
GNSS, position and velocity noises are dependent on exter-
nal environments, such as satellite geometry, landscapes, 
buildings, tunnels, and trees, meaning the parameters are 
unpredictable to some extent. Consequently, the standard 
KF fails to perform best with inaccurate measurement noise 
covariance. To solve this mismatch, an AV-based adaptive 
estimation for measurement noise covariance is introduced 
to modify the standard KF, termed as AV-based adaptive KF 
(AV-based AKF).

From the perspective of frequency domain, the high-
frequency components in INS state error wk are elimi-
nated by the integral operation of white system noise (Ban 
et al. 2013), resulting in low-frequency system noise in 
KF measurement Zk ; while the white noise ek is directly 
reflected in Zk . So the overall noise of Zk can be denoted as 
�Zk = wk + ek . The parameter R̂k = E[ek ⋅ e

T
k
] can be sepa-

rated by frequency division for KF measurements using 

(16)C̄k=𝜆kCk

(17)�̃�k = vkC̄
−1
k
vT
k
= 𝜒2

𝛼
(m)

(18)𝜆k =

{
1 �̃�k ≤ 𝜒2

𝛼
(m)

�̃�k

𝜒2
𝛼
(m)

�̃�k > 𝜒2
𝛼
(m)

AV calculation, considering its band-pass property and the 
equivalence between traditional variance and Allan variance 
(IEEE 2008).

For simplicity, it is assumed that no correlation exists 
between the measurement noise vector components. The 
Allan variance is calculated for each component with the 
shortest cluster time τ, corresponding to AV analysis of high 
frequency. The procedure can be written by transforming (1) 
into the recursive form:

where k = 2, 3, 4,… . The initialization of R̂1 is set as typical 
accuracy value in specific GNSS positioning mode. Com-
pared with the traditional AKF (Mohamed and Schwarz 
1999), this algorithm avoids the difficulty in adjusting win-
dow length and reduces the risk of divergence due to the 
complete independence between noise parameter estimation 
and Kalman filtering.

Experimental work

To assess the performance of the proposed algorithm com-
pared to the conventional counterparts, a field test was con-
ducted in March 2015 in Wuhan urban areas. This section is 
divided into three parts to introduce the experimental work, 
i.e., equipment, test setup, and data processing details.

Equipment

Two types of IMUs are used in the experiment. The first is 
the Sensonor STIM300 MEMS-grade IMU, which is inte-
grated with a prototype GNSS receiver based on NovAtel 
OEMV-3 and HX-BS581A (Harxon) multi-frequency GNSS 
antenna that utilizes the suggested approach. The second is 
the MP-POS830 position and orientation system developed 
by Wuhan MP Space–Time Technology Company. The data 
collected by POS830 are integrated using the GINS software 
developed by MP. The GINS provides a smoothed GNSS/
INS tightly coupled navigation solutions, which is accurate 
enough to act as the reference to compare the performance 
and effectiveness of the proposed algorithm when applied 
to MEMS-based INS. The performance parameters of two 
systems are listed in Tables 2 and 3. The equipment is shown 
in Fig. 2, in which the test vehicle is used as the rover station 

(19)
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with both systems mounted on the roof, and a base station 
is established nearby.

Test setup

Several field tests were carried out with the above configura-
tion. The longest test trajectory around Wuhan City is chosen 
for analysis lasting about 1 h, as shown in Fig. 3. The num-
ber of observable GNSS satellites and the corresponding 
position dilution of precision (PDOP) are shown in Fig. 4. 
The statistics indicate that the average number of available 
satellites is 8 (GPS), 10 (BDS), and 18 (GPS + BDS), with 
the corresponding PDOP mean as 2.2 (GPS), 2.7 (BDS) and 
1.4 (GPS + BDS). Obviously, the number of available BDS 
satellites is greater than that of GPS satellites, but the PDOP 
of GPS is slightly better than that of BDS. This may be 
caused by the special BDS constellation design of five GEOs 
and five IGSOs as shown in Fig. 5 (middle). For comparison, 
the sky plot of GPS and GPS + BDS is illustrated in Fig. 5. It 
is obvious that the combined constellation of GPS + BDS is 
superior to that of the individual system. So GNSS data are 
processed in the combined constellation (GPS + BDS) mode.

Data acquisition and processing

During the whole test, POS830 collects raw inertial meas-
urements and GNSS observations to provide reference 
after post-processing, while the prototype system outputs 
the real-time navigation results. For both SPP and RTK, 
the cutoff elevation angle is set to 10° to delete low-quality 
observations. The initial position is (30.407°N, 114.282°E, 
20.985 m); the maximum speed is 62 km/h. The initial 
uncertainty in position, velocity, and attitude is set as 
5
√
5 m, 0.2 m/s, and 5.72°, respectively. The standard vari-

ance of SPP position and velocity is set as 9.0 m and 0.2 m/s, 
respectively. The RTK position standard variance is set as 
0.05 m.

In order to evaluate the proposed method, nineteen 60-sec 
outages are simulated and intentionally introduced every 
2 min after KF reaches convergence with 500-sec initial 
alignment. The continuous GNSS and simulated outages 
are used to demonstrate the effectiveness of the proposed 
algorithm in both RTK and SPP modes.

Results and analysis

In this section, we will discuss the field test results in great 
detail to illustrate the proposed algorithm for improving the 
navigation accuracy. The Allan analysis of MEMS-based 
inertial sensors is conducted first to acquire AV-based sto-
chastic error models. Then, the performance advantages 
of the AV model, AV-based adaptive estimation, and the 

Table 2  STIM300 MEMS IMU specifications

a represents Allan variance

Gyroscope Accelerometer

Bias 250.0 deg/h 0.75 mg
Bias  instabilitya 0.5 deg/h 0.05 mg
Scale factor 0.5% 0.5%
Random  walka 0.15 deg/ √h 0.06 m/sec/√h
Linearity 25 ppm 100 ppm
Data rate 125 Hz

Table 3  MP-POS830 performance (1σ statistics in post-processing 
mode)

Position Horizontal 0.02 m
Vertical 0.03 m

Velocity Horizontal 0.02 m/s
Attitude Heading 0.005 deg

Leveling 0.003 deg
Output rate 200 Hz

Fig. 2  Data acquisition equipment of rover (up) and base (bottom) in 
field test
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combined algorithm are demonstrated by the field test for 
both RTK and SPP.

AV analysis of MEMS‑based inertial sensors

The AV analysis of 12-h STIM300 static dataset is shown 
in Fig. 6, which shows the accelerometers and gyros have 
N, B and K with slopes close to − 1/2, 0 and 1/2, meaning 
white noise (N) is the dominant term for the short cluster 

time below 10 s and bias instability (B) is the dominant 
term in the large cluster time region around 100 s, while 
random walk (K) is the dominant term for the long clus-
ter time above 2000 s. According to (2), the estimation 
accuracy for N, B and K is about 0.34, 4.82 and 15.56%, 
respectively. This explains the reason that AV-identified 
parameters need to be manually tuned in KF (Niu et al. 
2007). In Table 4, the parameters of the identified random 
terms are estimated by nonnegative constrained identifi-
cation algorithm (Lv et al. 2014) and used for modeling 
inertial sensor errors. Accordingly, two possible models 
should be considered:

where N is modeled as white noise, B is modeled as first-
order GM process, and K is modeled as random walk pro-
cess, as illustrated previously. 

Since the introduction of (20) and (21) increases the 
order of KF to 15 and 21, respectively, the correspond-
ing error models are termed as “AV15” and “AV21” here. 
The comparison between the two models in overall per-
formance is instructive for providing a guideline for better 
inertial sensor modeling.
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Fig. 3  Trajectory in Wuhan City, China
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Impact of the AV model over the AR model

The impact of the proposed AV-based stochastic modeling 
for each inertial sensor on the overall navigation accuracy 
is examined by the field test with RTK as external aid. Two 
AV-based models (i.e., AV15 and AV21) are established to 

compare the accuracy with conventional AR method (Nas-
sar and El-Sheimy 2006; Noureldin et al. 2009). Figures 7 
and 8 compare the navigation errors among these methods 
during continuous GNSS and simulated outages.

It is observed in Fig. 7 and Table 5 that the AV-based 
methods outperform the AR model in attitude accuracy 
during short outages (e.g., 1  s), with almost identical 
position and velocity accuracy. Similar to the findings in 
Quinchia et al. (2013), higher-order AR models, such as 
AR(2) and AR(3), undergo serious numerical instability 
or divergence problem. This is the reason that only AR(1) 
is used here.

It is obvious in Fig. 8 that the AV-based methods have 
significant advantages over the AR model in overall navi-
gation accuracy during relatively long outages (e.g., 60 s). 
Compared with AR model, Table 6 indicates that AV15 
model provides 67.22, 71.12, and 42.81% higher accu-
racy in position, velocity, and attitude, while AV21 method 
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improves by 72.95, 74.90, and 48.60%. Therefore, it is safe 
to conclude AV-based methods are superior to AR model.

Moreover, Table 5 shows that the accuracy of the AV15 
model is very close to that of AV21. Even during 60-sec 
outages, the improvement brought by AV21 is only about 
10% for position and less for velocity and attitude as listed 
in Table 6. Although soaring computation load is caused 
by state augmentation, little accuracy enhancement is 
accomplished with all identified errors modeled (AV21) 
in contrast to that with only major errors modeled (AV15). 
This phenomenon could be explained by inaccurate model 
parameters caused by inevitable approximations and AV 
calculation errors for random terms of large cluster time.

Based on the above results, it is recommended to model 
major inertial sensor errors and ignore the minor sources 
for balance between accuracy and real time. Here the pro-
posed AV15 model is suggested for real-time navigation. 
It happens to be a modified GM model but overcomes the 
difficulty in model parameters estimation of traditional 
method (Nassar and El-Sheimy 2006; Quinchia et  al. 
2013).

Table 4  Parameter estimates of random terms in STIM300 IMU

Accelerometer Q (m/s) N (m/s/
√
s) B (m/s/s) K (m/s2/

√
s) R (m/s3)

X 0 1.1681 × 10−3 6.1570 × 10−4 1.8638 × 10−5 0
Y 0 1.0342 × 10−3 6.3006 × 10−4 1.0667 × 10−5 0
Z 0 1.0998 × 10−3 6.2583 × 10−4 1.5866 × 10−5 0

Gyro Q ( deg) N (deg/
√
h) B (deg/h) K (deg/h/

√
h) R (deg/h2)

X 0 9.2796 0.2476 0.0558 3.7533 × 10−3

Y 0 8.9340 0.7901 0.0725 1.7966 × 10−3

Z 0 8.1987 1.1060 0.0525 9.5435 × 10−4
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Table 5  Maximum error comparison between AV and AR models 
with actual GNSS aiding

Position (m) Velocity (m/s) Attitude (deg)

AR(1) 0.3070 0.1798 0.6444
AV15 0.3089 0.1941 0.4709
AV21 0.2915 0.1893 0.4644

Table 6  Maximum error comparison between AV and AR models 
during 60-sec outages

Position (m) Velocity (m/s) Attitude (deg)

AR(1) 108.3566 3.7377 0.8951
AV15 35.1650 1.0794 0.5119
AV21 29.3139 0.9380 0.4601
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Impact of the AV‑based adaptive estimation 
for measurement covariance

Using the AV15 error model, the impact of AV-based 
adaptive estimation for GNSS measurement covariance 
on the overall navigation accuracy is compared to the 
standard KF using either 1 Hz RTK or 1 Hz SPP during 
the field test.

RTK Aiding

Guaranteed by cycle slip detection and ambiguity resolu-
tion, the high quality of RTK solution is suitable for the 
proposed AV-based AKF. Figure 9 compares the inte-
grated navigation errors between the standard KF and 
AV-based AKF, in which solid red lines are below the 
blue dotted line. Their root-mean-square errors (RMSEs) 
are compared in Table 7, which shows 47.25 and 15.47% 
overall improvements in position and attitude. Brought 
by adaptive estimation for RTK covariance, the accuracy 
enhancement demonstrates the effectiveness of the pro-
posed AV-based AKF method.

SPP Aiding

For SPP/MEMS-INS integration, it is necessary to detect 
and control the possible outliers before applying the 
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Table 7  RMSE comparison between KF and AV-based AKF in RTK/
MEMS-INS

Position (m) Velocity (m/s) Attitude (deg)

KF 0.0891 0.0506 0.1383
AV-based AKF 0.0470 0.0470 0.1169

1000 1500 2000 2500
0

10

20

P
os

iti
on

 (m
)

1000 1500 2000 2500

0.2

0.4

V
el

oc
ity

 (m
/s

)

500 1000 1500 2000 2500 3000
0

0.5

Time (sec)

A
tti

tu
de

 (d
eg

)

KF RKF AV-based AKF

Fig. 10  Error comparison among KF, RKF and AV-based AKF in 
SPP/MEMS-INS using AV15 error model. Plots from top to bottom 
show the errors of position, velocity and attitude. For each plot, the 
vertical axis represents the norms of corresponding error vectors

Table 8  RMSE comparison among KF, RKF, and AV-based AKF in 
SPP/MEMS-INS

Position (m) Velocity (m/s) Attitude (deg)

KF 5.1852 0.1465 0.2131
RKF 4.5665 0.1387 0.2197
AV-based AKF 4.2497 0.0645 0.1735
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AV-based AKF method. Figure 10 shows the navigation 
errors among standard KF, robust KF, and AV-based AKF. 
Their RMSEs are compared in Table 8.

Figure 10 shows the standard KF (black dashed) is very 
sensitive to measurement outliers; while the proposed robust 
KF (blue dotted) is immune from outlying GNSS results, 
ensuring stability and reliability. Table 8 indicates the pro-
posed robust KF also slightly improves overall accuracy 
by 11.93% for position and 5.32% for velocity. Thanks 
to POS830 post-processing reference, Fig. 11 shows the 
existence of SPP outliers in position and velocity, with the 
detected outlier epochs marked by red stars.

Figure 10 shows that almost all the red lines are below the 
blue dotted lines, indicating further improvement caused by 
adaptive measurement covariance estimation. Table 8 shows 
there are significant accuracy improvements of 18.04, 55.97, 
and 18.58% in position, velocity and attitude, compared with 
the standard KF scheme.

The accuracy enhancements in both RTK and SPP cases 
demonstrate the effectiveness of the proposed AV-based 
AKF method.

Impact of the combined algorithm

For the combined algorithm of both stochastic modeling 
and adaptive estimation, its evaluation is achieved by the 
comparison with traditional AR method, AV-based error 
modeling only, AV-based AKF only cases.

RTK Aiding

Table 9 summarizes the results of traditional AR method, 
AV-based error modeling only, AV-based AKF only, and 
the combined case for navigation errors with RTK aiding.

It is obvious that the combined case of sensor error AV-
based modeling and adaptive covariance estimation provides 
better results than the individual approaches. Compared with 

the AV-based AKF only case, it only improves attitude accu-
racy by 34.62% with slightly degraded position and velocity 
accuracy. However, it is unsafe to conclude that AR model is 
superior to AV model only from the above position accuracy 
comparison just as is done in most classical literature (Nas-
sar and El-Sheimy 2006; Noureldin et al. 2009; Quinchia 
et al. 2013). It should be stressed that the IMU error mod-
eling should be evaluated by overall navigation performance 
instead of only position accuracy.

Compared with the AV15 only case, the combined solu-
tion improves accuracy in position, velocity and attitude by 
47.25, 7.11 and 15.47%. It should be observed that most of 
the improvements come after AV-based AKF. This indicates 
that both approaches should be applied together as a com-
bined algorithm to improve overall navigation accuracy. As 
expected, the combined algorithm definitely accomplishes 
overall accuracy improvements in position, velocity, and atti-
tude by about 18, 8, and 38%, compared with standard KF 
using AR(1) error model method.

SPP Aiding

Table 10 summarizes the results of the same four cases for 
navigation errors but with SPP aiding.

It is obvious that the combined case provides better 
results than any individual approach. Compared with the 
AV-based AKF only case, it improves velocity and attitude 
accuracy by 38.57 and 46.55% with almost identical position 
accuracy. Compared with the AV15 only case, the combined 
solution improves accuracy by 18.04% (position), 55.97% 
(velocity) and 18.58% (attitude). It shows that most improve-
ments come after AV-based AKF, which also indicates the 
potential of the combined algorithm in overall integrated 
accuracy enhancements. As expected, the combined algo-
rithm accomplishes overall accuracy improvements by 
about 15.10% (position), 75.30% (velocity), and 76.67% 

Table 9  RTK/MEMS-INS 
RMSE comparison before and 
after AV-based error modeling 
and AV-based AKF

Position (m) Velocity (m/s) Attitude (deg)

KF: using AR(1) model 0.0572 0.0509 0.1872
AV-based AKF: using AR(1) model 0.0401 0.0476 0.1788
KF: using AV15 model 0.0891 0.0506 0.1383
AV-based AKF: using AV15 model 0.0470 0.0470 0.1169

Table 10  SPP/MEMS-INS 
RMSE comparison before and 
after AV-based error modeling 
and AV-based AKF

Position (m) Velocity (m/s) Attitude (deg)

KF: using AR(1) model 5.0054 0.2611 0.7437
AV-based AKF: using AR(1) model 4.2351 0.1050 0.3246
KF: using AV15 model 5.1852 0.1465 0.2131
AV-based AKF: using AV15 model 4.2497 0.0645 0.1735
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(attitude), compared with standard KF using AR(1) error 
model method.

Conclusions

Based on Allan variance technique, we have suggested an 
accuracy enhancement method for accurate MEMS-based 
GNSS/INS data fusion from two levels. The first is at the 
level of inertial sensor by proper stochastic modeling for the 
residual bias errors based on AV analysis. The second lies at 
the level of GNSS by adaptively estimating the error covari-
ance based on AV calculation. It has been demonstrated that 
AV-based error models show superior performance to AR 
model for relatively long GNSS outages which may fre-
quently occur in urban areas. Moreover, it has been shown 
that considerable accuracy enhancements can be obtained 
by augmenting the AV-based adaptive estimation for GNSS 
error covariance within innovation-based robust Kalman fil-
ter. Finally, it is suggested to apply the combined algorithm 
of both AV-based stochastic modeling and adaptive covari-
ance estimation into GNSS/MEMS-INS loose integration. 
Using field tests, overall navigation errors are examined and 
compared using AV-based error modeling only, AV-based 
adaptive covariance estimation only, and the combined algo-
rithm. The results show that navigation errors are reduced by 
about 18% (position), 8% (velocity), and 38% (attitude) for 
RTK/MEMS-INS, and by about 15% (position), 75% (veloc-
ity) and 77% (attitude) for SPP/MEMS-INS integration by 
the combined algorithm, compared with corresponding tra-
ditional counterparts.

Acknowledgements The authors are grateful to Mr. Liansheng Meng, 
the senior engineer of the Flight Dynamics and Control Center, for 
his valuable work in system integration, and this makes the results 
of this paper stand the test of practice. The first author also greatly 
acknowledges the support provided by the GPS Center of Wuhan Uni-
versity. Prof. Xiaoji Niu and Dr. Qijin Chen in this center should be 
acknowledged, in particular, for their constructive advice and support 
in the test assessment.

References

Ban Y, Zhang Q, Niu X, Guo W, Zhang H, Liu J (2013) How the 
integral operations in INS algorithms overshadow the contribu-
tions of IMU signal denoising using low-pass filters. J Navig 
66(6):837–858

Brown R, Hwang P (1997) Introduction to random signals and applied 
Kalman filtering. Wiley, New York

Chang G (2014a) Robust Kalman filtering based on Mahalanobis dis-
tance as outlier judging criterion. J Geod 88(4):391–401

Chang G (2014b) On Kalman filter for linear system with colored 
measurement noise. J Geod 88(12):1163–1170

Chen Q, Niu X, Zhang Q, Cheng Y (2015) Railway track irregularity 
measuring by GNSS/INS integration. Navigation 62(1):83–93

Ding W, Wang J, Rizos C (2007) Improving adaptive Kalman estima-
tion in GPS/INS integration. J Navig 60(3):517–529

El-Sheimy N, Nassar S, Schwarz K (2004) Modeling inertial sen-
sor errors using autoregressive (AR) models. Navigation 
51(1):259–268

El-Sheimy N, Hou H, Niu X (2008) Analysis and modeling of iner-
tial sensors using Allan Variance. IEEE Trans Instrum Meas 
57:140–149

Groves P (2008) Principles of GNSS, inertial, and multisensor inte-
grated navigation systems. Artech House, London

Han S, Wang J (2011) Quantization and colored noises error mod-
eling for inertial sensors for GPS/INS integration. IEEE Sens 
J 11(6):1493–1503

IEEE (2008) Standard specification format guide and test procedure 
for single-axis interferometric fiber optic gyros, IEEE Std.952-
1997 (R2008)

Lv H, Zhang L, Wang D, Wu J (2014) An optimization iterative 
algorithm based on nonnegative constraint with application to 
Allan variance analysis technique. Adv Sp Res 53(5):836–844

Mohamed A, Schwarz K (1999) Adaptive Kalman filtering for INS/
GPS. J Geod 73(4):193–203

Nassar S, El-Sheimy N (2006) A combined algorithm of improving 
INS error modeling and sensor measurements for accurate INS/
GPS navigation. GPS Solut 10(1):29–39

Niu X, Nasser S, Goodall C, El-Sheimy N (2007) A universal 
approach for processing any MEMS inertial sensor configura-
tion for land-vehicle navigation. J Navig 60(2):233–245

Niu X, Chen Q, Zhang Q, Zhang H, Niu J, Chen K, Shi C, Liu J 
(2014) Using Allan variance to analyze the error characteristics 
of GNSS positioning. GPS Solut 18(2):231–242

Noureldin A, Karamat T, Eberts M, El-Shafie A (2009) Perfor-
mance enhancement of MEMS-based INS/GPS integration 
for low-cost navigation applications. IEEE Trans Veh Technol 
58(3):1077–1096

Petovello M, O’Keefe K, Lachapelle G, Cannon M (2009) Considera-
tion of time-correlated errors in a Kalman filter applicable to 
GNSS. J Geod 83(1):51–56

Quinchia A, Falco G, Falletti E, Dovis F, Ferrer C (2013) A compari-
son between different error modeling of MEMS applied to GPS/
INS integrated systems. Sensors 13(8):9549–9588

Radi A, Li Y, El-Sheimy N (2017) Temperature variation effect on 
the stochastic performance of smartphone sensors using Allan 
variance and generalized method of wavelet moments. In: Pro-
ceedings on ION ITM 2017, Institute of Navigation, Monterey, 
California, pp 1242–1255

Shin E (2001) Accuracy improvement of low cost INS/GPS for land 
applications. In: Master Thesis, University of Calgary, Alberta

Shin E, El-Sheimy N (2007) Unscented Kalman filter and attitude 
errors of low-cost inertial navigation systems. Navigation 
54(1):1–9

Stebler Y, Guerrier S, Skaloud J, Victoria-Feser MP (2014) Gener-
alized method of wavelet moments for inertial navigation filter 
design. IEEE Trans Aerosp Electron Syst 50(3):2269–2283

Wang K, LI Y, Rizos C (2012) Practical approaches to Kalman fil-
tering with time-correlated measurement errors. IEEE Trans 
Aerosp Electron Syst 48(2):1669–1681

Xie G (2009) Principles of GPS and receiver design. Publishing 
House of Electronics Industry, Beijing

Yan G, Li S, Qin Y (2012) Testing and data analysis for inertial 
instrument. National Defense Industry Press, Beijing (in 
Chinese)

Yang Y, Gao W (2006) An optimal adaptive Kalman filter. J Geod 
80(4):177–183

Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinematic 
geodetic positioning. J Geod 75(2):109–116



 GPS Solutions (2018) 22:53

1 3

53 Page 14 of 14

Zhang Q, Niu X, Chen Q, Zhang H, Shi C (2013) Using Allan variance 
to evaluate the relative accuracy on different time scales of GNSS/
INS systems. Meas Sci Technol 24(8):085006

Zhang X, Zhu F, Tao X, Duan R (2017) New optimal smoothing 
scheme for improving relative and absolute accuracy of tightly 
coupled GNSS/INS integration. GPS Solut 21:861–872

Dingjie Wang is a Ph.D. candi-
date at National University of 
Defense Technology (NUDT). 
He received the B.E. degree in 
electrical engineering from 
Zhengzhou University in 2011, 
and M.E. degree in aerospace 
engineering from NUDT in 
2013. His current research inter-
ests mainly focus on INS and 
GNSS/INS integration.

Yi Dong is a Ph.D. candidate at 
NUDT. He received his bache-
lor’s degree in Northwestern 
Polytechnical University in 
2013. His current research 
mainly focuses on GNSS/INS 
integration applications.

Qingsong Li is a Ph.D. candidate 
at NUDT. He received his bach-
elor’s and master’s degrees in 
aerospace engineering from 
NUDT in 2014 and 2016, respec-
tively. His main interest is GNSS 
integrity monitoring.

Zhaoyang Li received his bach-
elor degree in aerospace engi-
neering from NUDT in 2015 and 
currently works as a graduate 
student. His interest is GNSS/
INS integration algorithm.

Jie Wu is the professor and head 
of FDC Center at NUDT. He 
graduated from PLA Surveying 
and Mapping College in 1987 
and obtained his Ph.D. degree 
from Shanghai Astronomical 
Observatory in 1996. His 
research interests include GNSS 
precise positioning and integrity 
monitoring.


	Using Allan variance to improve stochastic modeling for accurate GNSSINS integrated navigation
	Abstract
	Introduction
	Methodology
	AV analysis method
	Improving stochastic modeling for inertial sensor errors with AV analysis
	Transformation of quantization noise
	Stochastic modeling of colored noises
	Discussions on augmentation of the KF with AV-based models

	Improving GNSS stochastic modeling with AV calculation
	Robust Kalman filtering based on normalized measurement innovation
	AV-based adaptive estimation for measurement covariance


	Experimental work
	Equipment
	Test setup
	Data acquisition and processing

	Results and analysis
	AV analysis of MEMS-based inertial sensors
	Impact of the AV model over the AR model
	Impact of the AV-based adaptive estimation for measurement covariance
	RTK Aiding
	SPP Aiding

	Impact of the combined algorithm
	RTK Aiding
	SPP Aiding


	Conclusions
	Acknowledgements 
	References




