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Abstract
GLONASS ambiguity resolution in differential real-time kinematic (RTK) processing is affected by inter-frequency phase 
biases (IFPBs). Previous studies empirically determined that IFPBs are linearly dependent on the frequency channel number 
and calibration values have been derived to mitigate these biases for geodetic receivers. The corresponding IFPB-constrained 
model is currently the de facto approach in RTK, but the growing market of GNSS receivers, and especially low-cost receiv-
ers, makes calibration and proper handling of metadata a complex endeavor. Since IFPBs originate from timing offsets occur-
ring between the carrier phase and the code measurements, we confirm other studies that show that IFPBs are not exactly 
linearly dependent on the frequency channel number, but rather linearly dependent on the channel wavelength, which calls 
for a modification in the GLONASS functional model. As an alternative to calibration, we revisit a calibration-free method 
for GLONASS ambiguity resolution and provide new insights into its applicability. A practical experiment illustrates that 
the calibration-free approach can offer better ambiguity fixing performance when the uncertainty on the IFPB parameter is 
large, unless partial ambiguity resolution is performed.

Keywords Global navigation satellite systems (GNSS) · GLONASS · Inter-frequency biases · Ambiguity resolution

Introduction

With the modernization of the GLONASS constellation, 
satellites of the GLONASS-M+ and GLONASS-K1 types 
broadcast signals on a third frequency using code division 
multiple access (CDMA) (Urlichich et al. 2011). However, 
the current constellation composed mainly of the GLO-
NASS-M satellites still relies on frequency division multi-
ple access (FDMA). This method of satellite identification 
ensures that all GLONASS satellites in view transmit signals 
at a slightly different frequency.

Timing inconsistencies in GNSS signals have long been a 
concern for GNSS applications. It was recognized early that 
signals tracked at different frequencies are subject to inter-
frequency biases affecting ionospheric studies (Lanyi and 
Roth 1988). Timing variations between carrier phase and 
code observations were also found to impact receiver clock 
estimates for time transfer and cause day-boundary jumps 
(Defraigne and Bruyninx 2007). By defining clock estimates 

relying solely on phase measurements, Collins et al. (2010) 
could demonstrate significant intra-day and longer-term 
variations in clock estimates involving code measurements. 
Apart from these timing fluctuations between signals, Slee-
waegen et al. (2012) explained that a constant offset between 
carrier phase and code observations could occur within 
the digital signal processing section of a GNSS receiver. 
This timing discrepancy manifests itself as a linear bias in 
GLONASS carrier phase ambiguities due to the different 
wavelengths of each satellite and leads to inter-frequency 
phase biases (IFPBs). Geng et al. (2017) coined the term 
differential code-phase bias (DCPB) for this timing error 
and emphasized that the concepts of IFPB and DCPB are 
not equivalent. This distinction is the key point underlying 
our derivations of the functional models.

The satellite-dependent wavelengths associated with 
GLONASS satellites were also found to be problematic for 
ambiguity resolution (Wang et al. 2001). Due to FDMA, 
forming double-differenced observations in units of meters 
between pairs of receivers and satellites does not cancel the 
ambiguity of the reference satellite. A common approach for 
eliminating this extra unknown from the system of equations 
is to compute its value based on a combination of carrier 
phase and code measurements (Mader et al. 1995). However, 
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due to a misalignment of the phase and code observables 
within receivers, this procedure leads to IFPBs. From zero-
length baseline tests, it was determined empirically that 
IFPBs between receivers of different manufacturers have 
a linear dependency with respect to the frequency channel 
number (Wanninger and Wallstab-Freitag 2007; Al-Shaery 
et al. 2013). Wanninger (2012) also analyzed a larger sample 
of receivers running various firmware versions and equipped 
with different antenna models. That study played a key role 
in GLONASS RTK by proposing manufacturer-specific 
calibration values to be used as a priori corrections to the 
carrier phase observables and recommended estimating a 
residual IFPB parameter to absorb unit-specific discrepan-
cies from these ensemble means. Providing a priori cali-
bration values for the code-phase bias is now an accepted 
solution in the high-precision GNSS industry, and the Radio 
Technical Commission on Maritime (RTCM) Services has 
defined message type 1230 to exchange such information 
when available.

With the rapid growth in low-cost GNSS receivers, it is 
a reasonable assumption that not all GLONASS-enabled 
receivers have calibrated IFPBs and there is no guaran-
tee that the exchange of metadata will remain consistent. 
Therefore, Banville et al. (2013) proposed a method for 
GLONASS ambiguity resolution of mixed receiver types 
that does not require any external calibration. The approach 
requires a re-parameterization that allows for the ambiguity 
of the reference satellite to be explicitly estimated in the 
positioning filter. This is achieved by selecting two reference 
satellites that, preferably, have adjacent frequency channel 
numbers. Recently, Odijk and Wanninger (2017) claimed 
that this model is only applicable for identical receiver pairs. 
We will demonstrate that the claim is unfounded in practice.

To demonstrate the applicability of the calibration-free 
model, the GLONASS functional model for short-base-
line RTK processing is first introduced. Two methods for 
removing the inherent rank deficiency of this system are 
described: The first one is the IFPB-constrained model with 
an emphasis on the distinction between the IFPB and DCPB 
representations. The calibration-free approach of Banville 
et al. (2013) is then revisited to explicitly show how IFPBs 
between receivers are absorbed by the model parameters, 
regardless of receiver type. Numerical and field examples 
show how each model recovers integer GLONASS ambigui-
ties in practice.

GLONASS functional model

Since our focus is on short-baseline differential position-
ing, atmospheric effects induced by the troposphere and 
the ionosphere are neglected in subsequent derivations. 
For simplification purposes, the baseline components are 

not included in the model, although it can be shown that 
this omission has no impact on the conclusions. Under 
these assumptions, the GLONASS functional model for 
carrier phase (L) and code (C) observations to satellite j 
reduces to a simple timing-equation form only and reads:

where subscript AB represents the single-differenced opera-
tor (⋅)AB = (⋅)B − (⋅)A between two stations (A and B). The 
receiver clock offset is denoted as dT  , and the integer carrier 
phase ambiguity is represented by N and is multiplied by the 
wavelength � . Since GLONASS uses FDMA to identify sat-
ellites, the wavelength of the carrier differs for every satellite 
in view and can be expressed as:

where c is the speed of light, f  is the frequency of the car-
rier (1602 MHz for the L1 link), k is the frequency chan-
nel number, and Δf  is the frequency variation per channel 
(0.5625 MHz for L1).

Different clock parameters are specified for the phase 
and code observables in (1) and (2), as indicated by the 
parameter subscripts L and C, respectively. This distinc-
tion is necessary primarily to model the DCPB, i.e., the 
timing delays induced by the digital signal processing 
(DSP) component of GNSS receivers (Sleewaegen et al. 
2012). Different timing references for the carrier and code 
observable can, therefore, be modeled as:

Equation (2) also contains receiver- and satellite-specific 
hardware delays referred to as inter-frequency code biases 
(IFCBs). These biases are significant and can reach the 
meter level (Felhauer 1997; Yamada et al. 2010). While 
similar timing delays theoretically exist for carrier phase 
measurements as well, their magnitude has been shown to be 
at the sub-millimeter level, at least for Septentrio receivers 
(Sleewaegen et al. 2012). Empirical tests using data from 
non-Septentrio receivers, presented in subsequent sections, 
confirm that this assumption is a reasonable one.

The system of (1) and (2) is rank deficient for both car-
rier phase and code observables. Since IFCBs are physi-
cal quantities contained within a predefined interval of 
a few meters, a priori constraints can be applied to each 
IFCB parameter to remove the singularity of (2). Another 
rank deficiency occurs in (1) due to the linear dependency 
between the phase clock and the ambiguities. A common 

(1)L
j

AB
= dTAB,L + �

jN
j

AB
;

(2)C
j

AB
= dTAB,C + IFCB

j

AB
,

(3)�
j =

c

f + kjΔf
,

(4)dTAB,L = dTAB,C + DCPBAB.



GPS Solutions (2018) 22:52 

1 3

Page 3 of 12 52

approach for solving this issue for CDMA-based systems 
consists of redefining the phase-clock parameter as:

where superscript “1” refers to a selected reference satel-
lite. Introducing (5) into the observation equation of satellite 
n > 1 yields,

with

As a consequence of FDMA, this re-parameterization did 
not eliminate the rank deficiency of the system because the 
single-differenced ambiguity of the reference satellite 

(
N1

AB

)
 

is still present in (6). The following sections present two 
methods for dealing with this singularity.

The IFPB‑constrained model

A common approach for removing the FDMA singularity is 
to compute an approximate value for N1

AB
 using carrier phase 

and code observations (Mader et al. 1995):

When using receivers from the same manufacturer, the 
single-differenced DCPB and IFCB terms typically vanish 
and residual errors are negligible. However, when mixing 
receiver types, no assumptions can be made, so that these 
terms remain in the functional model when introducing (8) 
into (6):

The magnitude of IFCB1

AB
 is typically below 10 m (Shi 

et al. 2013; Aggrey and Bisnath 2016), while DCPBs could 
exceed 100 m (Sleewaegen et al. 2012). Equation (9) can be 
simplified to:

by using

(5)dTAB,L = dTAB,L + �
1N1

AB
,

(6)
Ln
AB

= dTAB,L + �
nNn

AB
− �

1N1

AB
= dTAB,L −

(
�
1 − �

n
)
N1

AB
+ �

nN1n
AB

(7)N1n
AB

= Nn
AB

− N1

AB
.

(8)Ñ1

AB
=

L1
AB

− C1

AB

𝜆1
= N1

AB
+

DCPBAB − IFCB
1

AB

𝜆1
.

(9)

L̃
n

AB
= L

n

AB
+
(
𝜆
1 − 𝜆

n
)
Ñ

1

AB

= dT
AB,L +

(
𝜆
1 − 𝜆

n
)
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(
DCPB

AB
− IFCB

1

AB

)
+ 𝜆

n
N

1n

AB
.

(10)
L̃n
AB

= dTAB,L + 𝜆
n
⋅

(
kn − k1

)
⋅

Δf

c
⋅

(
DCPBAB − IFCB

1

AB

)
+ 𝜆

nN1n
AB

(11)
(
�
1 − �

n
)

�1
=

(
kn − k1

)
⋅ Δf

f + knΔf
.

Since Δf  is constant, DCPBAB is satellite independent, and 
IFCB

1

AB
 is introduced in the functional model of all satellites, 

these terms can be grouped together as a parameter that is 
typically referred to as the IFPB:

Substituting (12) into (10) gives the functional model used 
as the basis for the IFPB-constrained model:

A common approximation, derived from empirical studies, 
consists of setting:

Factoring the approximation of (14) into the rigorous model 
of (13), we obtain the widely used functional model for 
GLONASS modeling IFPBs as a linear function of the fre-
quency channel number:

where

As also discussed by Geng et al. (2017), the formulation 
of (15) using 

(
kn − k1

)
 as a partial derivative for the IFPB 

parameter is incorrect, although the impact of this approxi-
mation is negligible in practical terms. We note here that 
the GLONASS RTK model of Odijk and Wanninger (2017) 
assumes the IFPB parameter is inherent to the observable. 
However, there is no justification for introducing this param-
eter a priori, that is before computing the reference ambigu-
ity with code observations.

The a priori values for �′
AB

 derived from a dense network 
of receivers (Wanninger 2012), zero-length baselines (Al-
Shaery et al. 2013), or even global networks of receivers 
(Tian et al. 2015; Geng et al. 2017) serve the purpose of 
removing the bulk of the IFPB error. Even though this 
quantity is quite repeatable from unit to unit of the same 
manufacturer, variations in the order of a few millimeters per 
channel were noticed. These slight deviations do not prevent 
the tightly constraining of this parameter in the positioning 
filter and achieving fast ambiguity resolution.

If no a priori calibration values are available for a given 
receiver type, a looser initial constraint must be applied to the 
IFPB parameter. Since this parameter is not directly observ-
able without fixing at least one double-differenced ambigu-
ity, the IFPBs will propagate into the estimated ambiguities 
and will corrupt their integer nature (Takac 2009). When the 
rover position is precisely determined, as in case of long obser-
vation sessions, Habrich et al. (1999) showed that it is often 
possible to fix a first GLONASS ambiguity whose channel 

(12)�AB =
Δf

c
⋅

(
DCPBAB − IFCB

1

AB

)
.

(13)L̃n
AB

= dTAB,L + 𝜆
n
⋅

(
kn − k1

)
⋅ 𝛿AB + 𝜆

nN1n
AB
.

(14)�
�
AB

≈ �
1
⋅ �AB.

(15)L̃n
AB

= dT̄AB,L +
(
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�
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separation with respect to the reference satellite 
(
kn − k1

)
 is 

small, preferably ± 1. In this case, the standard deviation of 
�
′
AB

 drops significantly and the integer nature of other ambi-
guities is revealed. The same principle can be applied when 
the precise position is obtained from a GPS ambiguity-fixed 
solution (Yao et al. 2017). Since the uncertainty in the IFPB 
parameter is reflected in the ambiguity covariance matrix, fix-
ing ambiguities using integer least squares with an ambiguity 
decorrelation procedure, e.g., LAMBDA (Teunissen 1993), 
still allows for fast ambiguity resolution when the IFPB is 
loosely constrained. However, we will show that this approach 
is not necessarily optimal.

The calibration‑free model

The main drawback of the previous model is that it is inher-
ently rank deficient. The first-order system of equations is 
singular unless a second-order a priori constraint is applied 
to the IFPB parameter. To solve this issue and avoid the need 
for external calibration, Banville et al. (2013) proposed a re-
parameterized functional model using a second reference sat-
ellite to remove the rank deficiency of the system. The first 
reference satellite provides a timing datum for the phase-clock 
parameter, see (5). A second reference satellite, where no dou-
ble-differenced ambiguity parameter is estimated, allows for 
the explicit estimation of the reference satellite ambiguity, such 
that (6) becomes:

with

Introducing (5) and (18) into (6) for satellite n > 2 leads to:

where

The double-differenced ambiguities of (20) will necessar-
ily be integers when ||k1 − k2|| = 1 . This condition implies 
that reference satellites should not be selected arbitrarily, 
but should preferably have adjacent frequency channel num-
bers. With a clear sky view, this condition is satisfied in most 
cases. This condition is, however, not a prerequisite for the 
method to be applicable. For instance, multiplying each side 
of (20) by 

(
k1 − k2

)
 gives:

(17)L2
AB

= dTAB,L −
(
𝜆
1 − 𝜆

2
)
N̄1

AB

(18)N̄1

AB
= N1

AB
−

𝜆
2

𝜆1 − 𝜆2
N12

AB
.

(19)Ln
AB

= dTAB,L −
(
𝜆
1 − 𝜆

n
)
N̄1

AB
+ 𝜆

nN̄1n
AB
,

(20)N̄1n
AB

= N1n
AB

−

[
k1 − kn

k1 − k2

]
N12

AB
.

Introducing (21) into (19) leads to:

This equation shows that, although the wavelength of the 
estimated ambiguities is divided by the channel spacing 
between the two reference satellites, the integer nature of 
the ambiguities is not affected. When the channel separation 
is large, the short wavelengths will result in large ambiguity 
variances which should be taken into consideration by the 
ambiguity validation step.

It should be noted that since:

with f∕Δf = 2848 for both L1 and L2, the parameter N̄1

AB
 

also has, in principle, an integer nature. The denominator (
k2 − k1

)
 could again be factored out to preserve the integer 

nature when the channel numbers for the reference satel-
lites are not adjacent. However, in practice, since the partial 
derivative for this parameter is very small, it is not possible 
to confidently fix its value to an integer; hence, it is consid-
ered to be real-valued.

It is important to stress that the derivations for the calibra-
tion-free model do not require code measurements to remove 
the rank deficiency of the system. Therefore, contrary to the 
IFPB-constrained model, the calibration-free approach is 
not affected by IFPBs originating from the DCPB. While 
inter-frequency carrier phase biases from other sources could 
impact the validity of the approach, no study has demon-
strated their existence so far. For the sake of completeness, 
“Appendix” shows that the calibration-free model can still 
provide integer ambiguities in the presence of phase biases 
as long as they can be modeled as a function of �nkn.

To summarize, the system of equations for this model is:

The calibration-free model differs from the IFPB-con-
strained model in that no a priori calibration values are 
required for the estimated ambiguities to converge to inte-
gers, which makes it particularly well suited for low-cost 
receivers.

(21)
̄̄N1n
AB

=
(
k1 − k2

)
N̄1n
AB

=
(
k1 − k2

)
N1n
AB

−
(
k1 − kn

)
N12

AB
.

(22)Ln
AB

= dTAB −
(
𝜆
1 − 𝜆

n
)
N̄1

AB
+

𝜆
n

(
k1 − k2

) ̄̄N1n
AB
.

(23)�
2

�1 − �2
=

f∕Δf + k1

k2 − k1

(24)L1
AB

= dTAB,L

(25)L2
AB

= dTAB,L −
(
𝜆
1 − 𝜆

2
)
N̄1

AB

(26)Ln
AB

= dTAB,L −
(
𝜆
1 − 𝜆

n
)
N̄1

AB
+ 𝜆

nN̄1n
AB
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Connection between models

The calibration-free model yields estimable double-differ-
enced ambiguities that are linear combinations of ambigui-
ties. In this section, we show that these linear combinations 
cancel the effects of �AB when applied to the IFPB-con-
strained model. Let us recall the IFPB-constrained model 
as defined in (13):

Since the IFPB parameter is not estimable before a first dou-
ble-differenced ambiguity is fixed to an integer, the satellite-
specific contribution of the IFPB parameter propagates into 
the estimated ambiguities. The resulting biased ambiguities, 
denoted by the hat symbol, are:

For example, the estimated double-differenced ambiguities 
for satellites 2 and 3 are:

Multiplying (29a) by 
(
k3 − k1

)
 and (29b) by 

(
k2 − k1

)
 will 

nullify the IFPB when differencing the equations yielding a 
bias-free ambiguity:

The transformation of (30) can be represented in matrix form 
as:

where n̂ is the vector of estimated non-integer ambigui-
ties and T is a (n − 1, n) matrix, where n is the number of 
double-differenced ambiguities. The matrix T contains the 
coefficients defining the linear combinations of ambiguities 
required to cancel any frequency-dependent effects. Through 
variance propagation, the covariance matrix ( Q ) of the ambi-
guities can be defined as:

Matrix T is the transformation matrix that converts real-
valued double-differenced ambiguities from the IFPB-
constrained model to the integer-valued ambiguities of the 
calibration-free model. It plays a similar role as the decor-
relation transformation of LAMBDA, although it is not an 
admissible ambiguity transformation since it is not invertible 

(27)L̃n
AB

= dTAB,L + 𝜆
n
⋅

(
kn − k1

)
⋅ 𝛿AB + 𝜆

nN1n
AB
.

(28)N̂1n
AB

= N1n
AB

+
(
kn − k1

)
⋅ 𝛿AB.

(29a)N̂12

AB
= N12

AB
+
(
k2 − k1

)
⋅ 𝛿AB

(29b)N̂13

AB
= N13

AB
+
(
k3 − k1

)
⋅ 𝛿AB.

(30)
N

123

AB
=
(
k
3 − k

1
)
N̂

12

AB
−
(
k
2 − k

1
)
N̂

13

AB

=
(
k
3 − k

1
)
N

12

AB
−
(
k
2 − k

1
)
N

13

AB
.

(31)n̄ = Tn̂,

(32)Qn̄ = TQn̂T
T
.

(Teunissen 1995). This is because it is possible to go from 
the IFPB-constrained model to the calibration-free model, 
but not the opposite since the transformation cancels IFPBs 
which cannot be recovered. This is directly analogous to the 
double-differenced observation transformation that cancels 
the station and satellite clock parameters.

Since the ambiguity covariance matrix contains the 
correlation information associated with the uncertainty 
of the IFPB parameter, the decorrelation procedure of 
LAMBDA typically forms IFPB-canceling linear combi-
nations. However, since only n − 1 independent bias-free 
ambiguities can be formed, partial ambiguity resolution 
should be performed when the uncertainty on the IFPB 
parameter is large.

Numerical examples

The application of the two models introduced above is 
presented using GLONASS data from both geodetic-
quality receivers and low-cost single-frequency receivers. 
Data from geodetic receivers are analyzed first. A dataset 
collected on January 1, 2012, at the University of New 
Brunswick (UNB) campus in Fredericton, Canada, used 
NovAtel OEMV3 (UNBN) and Trimble NetR5 (UNB3) 
receivers connected to the same antenna. Therefore, dif-
ferencing measurements between the two receivers cancel 
all error sources, except timing offsets (clocks and biases) 
and carrier phase ambiguities. From previous calibration 
sessions, the inter-frequency phase biases between these 
receiver types have been determined to be 30 mm/channel 
(Wanninger 2012).

To better demonstrate the intricacies of each model, a sin-
gle epoch of data, 00:00:00 GPST, is analyzed and only four 
satellites are selected. Table 1 shows the single-differenced 
carrier phase ( Lj

AB
 ) on L1 converted to meters using the 

wavelength ( �j ) as well as the single-differenced code meas-
urements ( Cj

AB
 ). These values were computed directly from 

observations contained in the RINEX files. The frequency 
channel number of each satellite ( kj ) is also provided.

Table 1  Information regarding selected GLONASS satellites from 
the UNBN-UNB3 baseline on January 1, 2012

ID PRN kj �
j

L
j

AB
C
j

AB

1 R11 0 0.18714 14.400 15.185
2 R12 − 1 0.18720 18.300 14.802
3 R13 − 2 0.18727 − 10.939 14.733
4 R01 1 0.18707 185.412 15.154
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The IFPB‑constrained model

In the IFPB-constrained model, the ambiguity of the refer-
ence satellite is computed following (8):

The functional model follows from (13), where carrier phase 
measurements are first corrected using the ambiguity value 
computed for the reference satellite:

where �0 is an a priori constraint with a null value added to 
remove the singularity of the system. The following param-
eter estimates are obtained:

An important characteristic of (35) is that the ambigui-
ties are not close to integer values. This discrepancy can 
be attributed to the IFPBs between receiver types because 
applying the calibration value of ��

AB
= 30mm/channel to 

the ambiguities leads to:

Hence, when precise a priori calibration values are avail-
able, the ambiguity estimates better approximate to integers. 
As stated previously, these calibration values are available 
for geodetic receivers, but not necessarily for mass-market 
receivers.

The calibration‑free model

The calibration-free model, using multiple reference satel-
lites, relies solely on carrier phase measurements. Based on 
(24)–(26), the functional model is:
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(36)
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N
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⎤
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−
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�
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∕�3
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�
k
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1
�
∕�4

⎤⎥⎥⎦
=

⎡⎢⎢⎣

20.994

− 134.989

914.025

⎤⎥⎥⎦
.

For the first two satellites, no double-differenced ambiguity 
parameters are set up to allow the estimation of the receiver 
clock offset and the ambiguity of the reference satellite. 
These two satellites have adjacent frequency channel num-
ber, i.e., k1 − k2 = 1 , ensuring that ambiguities are estimated 
with the full wavelength. The estimated parameters for this 
system are:

Unlike the IFPB-constrained model, code observations do 
not play a role in removing the system’s rank deficiency. 
Therefore, carrier phase measurements are not affected by 
IFPBs and no a priori correction needs to be applied to the 
measurements for the double-differenced ambiguities to con-
verge to integers. Note that the ambiguity of the reference 
satellite 

(
N̄1

AB

)
 is not expected to converge to an integer value 

due to its short wavelength.
If we select two reference satellites with a channel spac-

ing of 2, such as satellites R11 and R13, the partial deriva-
tives for the double-differenced ambiguities need to be 
adjusted accordingly by dividing the wavelength by the 
channel spacing:

The estimated parameters following this change of reference 
satellites are:

(37)
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(38)
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The above results show that the integer property of the ambi-
guities is not impacted by a change in the reference satellites, 
although the wavelengths have been reduced.

Connection between models

Since the double-differenced ambiguities of the IFPB-con-
strained model can be transformed into the re-parameterized 
ambiguities of the calibration-free model, we apply the appro-
priate transformation matrix to the ambiguity estimates of the 
IFPB-constrained model obtained in (35):

With satellites 1 and 2 being involved in the linear combina-
tions of both transformed ambiguities, the values obtained 
are identical to the ones from (38) computed from the cali-
bration-free model. This equality is expected since the linear 
combinations are simply a different representation of the 
calibration-free model.

The same principle can be achieved using LAMBDA. By 
assigning a carrier phase standard deviation of 6 mm and with 
�
�0
= 5 cm , we obtain from (34) the estimated ambiguities and 

their covariance matrix:

The decorrelation matrix of LAMBDA is:

Applying (44) to the ambiguities of (42) and their covariance 
matrix gives:

(41)
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�
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�
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12
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N
13

AB

N
14

AB

⎤
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=

�
− 176.976

935.019

�
.

(42)n̂ =

⎡⎢⎢⎣

20.833

− 135.309

914.186

⎤⎥⎥⎦

(43)Qn̂ =

⎡⎢⎢⎣

0.073 0.144 − 0.070

0.144 0.287 − 0.142

− 0.070 − 0.142 0.073

⎤⎥⎥⎦
.

(44)Z =

⎡⎢⎢⎣

1 − 1 0

2 − 1 0

1 − 1 − 1

⎤⎥⎥⎦
.

(45)ẑ = Zn̂ =

⎡⎢⎢⎣

156.143

176.976

− 758.043

⎤⎥⎥⎦

The first decorrelated ambiguity is significantly less pre-
cise and is further from an integer value. This result can be 
understood by applying the linear combinations contained in 
the decorrelation matrix to the frequency channel numbers:

where Δki = ki − k1 which is due to the definition of the ref-
erence satellite. While the last two decorrelated ambiguities 
cancel the IFPB, the first one is still affected by this error 
source. This outcome is justified by the fact that only n − 1 
independent bias-free ambiguities can be formed. Hence, 
partial ambiguity resolution should be performed to ensure 
that poorly defined ambiguities do not affect ambiguity 
validation.

Field experiment

The ambiguity fixing performance of the IFPB-con-
strained and calibration-free models are assessed using 
data from a u-blox M8T EVK receiver and antenna col-
lected on top of the Netherlands Measurement Institute 
(NMi) building in Delft (de Bakker 2017; de Bakker and 
Tiberius 2017). IGS station DLF1 is located approxi-
mately 13 m away and is used as the base station. DLF1 
runs a Trimble NetR9 receiver and supplies data at 1 Hz 
sampling interval allowing between-station single-dif-
ferenced measurements with the u-blox receiver. For the 
purpose of our demonstration, 1 h of GPS + GLONASS 
data were selected starting at 00:00:00 GPST on August 
10, 2016, and this data set was divided into 12 independ-
ent 5-min sessions.

Two post-processed kinematic (PPK) solutions were 
obtained with identical processing settings, except for the 
handling of the IFPBs. The first solution implements the 
IFPB-constrained model of (15): Since no IFPB calibra-
tion values are available for the u-blox receiver, an a priori 
constraint of zero with an uncertainty of 5 cm was applied 
to the �′

AB
 parameter. The second solution is based on the 

calibration-free model of (24)–(26). Since the system is of 

(46)Qẑ = ZQn̂Z
T =

⎡
⎢⎢⎣

0.073 0.003 0.002

0.003 0.006 0.002

0.002 0.002 0.004

⎤
⎥⎥⎦
.

(47)Δk2 − Δk3 = 1

(48)2Δk2 − Δk1 = 0

(49)Δk2 − Δk3 − Δk4 = 0,
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full rank, no additional constraint is needed. In both of these 
models, ambiguity resolution was attempted for both GPS 
and GLONASS simultaneously. Code measurements were 
included in the system with a system-specific code-clock 
parameter as in (2), and satellite-specific IFCBs were esti-
mated for GLONASS with a priori constraints of 10 m.

The first aspect analyzed is the volume of the ambigu-
ity search space, characterized by the ambiguity dilution of 
precision (ADOP) (Teunissen and Odijk 1997), as shown 
in Fig. 1. Although the ADOP values for the IFPB-con-
strained and calibration-free solutions are quite similar, it 
can be noticed that slightly smaller values are obtained for 
the calibration-free model as the solution converges. Since 
ADOP can be computed from the product of the sequential 
conditional variances from the LDLT decomposition of the 
ambiguity covariance matrix, more insight can be obtained 
by examining the largest decorrelated conditional standard 
deviation for each model (see Fig. 2). The striking conclu-
sion is that, for the IFPB-constrained model, this conditional 
standard deviation does not converge as well as it does for 
the calibration-free model. This can be explained by the 
fact that the IFPB parameter is not observable without fix-
ing at least one double-differenced ambiguity and that, if n 
GLONASS ambiguities are estimated, only n − 1 bias-free 
linear combinations can be formed as explained in the sec-
tion on connection between models above. Therefore, with a 
loose initial constraint on the IFPB parameter, one ambiguity 
remains poorly defined. The calibration-free model is not 
affected by this issue since all parameters are observable.

A common method for validating the selected vector of 
integer ambiguities is to use the ratio test, i.e., the ratio of the 
smallest over the second-smallest ambiguity residual norms 
(Landau and Euler 1992). The smaller the ratio value, the 
better the discrimination between ambiguity vectors and the 
more confidence one should have in the fixed solution. Fig-
ure 3 presents the ratio test values for both models with the 
critical value 1/3 displayed as a horizontal green line. For the 
calibration-free model, the value for the ratio test typically 
decreases as the PPK filter converges, showing that the float 
ambiguities converge to integer values. Jumps in the ratio 
test occur when a new satellite rises or when ambiguities 
are reset. For the IFPB-constrained model, it is expected that 
the float ambiguities do not converge to integers since the 
IFPB propagates into these parameters, although the ambi-
guity covariance matrix contains the correlation informa-
tion needed to properly identify the correct integer vector. 
However, instead of decreasing over time, the ratio test for 
the IFPB-constrained model converges to a value close to 1. 
This behavior is likely due to the largest conditional ambigu-
ity variance discussed in the previous paragraph. Since this 
ambiguity is poorly defined, the incorrect integer candidate 
does not significantly increase the ambiguity residual norm. 
As this norm increases over time, the ratio of the best and 
second-best candidates, therefore, tends toward 1. Hence, 
when considering the full vector of ambiguities, the IFPB-
constrained model could lead to failures in ambiguity valida-
tion based on the ratio test which would negatively impact 
position estimates.

Fig. 1  Ambiguity dilution of 
precision (ADOP) for independ-
ent 5-min PPK solutions
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Since only n − 1 independent bias-free ambiguities 
can be formed using LAMBDA, partial ambiguity reso-
lution can mitigate validation issues associated with the 

IFPB-constrained model. Figure  4 shows the estimated 
position errors for both cases using the following strat-
egy: First, a subset of ambiguities, whose lower-bound on 
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Fig. 2  Largest sequential conditional standard deviation for independent 5-min PPK solutions
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Fig. 3  Ratio test values for ambiguity validation for independent 5-min PPK solutions
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their probability of successful fixing is greater than 0.99, is 
selected (Teunissen 1998). Then, the ratio test is applied on 
this subset with a critical value of 1/3. Ambiguity valida-
tion is performed on an epoch-by-epoch basis while always 
keeping the underlying float solution in the filter. The output 
solution at a given epoch is the fixed solution when ambi-
guities are successfully validated, or the float solution oth-
erwise. Figure 4 demonstrates that the IFPB-constrained 
solution with partial ambiguity resolution and the calibra-
tion-free solution are practically identical. Partial ambiguity 
resolution discards any poorly defined ambiguities, such as 
the conditional ambiguities referred to in Fig. 2. In such a 
case, it is only possible to fix all ambiguities with the cal-
ibration-free model, whereas the IFPB-constrained model 
needs one float ambiguity to absorb any calibration error. 
In general, the IFPB-constrained model is only equivalent 
to the calibration-free model when combined with partial 
ambiguity resolution.

Conclusion

Our derivations confirmed the discussion of Geng et al. 
(2017) showing that IFPBs originating from timing offsets 
between GLONASS carrier phase and code measurements 
do not follow the empirically derived linear relationship with 
respect to the frequency channel number. This concept has 
been extended by proposing a more rigorous partial deriva-
tive for the IFPB-constrained model which considers the 
product of the wavelength and channel number. It was also 
emphasized that IFPBs are not inherent to the phase observa-
bles, but only appear in the carrier phase functional model 
when introducing code observations.

The calibration-free model of Banville et  al. (2013) 
removes singularities in the GLONASS functional model 

by selecting two reference satellites allowing for an explicit 
estimation of the reference satellite ambiguity. Such a for-
mulation remains unaffected by IFPBs originating from the 
DCPB since it is independent from code observations. While 
inter-frequency carrier phase biases from other sources 
could impact the validity of the approach, no study has dem-
onstrated their existence so far. A numerical example and a 
field experiment further confirm the validity of the model 
and demonstrate that the claim made by Odijk and Wan-
ninger (2017) that the calibration-free model is not applica-
ble to different receiver types is unfounded.

The calibration-free model requires two reference satel-
lites to define a system of full rank. Extending the model of 
Banville et al. (2013), the constraint that these two refer-
ence satellites require adjacent frequency channel numbers 
can be relaxed, although the wavelength of the estimated 
ambiguities is reduced by their channel spacing. When using 
this model, the estimated ambiguities are shown to be lin-
ear combinations canceling IFPBs, thereby preserving their 
integer nature. A connection between the IFPB-constrained 
and calibration-free models can, therefore, be defined by an 
appropriate, unidirectional, transformation. Similarly, the 
decorrelation procedure of LAMBDA cannot cancel IFPB 
effects in all linear combinations, and partial ambiguity reso-
lution is recommended for successful ambiguity validation 
when the uncertainty on the IFPB parameter is large.

Both the IFPB-constrained and calibration-free models 
can achieve fast ambiguity resolution. However, GLONASS 
ambiguities only maintain their integer nature with the full-
rank calibration-free model and, in practice, this provides 
for a stronger and more robust solution, especially where 
IFPB calibration values are unknown or of poor quality as 
for low-cost receivers.
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Appendix

The derivations for the calibration-free model presented in 
previous sections are based on the assumption that IFPBs 
originate from the DCPB. This appendix presents an alter-
nate derivation showing that the method can also cancel 
IFPBs present in carrier phase observations, provided that 
they can be modeled with a partial derivative taking the form 
of �nkn , such that:

(50)Ln
AB

= dTAB,L + �
nNn

AB
+ �

nkn�AB.
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Fig. 4  3D position error with epoch-by-epoch partial ambiguity reso-
lution for independent 5-min PPK solutions
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Selecting a first reference satellite allows for the definition 
of the biased receiver clock:

The second reference satellite enables the estimation of the 
biased ambiguity of the reference satellite such that:

with

Inserting (51) and (53) into (50) leads to:

where N̄1n
AB

 has the same definition as (20) and:

By recognizing that:

the term � cancels from (54) and leads to a consistent sys-
tem similar to (24)–(26). The only differences are the defini-
tion of the estimable receiver clock and reference ambiguity 
parameters, as shown by (51) and (53), respectively, while 
the definition of the estimable integer ambiguities remains 
unchanged.
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