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Abstract
A GPS-aided Inertial Navigation System (GAINS) is used to determine the orientation‚ position and velocity of ground 
and aerial vehicles. The data measured by Inertial Navigation System (INS) and GPS are commonly integrated through an 
Extended Kalman Filter (EKF). Since the EKF requires linearized models and complete knowledge of predefined stochastic 
noises‚ the estimation performance of this filter is attenuated by unmodeled nonlinearity and bias uncertainties of MEMS 
inertial sensors. The Attitude Heading Reference System (AHRS) is applied based on the quaternion and Euler angles meth-
ods. A moving horizon-based estimator such as Model Predictive Observer (MPO) enables us to approximate and estimate 
linear systems affected by unknown uncertainties. The main objective of this research is to present a new MPO method based 
on the duality principle between controller and observer of dynamic systems and its implementation in AHRS mode of a 
low-cost INS aided by a GPS. Asymptotic stability of the proposed MPO is proven by applying Lyapunov’s direct method. 
The field test of a GAINS is performed by a ground vehicle to assess the long-time performance of the MPO method com-
pared with the EKF. Both the EKF and MPO estimators are applied in AHRS mode of the MEMS GAINS for the purpose 
of real-time performance comparison. Furthermore‚ we use flight test data of the GAINS for evaluation of the estimation 
filters. The proposed MPO based on both the Euler angles and quaternion methods yields better estimation performances 
compared to the classic EKF.

Keywords Moving horizon estimation · Model predictive observer · Duality · MPC · AHRS · INS/GPS

Introduction

The aim of navigation is recognition of one way from the 
other ways when there exist different options (Anderson 
1966). Strapdown Inertial Navigation System (INS) and 
satellite-based GPS are two commonly used techniques for 
vehicle positioning. Since both systems suffer from differ-
ent drawbacks‚ superior navigation performances can be 
obtained by combining these two techniques. In the INS‚ 
triple sets of accelerometers and gyroscopes are considered 
in three orthogonal directions to construct an Inertial Meas-
urement Unit (IMU). The data of IMU sensors are fed into 
attitude and navigation computers‚ which in turn perform the 
tasks of integration and other computations to produce navi-
gation outputs including position‚ velocity and orientation 
components. First‚ the rotational angles of the vehicle body 

with respect to a pre-defined reference frame are obtained 
based on gyroscopes data and earlier known angles. Next‚ 
these angles are applied to transfer the measurement vec-
tor of accelerometers to the navigation reference frame. By 
twice integration of the transferred data of accelerometers‚ 
both the position and velocity vectors are updated in the 
navigation reference frame. Owing to uncertainties of iner-
tial sensors comprising stochastic noise‚ accelerometer bias 
instability‚ gyroscope drift, and computational errors of 
microprocessor‚ the navigation errors of INS accumulate 
with time. On the other hand, a GPS receiver requires lock-
ing onto at least four satellites to determine 3-dimensional 
positioning data. The GPS signals could be interrupted by 
other sources of radio signals‚ electromagnetic fields‚ and 
especially signal blockage by high buildings and natural 
barriers. Also‚ 1 Hz (up to 20 Hz) update rate of low-cost 
receivers together with few-seconds start-up time encourage 
the navigation experts to integrate the GPS data with high-
update-rate data of INS. Hence‚ long-time errors of INS 
could be decreased by high accuracy positioning data of GPS 
receivers. We design an optimal integration filter to enhance 
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the reliability and accuracy of a manufactured MEMS GPS-
aided Inertial Navigation System (GAINS). Therefore‚ opti-
mally integrated navigation data will be obtained through 
the GAINS‚ which includes high-frequency MEMS inertial 
sensors and a low-cost 1 Hz GPS receiver.

Since the appearance of state-space theory and the esti-
mation of state variables in 1950 (Simon 2006)‚ INS has 
benefited by the state estimation filters. The optimal filters 
including Extended Kalman Filter (EKF) play the main role 
of integration in combined navigation systems (Faruqi and 
Turner 2000). According to NøRgaard et al. (2000)‚ there 
are several methods to generate optimal estimations in non-
linear system without any considerable advantages of one 
over the others. Requirements of estimation in nonlinear 
systems have led to the development of nonlinear estima-
tion theories such as EKF (Zhang and Zhao 2011; Hide et al. 
2003)‚ moving horizon estimation (Robertson et al. 1996)
‚ Bayesian estimation (Bishop and Welch 2001)‚ unscented 
Kalman filter (Wang et al. 2006), and particle filter (Fang 
and Gong 2010). The filter introduced by Kalman and Bucy 
(Bucy 1970) has been widely used in aerospace industry as 
the first optimal recursive estimator. This filter assumes the 
exact linear model of the system and Gaussian statistical 
information of the input disturbances and noises. However, 
due to unknown statistical characteristics and modeling 
uncertainties of practical systems‚ limited suboptimal solu-
tions of the filter are obtained. Despite the difficulties and 
lack of motivation of using the other estimators‚ the EKF 
is used as a good solution for complex systems. The disad-
vantage of this filter is the raising difficulties in practical 
implementations according to Wilson et al. (1998). Artifi-
cial neural networks and fuzzy logic-based methods are also 
applicable for estimation of nonlinearities and uncertainties 
in practical systems (Musavi and Keighobadi 2015).

Some major issues arise from the inability of accurate 
inclusion of physical aspects in software models and com-
putational algorithms. To overcome these difficulties‚ we 
propose the Model Predictive Observer (MPO) solution of 
the nonlinear state estimation problem. The designed MPO 
filter could be properly used in the online optimal estima-
tion of nonlinear models. Furthermore‚ the MPO technique 
incorporates probable physical constraints into the optimiza-
tion solution with high accuracy. As the main innovation‚ 
the new MPO, comprising orthogonal Laguerre functions, 
is designed for merging data of the low-cost MEMS GAINS. 
By applying the orthogonal Laguerre terms‚ the propagation 
of computational errors in the designed MPO components 
is removed.

Moving horizon estimation has acquired attention in con-
nection with the application of optimal Model Predictive 
Control (MPC) method as an estimation technique. Most 
research works in the control systems field are being car-
ried out on the design of controllers. Optimal controller 

and estimator/observer are dual in the Linear Quadratic 
Regulator (LQR) setting. Hence‚ by applying this dual-
ity‚ the observer design process is shortened by use of its 
present dual controller. Compared with a directly designed 
observer‚ a dual-based observer can be more reliable due 
to the removal of probable drawbacks and difficulties in the 
design of the earlier dual controller. To obtain algorithm 
of the proposed MPO, we apply the duality principle into 
the MPC optimization cost function. To achieve an observer 
from the common direct method (Doostdar and Keighobadi 
2012)‚ a stochastic optimization problem should be solved. 
However, by use of the equivalence and duality in estimation 
and control as well as the duality of stochastic and deter-
ministic problems‚ the observer of the stochastic problem is 
identically obtained by its dual controller in the determin-
istic problem. Here‚ an  H2 objective function including the 
orthogonal Laguerre functions is considered in the design 
of dual MPO. Configuration by the Laguerre functions leads 
to simple scaling, tuning and software programming of the 
MPO system in low-cost microcontroller chipsets.

For hardware implementation purpose, a calibrated 
MEMS IMU as well as a 1 Hz Garmin GPS receiver has 
been considered. Regarding the MEMS-grade IMU and low-
cost commercial GPS and vehicular application‚ the local 
level geographical frame with North-East-Down (NED) 
axes is considered as the navigation reference coordinate 
system. Therefore‚ the rotation rate of the earth‚ which is not 
measurable by the MEMS sensors‚ and the related negligible 
accelerations are removed from navigation algorithms. Due 
to the physical insight‚ the minimal Euler attitude-heading 
angles are commonly preferred in practical orientation repre-
sentations. Additionally, the quaternions vector is introduced 
to decrease the linearization errors and avoid the singularity 
of Euler angles dynamics near to ± 90° pitch angles. The aff-
ine dynamics of quaternions related to gyroscope data deals 
well with the structure of EKF. Strapdown 3-axis magnetom-
eters are applied to measure the heading/yaw angle‚ since 
the ground-tracking angle by GPS would not be valid under 
3 km/h forward velocities. To this end‚ a complete mag-
netic calibration algorithm is applied to remove hard- and 
soft-iron magnetic fields of the vehicle body and its other 
steel-made parts. To assemble a complete MEMS GAINS, a 
low-cost ADIS16407 IMU-magnetometer with SPI output‚ 
a Garmin 35 GPS receiver with standard NMEA output and 
a serial RS-232 communication port are gathered with an 
F28335 micro-controller of Texas Instruments. Therefore‚ 
the software codes of the MPO and the magnetic calibration 
process could be executed real time. We use a high-quality 
50 Hz Companav-2 INS/GPS of Teknol to produce correct 
reference trajectories for assessment of the implemented 
MPO in Attitude Heading Reference System (AHRS) mode 
of the GAINS. The real test of a ground vehicle is performed 
in different road conditions and maneuvering. Furthermore, 
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the flight test data of a small commercial Unmanned Air 
Vehicle (UAV) are used for better validations. During the 
tests‚ the AHRS system is affected by gradual and abrupt 
changes in inertial sensors inputs‚ velocities and orientation 
angles. Based on the statistical properties of the tests results‚ 
the proposed MPO shows a better performance with respect 
to the EKF.

In the following sections‚ the strapdown AHRS‚ duality 
between control and estimation‚ proposed MPO‚ stability 
analysis‚ implementation‚ calibration of 3-axis magnetom-
eters‚ real test results‚ conclusion and references are pre-
sented‚ respectively.

Strapdown AHRS system

An AHRS computes the attitude-heading angles using the 
measurements of IMU and probable aiding sensors. Refer-
ring to Fig. 1‚ the orthogonal axes xb, yb and zb of the right-
handed body coordinate frame (b-frame), respectively, coin-
cide to the N‚ E and D axes of local-level navigation frame 
(n-frame). The setup where these axes are perfectly aligned 
provides the zero roll‚ pitch and yaw angles. In the local 
level plane‚ the horizontal axes XL and YL make the mag-
netic heading angle‚ �Mag with N and E axes‚ respectively. 
Thereby‚ the heading angle � about zb-axis‚ the pitch angle � 
about the rotated yb-axis by � , and the roll angle � about the 
rotated xb-axis by � and � constitute 3-successive rotations 
of transformation from reference n-frame to b-frame. The 
direction cosine matrix (DCM) to transfer from the n-frame 
to the b-frame is obtained as (Titterton and Weston 2004):

(1)Cb
n
=

⎡⎢⎢⎣

cos � cos� − cos� sin� + sin� sin � cos� sin� sin� + cos� sin � cos�

cos � sin� cos� cos� + sin� sin � sin� − sin� cos� + cos� sin � sin�

− sin � sin� cos � cos� cos �

⎤⎥⎥⎦

Figure 1 shows that the strapdown gyroscopes of the IMU 
measure the angular velocity vector of b-frame with respect 
to inertial frame‚ �b

ib
 , where the superscript b stands for the 

expression of vector �ib in b-frame. Since the rotation rate 
of the earth is much slower than the noise level of MEMS 
gyroscopes‚ the vector �b

ib
 is approximated to the rotation 

rate of b-frame with respect to n-frame‚ �b
nb

 . Therefore‚ the 
dynamics of the Euler angles can be used to update the rota-
tion of body axes with respect to reference n-frame (Titter-
ton and Weston 2004):

where the measured turn rates by gyroscopes are included in 
the vector �b

nb
 and the superscript T stands for the transpose 

of a vector or matrix. The application of Euler angles is 
limited by the singularity of the first and third equations of 
(2) at pitch angles close to ± 90°.

The quaternions vector, q , defines the orientation as a 
single rotation of magnitude � around the direction vector‚ 
� , in the reference frame:

(2)

�̇� =
(
𝜔y sin𝜑 + 𝜔z cos𝜑

)
tan 𝜃 + 𝜔x

�̇� = 𝜔y cos𝜑 − 𝜔z sin𝜑

�̇� =
(
𝜔y sin𝜑 + 𝜔z cos𝜑

)
sec 𝜃

(3)�b
nb

=
[
�x �y �z

]T

Fig. 1  Representation of body‚ inertial‚ earth-fixed and local level 
coordinate frames

The unit magnitude of quaternions yields the following kin-
ematic constraint‚

Hence‚ the computational error of quaternions can be simply 
decreased through normalization as,

(4)q =

⎛⎜⎜⎜⎝

q1
q2
q3
q4

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

cos (�∕2)�
�x∕�

�
sin (�∕2)�

�y∕�
�
sin (�∕2)�

�z∕�
�
sin (�∕2)

⎞⎟⎟⎟⎠

(5)
� =

[
�x �y �z

]T

� =
(
�2
x
+ �2

y
+ �2

z

)1∕2

(6)q2
1
+ q2

2
+ q2

3
+ q2

4
= 1



 GPS Solutions (2018) 22:29

1 3

29 Page 4 of 18

The dynamics of quaternions is obtained according to Tit-
terton and Weston (2004):

The transposed DCM (1)‚ which is used to transform vec-
tors from b-frame to n-frame‚ may be expressed regarding 
quaternions as (Rogers 2003):

The components cij of Cn
b
 are related to quaternions as (Tit-

terton and Weston 2004):

Similarly, the quaternions can be expressed in terms of Euler 
angles as:

At nonsingular situations, when � is not close to ± 90°, the 
Euler angles are determined regarding DCM (1):

(7)q ≃ q∕
√
qTq

(8)q̇ =
1

2

�
0 −𝜔T

nb

𝜔nb −[𝜔]

�
q =

1

2

⎡
⎢⎢⎢⎣

0 −𝜔x −𝜔y −𝜔z

𝜔x 0 𝜔z −𝜔y

𝜔y

𝜔z

−𝜔z

𝜔y

0

−𝜔x

𝜔x

0

⎤
⎥⎥⎥⎦
q

(9)[�] =

⎡
⎢⎢⎣

0 −�z �y

�z 0 −�x

−�y �x 0

⎤
⎥⎥⎦

(10)CbT

n
= Cn

b
=

⎡⎢⎢⎣

�
q2
1
+ q2

2
− q2

3
− q2

4

�
2
�
q2q3 − q1q4

�
2
�
q2q4 + q1q3

�
2
�
q2q3 + q1q4

� �
q2
1
− q2

2
+ q2

3
− q2

4

�
2
�
q3q4 − q1q2

�
2
�
q2q4 − q1q3

�
2
�
q3q4 + q1q2

� �
q2
1
− q2

2
− q2

3
+ q2

4

�
⎤⎥⎥⎦

(11)

q1 =
1

2

(
1 + c11 + c22 + c33

)1∕2

q2 =
1

4q1

(
c32 − c23

)

q3 =
1

4q1

(
c13 − c31

)

q4 =
1

4q1

(
c21 − c12

)

(12)

q1 = cos
�

2
cos

�

2
cos

�

2
+ sin

�

2
sin

�

2
sin

�

2

q2 = sin
�

2
cos

�

2
cos

�

2
− cos

�

2
sin

�

2
sin

�

2

q3 = cos
�

2
sin

�

2
cos

�

2
+ sin

�

2
cos

�

2
sin

�

2

q4 = cos
�

2
cos

�

2
sin

�

2
+ sin

�

2
sin

�

2
cos

�

2

(13)

� = − sin−1
(
c31

)

� = tan−1
(
c32

c33

)

� = tan−1
(
c21

c11

)

However, in singular cases of (13), we should use the sum 
and difference of � and � as:

Since � and � could not be obtained separately, we freeze 
the angle � at its current value and then update the value of 
� according to (14). At the next process time, � would be 
frozen, and � is determined by (14). This process of updat-
ing � or � alone would continue until � is no longer in the 
region of ± 90◦ (Titterton and Weston 2004).

Output vector

The measurement vector of AHRS consists of the 3-axis 
accelerometers outputs‚ 

[
f b
x
f b
y
f b
z

]T
 and the GPS heading 

angle‚ �GPS:

where by neglecting the small changes of Vb in short-time 
processing intervals‚ the matching of gravity vector between 
b-frame and n-frame (16) is simplified to:

�GPS is replaced by the magnetic heading angle‚ �Mag , at 
forward velocity under 3 km/h. Furthermore, g and Vn

GPS
 

stand for the local gravity acceleration and the velocity vec-
tor of GPS resolved in n-frame‚ respectively. Considering 
the uncertainty and noise vector v on �acc and �acc obtained 
by (18), and on �GPS/Mag or their equivalent quaternion vec-
tor q, the standard output equation of AHRS is obtained as:

where the measured Euler angles or the equivalent quater-
nions are included in the vector x.

(14)
� − � = tan−1

(
c23−c12

c13+c22

)
for � near to + 90◦

� + � = tan−1
(

c23+c12

c13−c22

)
for � near to − 90◦

(15)m =
[
f b
x
f b
y
f b
z �GPS

]T

(16)
[
f b
x
f b
y
f b
z

]T
=

dVb

dt
+ [�]Vb + Cb

n
(q)

[
0 0 −g

]T

(17)Vb = [ Vx Vy Vz ]
T = Cb

n
Vn
GPS

(18)
[
f b
x
f b
y
f b
z

]T
= [�]Cb

n
(q)Vn

GPS
+ Cb

n
(q)

[
0 0 −g

]T

(19)y = h(x) + v
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Duality and equivalence in estimation 
and control

We design the proposed observer based on the duality of 
estimation and control systems. Therefore‚ first the duality 
and equivalence method is developed according to Kailath 
et al. (2000). A set of linearly independent vectors are con-
sidered as {z, y}:

In general, the vectors of a dual system are not required to be 
linearly independent. However, to estimate the set 

{
zi
}
 based 

on the visible set 
{
yi
}
 , this condition should be satisfied. The 

corresponding Gramian for this set of vectors is studied by 
the inner product ⟨⋅, ⋅⟩ as (Kailath et al. 2000):

Regarding the nonsingular set {z, y} , both the matrices Rz 
and Ry are nonsingular. The linear space {z, y} of all the 
vectors is defined as:

where ai, bi ∈ S the ring of complex numbers. Linearly inde-
pendent vectors 

{
z0,… , zm, y0,… , yn

}
 constitute a base of 

{z, y} . Dual of the base {z, y} is defined as the pair 
{
zd, yd

}
 

with the following two properties:

The normalized vectors‚ zd and yd are orthogonal to y and 
z‚ respectively:

The aforementioned properties are referred as the bi-orthog-
onality condition. The dual foundation is interpreted in two 
algebraic and geometric methods. In the algebraic configura-
tion‚ {z, y} and 

{
zd, yd

}
 span the same linear space for some 

nonsingular block matrix 
[
A B

C D

]
 as (Kailath et al. 2000):

Hence:

(20)
z ≜ col

{
z0,… , zm

}
y ≜ col

{
y0,… , yn

}

(21)
��

z

y

�
,

�
z

y

��
=

� ⟨z, z⟩ ⟨z, y⟩
⟨y, z⟩ ⟨y, y⟩

�
=

�
Rz Rzy

Ryz Ry

�

(22)a0z0 +⋯ + amzm + b0y0 +⋯ + bnyn

(23)

{
zd, yd

}
= {z, y}⟨[

zd

yd

]
,

[
z

y

]⟩
=

[ ⟨
zd, z

⟩ ⟨
zd, y

⟩
⟨
yd, z

⟩ ⟨
yd, y

⟩
]
=

[
I 0

0 I

]

(24)
⟨
zd, z

⟩
= I⟨

yd, y
⟩
= I

(25)
[
zd

yd

]
=

[
A B

C D

][
z

y

]

(26)
[
zd

yd

]
=

[
Rz Rzy

Ryz Ry

]−1[
z

y

]

this yields the Gramian as:

As the first step in the geometric description of the dual 
basis‚ the projections of vectors on a plane are defined as:

(ẑ|y) ≜ the projection of z onto {y}
(ŷ|z) ≜ the projection of y onto {z}

Accordingly, the corresponding errors are computed as:

The orthogonality principle of least-mean-square estima-
tion leads to ⟨z̃, y⟩ = 0 and 

⟨
zd, y

⟩
= 0 . Combination of 

these two properties yields that z̃ and zd must span the same 
linear space. Thus‚ zd = Mz̃ for some nonsingular matrix‚ 
M = R−1

z̃
 . Using the geometric characterizations of dual 

basis (28) in the algebraic one (27) results in:

Comparison of (27) and (30) implies that:

As an important result‚ in linear systems, the gain matrix for 
estimation of z based on observations y is the negative con-
jugate transpose of the gain matrix for estimation of yd from 
zd . Now‚ the obtained results are specialized to state-space 
models with dual basis. The standard linear model affected 
by noise term‚ v , is considered as:

The dual system of (32) is:

where * stands for complex conjugate.

(27)
[

Rzd Rzdyd

Rydzd Ryd

]
=

⟨[
zd

yd

]
,

[
zd

yd

]⟩
=

[
Rz Rzy

Ryz Ry

]−1

(28)
z̃ ≜ z̃|y = z − ẑ|y
ỹ ≜ ỹ|z = y − ŷ|z

(29)

⟨[
z̃|y
ỹ|z

]
,

[
zd

yd

]⟩
=

[
Rz̃ 0

0 Rỹ

]⟨[
zd

yd

]
,

[
zd

yd

]⟩

=

[
Rz̃ 0

0 Rỹ

][
Rz Rzy

Ryz Ry

]−1

(30)
[
Rz Rzy

Ryz Ry

]−1
=

[
R−1
z̃

0

0 R−1
ỹ

][
I −RzyR

−1
y

−RyzR
−1
z

I

]

(31)

Rzd = R−1
z̃

Ryd = R−1
ỹ

RzyR
−1
y

= −Rz̃Rzdyd = −R−1
zd
Rzdyd = −

�
RydzdR

−1
zd

�∗

‖ z̃�y‖2 = Rz̃

(32)y = Hz + v =
[
H I

][ z
v

]

(33)zd = −H∗yd + vd
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Dual of a state‑space model

The elements‚ 
{
zi, yi

}
 of {z, y} are assumed to satisfy a for-

ward-time state-space model of the general discrete system 
as:

for some matrices 
{
Fi,Gi,Hi,Di

}
 , the state information xi 

with zero-initial condition as x0 = 0 , the input signal zi , the 
output signal yi and the uncorrelated white noise vi of vari-
ance Ri . Universally‚ any equation in the state-space form 
(34) is a linear relationship between the aggregate output and 
input vectors {y, z, v} as:

Also:

where A is a block lower triangular matrix of (34) as (Kailath 
et al. 2000):

as usual, �(N, i) = FN−1FN−2 …Fi . The vectors 
{
zd, yd

}
 

which have been defined as the dual basis for‚  = {z, y} 
satisfy:

(34)
{

xi+1 = Fixi + Gizi
yi = Hixi + Dizi + vi

i ≥ 0

y ≜ col
{
y0,… , yN

}
, z ≜ col

{
z0,… , zN

}
, v ≜ col

{
v0,… , vN

}

(35)
y = Az + v

Rv =
‖‖‖v

2‖‖‖ = diag
{
R0,R1,… ,RN

}

(36)

A =

⎡
⎢⎢⎢⎢⎢⎣

D0 0 0 0 0

H1G0 D1 0 0 0

H2F1G0

⋮

HN�(N, 1)G0

H2G1

⋮

HN�(N, 2)G1

D2

⋮

…

0

⋱

HNGN−1

0

0

DN

⎤⎥⎥⎥⎥⎥⎦

(37)zd = −A∗yd + vd

A complete block-diagram of control and estimation systems 
in Fig. 2 shows that the dual model can be obtained simply 
by reversing the direction of time in the original control 
model and making the following substitutions:

where for example, A and − A* in (35) through (37) are the 
realization of the original model and its dual‚ respectively.

Equivalent stochastic and deterministic problems

For the linear model (32), the projection of z onto {y} 
is denoted by ẑ|y and is computed as ẑy = Koy ; where the 
optimal gain matrix Ko is obtained through the following 
stochastic minimization problem:

Now‚ by determining the vector ẑ , the solution of (39) is 
also obtained by the following deterministic optimization 
problem:

In other words, the solutions of both (39) and (40) result in the 
subjected gain matrix‚ Ko , which shows the equivalence of the 
stochastic problem (39) and the deterministic problem (40). 
For the linear dual model (37), Kd

o
 is obtained through the fol-

lowing minimum-mean-square-error optimization problem:

Then‚ the problem of determining vector ŷd is considered as:

Comparison of (40) and (42) shows that Kd
o
= −K∗

o
 . There-

fore‚ expression (39) is dual with (41) and (40) is dual with 
(42) because the corresponding gain matrices are the nega-
tive conjugate transpose of each other. The gain matrix‚ Kd

o
 

could be obtained through the solution of either (41) or (42). 
Furthermore‚ the deterministic system (42) is dual to the 
original stochastic system (39).

The discrete-time LQR optimization problem is consid-
ered as (Kailath et al. 2000):

(38)Fi ↔ F∗
i
, Hi ↔ G∗

i
, Gi ↔ −H∗

i
, Di ↔ −D∗

i

(39)
min
K

‖z − Ky‖2

Ko = RzH
∗
�
Rv + HRzH

∗
�−1

(40)
min
z

�
z∗R−1

Z
z + ‖y − Hz‖2

R−1
v

�

ẑ =
�
R−1
z

+ H∗R−1
v
H
�−1

H∗R−1
v
y ≜ Koy

(41)

min
Kd

‖‖‖y
d − Kdzd

‖‖‖
2

Kd
o
= −Rd

y
H
(
Rd
v
+ H∗Rd

y
H
)−1

= −R−1
v
H
(
R−1
z

+ H∗R−1
v
H
)−1

(42)
min
yd

[
yd∗Rvy

d +
‖‖‖z

d + H∗yd
‖‖‖
2

Rz

]

ŷd = −
(
Rv + HRzH

∗
)−1

HRzz
d ≜ Kd

O
zd

Fig. 2  Duality of control and observer in state-space model
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subjected to the state-space model constraint (34), 
xi+1 = Fixi + Gizi, xi = 0 , where Pd

N+1
≥ 0, Rd

i
≥ 0 and 

Qd
i
≥ 0 are design/weighting matrices corresponding to 

initial state vector‚ measurement residual and input vec-
tor‚ respectively. The state-space process is considered 
with a zero-initial state vector, and a large matrix P. Since 
the cost function (43) can be written as (40), its solution 
is obtained via the dual stochastic problem. For this pur-
pose‚ by introducing the vectors z ≜ col

{
z0,… , zN

}
 and 

S = col
{
H0x0,H1x1,… ,HNxN

}
 the following block lower 

triangular matrix is considered (Kailath et al. 2000):

It could be simply verified by direct computation that‚ [
xN+1
S

]
= Bz . Equation (43) can be equivalently rewritten 

as:

Moreover‚ the solution is‚

Equation (46) is the estimation of z based on observations y.

Design of MPO

To achieve an observer from the common direct method 
(Doostdar and Keighobadi 2012)‚ the stochastic optimiza-
tion problem (39) for linear model (35) should be solved. 
However, by use of the equivalence and duality in estima-
tion and control as well as the duality of stochastic and 
deterministic problems‚ the stochastic problem (39) and 
its deterministic equal (40) are dual with the deterministic 
problem (42). The gain matrices determine both the observer 
and the controller of stochastic (39) and deterministic (40) 
problems‚ respectively. Therefore‚ the observer of stochastic 
problem (39) is identically obtained by its dual controller in 

(43)

min
{z0,…,zN}

[
x∗
N+1

Pd
N+1

xN+1 +

N∑
i=0

(
yi − Hixi

)∗
Rd
i

(
yi − Hixi

)
+

N∑
i=0

z∗
i
Qd
i
zi

]

(44)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�(N + 1, 1)G0

0

H1G0

H2�(2, 1)G0

⋮

H
N
�(N, 1)G0

�(N + 1, 2)G1

0

H2G1

⋮

H
N
�(N, 2)G1

…

0

⋱

…

�(N + 1,N)G
N−1

0

H
N
G

N−1

G
N

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

y = Amin
z

[
z∗Qdz +

‖‖‖‖‖

[
0

−y

]
+ Bz

‖‖‖‖‖

2

Wd

]
+ v

Qd ≜ diag
{
Qd

0
,… ,Qd

N

}
Wd ≜ diag

{
Pd
N+1

,Rd
0
,… ,Rd

N

}

(46)ẑ = Ko

[
0

−y

]

the deterministic problem (42). According to Fig. 2 and (34), 
a dual predictive state-space model at m future sampling 
time is introduced:

where x
(
ki + m||ki

)
 stands for the predicted state at future 

time‚ ki + m , based on the current state x
(
ki
)
 . A discrete 

orthogonal Laguerre network can be made through dis-
cretization of a continuous-time Laguerre network (Wang 
2009). To include the orthogonal characteristics‚ Laguerre 
functions are considered in the deterministic problem (42) 
which simply avoid the modeling difficulties of the stochas-
tic cost function (39). The Laguerre functions are incorpo-
rated in the predicted input vector of (47) as:

where the Laguerre terms l0(k), l1(k),… , lN(k) of L(k) 
are together with Laguerre coefficients in vector form as‚ 
� =

[
C1 C2 …CN

]T . The orthonormal Laguerre functions 
are included in the discrete-time LQR with a sufficiently 
large prediction horizon Np as (Wang 2009):

where the objective is to find the coefficient vector � with the 
weighting matrices Q > 0 and RL > 0 . Now‚ applying (47) 
into the cost function (49) gives:

For an optimal solution without constraints‚ the partial 
derivative of (50) with respect to � yields:

(47)

x
(
ki + m||ki

)
= Fmx

(
ki
)
+

m−1∑
i=0

Fm−i−1Gz
(
ki + i

)

y
(
ki + m||ki

)
= HFmx

(
ki
)
+

m−1∑
i=0

HFm−i−1Gz
(
ki + i

)

+

m−1∑
i=0

Fm−i−1Dz
(
ki + i

)
+ vi

(48)z
(
ki + i

)
= L(i)T�

(49)J =

Np∑
m=1

x
(
ki + m||ki

)T
Qx

(
ki + m||ki

)
+ �TRL�

(50)

J = �T
⎛
⎜⎜⎝

Np�
m=1

�(m)Q�(m)T + RL

⎞
⎟⎟⎠
� + 2�T

⎛
⎜⎜⎝

Np�
m=1

�(m)QFm

⎞
⎟⎟⎠
x
�
ki
�

+

Np�
m=1

x
�
ki
�T
(FT)mQFmx

�
ki
�

(51)

� = −

⎛⎜⎜⎝

Np�
m=1

�(m)Q�(m)T + RL

⎞⎟⎟⎠

−1⎛⎜⎜⎝

Np�
m=1

�(m)QFm

⎞⎟⎟⎠
x
�
ki
�

�(m) =

m−1�
i=0

Fm−i−1GL(i)T,

⎛⎜⎜⎝

Np�
m=1

�(m)Q�(m)T + RL

⎞⎟⎟⎠

−1

≠ 0



 GPS Solutions (2018) 22:29

1 3

29 Page 8 of 18

considering‚

leads to:

where for a given N and a:

the dual controller Kd
o
 of the dual model (38) or the observer 

of the original state-space model (34) is obtained.

Stability analysis

The Lyapunov function V(x(k), k) is considered as the mini-
mum of the finite horizon cost function (49):

where the equality constraint on terminal state‚ 
x
(
k + Np|k

)
= 0 will lead to the closed-loop stability. There 

exists a solution of � in minimization of J (49) with the 
inequality constraints and the terminal equality constraint. 
The positive definite‚ V(x(k), k) (57), is radially unbounded. 
At sample time k + 1 , the Lyapunov function (57) becomes 
(Wang 2009):

where �k+1 and �k stand for the solution of Laguerre’s 
coefficient vector at k + 1 and k sample times‚ respec-
tively. The difference of Lyapunov function between 
two consequent sample times k  +  1 and k should be 

(52)

� =

⎛
⎜⎜⎝

Np�
m=1

�(m)QFm

⎞
⎟⎟⎠

� =

⎛
⎜⎜⎝

Np�
m=1

�(m)Q�(m)T + RL

⎞
⎟⎟⎠

(53)� = −�−1
�x

(
ki
)

(54)z
(
ki
)
= L(0)T�

(55)L(0)T =
√
1 − a2

�
1 −a a2 −a3 ⋯ (−1)N−1aN−1

�

(56)Kd
o
= L(0)T�−1

�

(57)

V(x(k), k) =

Np∑
m=1

x(k + m�k )TQx(k + m�k ) +
Np−1∑
m=0

z(k + m)TRz(k + m)

x(k + m�k ) = Fmx(k) +
m−1∑
i=0

Fm−i−1GL(i)T�k

(58)
V(x(k + 1), k + 1) =

Np∑
m=1

x(k + 1 + m|k + 1 )TQx(k + 1 + m|k + 1 ) +

Np−1∑
m=0

z(k + 1 + m)TRz(k + 1 + m)

x(k + 1 + m|k + 1 ) = Fmx(k + 1) +

m−1∑
i=0

Fm−i−1GL(i)T�k+1

computed. A feasible solution of �k+1 for the initial state 
variable x(k + 1) in the receding horizon is �k assuming 
x(k + 1) as the one step ahead response of x(k) related to 
z(k) ; that is x(k + 1) = Fx(k) + Gz(k) . The feasible con-
trol sequence at k + 1 is obtained by shifting the terms 
L(0)T�k, L(1)T�k, L(2)T�k,… , L

(
Np − 1

)T
�k  one  t ime-

step forward and replacing the last term by zero as‚ 
L(1)T�k, L(2)T�k,… , L

(
Np − 1

)T
�k, 0 .  Using the last 

sequence in (58) gives the upper bound‚ V̄(x(k + 1), k + 1) 
because of the optimal solution of �k+1 as:

By satisfying the aforementioned terminal state con-
straint at sample time k + 1 , V̄(x(k + 1), k + 1) coincides to 
V(x(k + 1), k + 1) . The difference between V(x(k + 1), k + 1) 
and V(x(k), k) could be bounded as:

Since V̄(x(k + 1), k + 1) shares the same control and the same 
state sequences with V(x(k), k) in sample times‚ k + 1 , k + 2 , 
…‚ k + Np − 1 , the right hand of (60) yields:

By imposing the above-mentioned equality constraint on the 
terminal state:

Comparing (60) and (62) results in:

Hence‚ the negative difference of Lyapunov function (57) 
indicates the asymptotic stability of the MPO.

(59)V(x(k + 1), k + 1) ≤ V̄(x(k + 1), k + 1)

(60)
V(x(k + 1), k + 1) − V(x(k), k) ≤ V̄(x(k + 1), k + 1) − V(x(k), k)

(61)
V̄(x(k + 1), k + 1) − V(x(k), k) = x(k + Np|k)TQx(k + Np|k)
− x(k + 1)TQx(k + 1) − z(k)TRz(k)

(62)
V̄(x(k + 1), k + 1) − V(x(k), k) = −x(k + 1)TQx(k + 1) − z(k)TRz(k)

(63)
V(x(k + 1), k + 1) − V(x(k), k) ≤ −x(k + 1)T

Qx(k + 1) − z(k)TRz(k) < 0

Implementation

In the AHRS mode of an integrated INS and GPS, the 
unknown uncertainties affect the output data of inertial 
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sensors. To this end‚ a precise model of sensors and system 
is hard to be captured which attenuates the estimation quality 
of the EKF. To achieve accurate outputs containing attitude 
and heading angles‚ the MPO method is implemented. 
Based on the capability of Laguerre network set in dealing 
with the terms of nonlinearity and uncertainty‚ the MPO 
estimator is a suitable solution for data merging problem of 
the MEMS GAINS. The commercial grade 1  Hz GPS 
receiver and 3-axis accelerometers‚ magnetometers and 
gyroscopes of MEMS-grade 50 Hz ADIS16407 IMU are 
gathered, and therefore‚ the output and input data set during 
ground/flight test by a vehicle and a small UAV are com-
pletely produced. The observation matrix‚ H =

�h(q)

�q
= I4×4 

(19) and the following matrices of quaternions dynamics (8) 
are used in the implementation of both EKF and MPO algo-
rithms in the AHRS:

Using (18), when the vehicle is at rest‚ the initial alignment 
of AHRS is performed as:

noting that the singularity of (66) at �0 = 90◦ does not occur 
in the on-ground alignment. Therefore‚ the initial quaterni-
ons are obtained by imposing (12) to the angles calculated 
by (65) through (67). The EKF covariance matrices are set 
to the values given in Doostdar and Keighobadi (2012). In 

(64)

F =
1

2

⎡
⎢⎢⎢⎣

0

�x

�y

�z

−�x

0

−�z

�y

−�y

�z

0

−�x

−�z

−�y

�x

0

⎤⎥⎥⎥⎦

G =
1

2

⎡
⎢⎢⎢⎣

−q2
q1
q4
−q3

−q3
−q4
q1
q2

−q4
q3
−q2
q1

⎤
⎥⎥⎥⎦

(65)�0 = −sin−1
(
fx

g

)

(66)�0 = sin−1

(
fy

g cos
(
�0
)
)

(67)�0 = �Mag

the implementation of MPO for AHRS with quaternions 
dynamics (8), the Laguerre pole places for each input a and 
the number of Laguerre terms for each input N are consid-
ered as:

where the prediction horizon length NP together with a and 
N are selected by the designer. The covariance matrices of 
the EKF and the weighting diagonal matrices of the system 
dynamics Q and the measurement vector R are assigned 
using the specifications of Table 1.

In the implementation of MPO for AHRS using Euler 
dynamics (2), the 3-dimensional Q and R as well as the 
Laguerre parameters a and N should be considered as‚

To simplify the implementation of AHRS with Euler 
angles dynamics (2) in which x =

[
� � �

]T , the two atti-
tude angles obtained from accelerometers data are gathered 
with the heading angle‚ �GPS/Mag , in the measurement vector 
y as:

where the subscripts acc and Mag stand for accelerometer 
and magnetometer‚ respectively. The system and measure-
ment matrices regarding Euler angles dynamics are obtained 
as:

(68)
a =

[
a1 a2 a3 a4

]
N =

[
N1 N2 N3 N4

]

(69)
a =

[
a1 a2 a3

]
N =

[
N1 N2 N3

]

(70)�acc = tan−1
(
−fy

−fz

)

(71)�acc = sin−1

⎛⎜⎜⎜⎝

fx�
f 2
x
+ f 2

y
+ f 2

z

�0.5

⎞⎟⎟⎟⎠

(72)y =
[
�acc �acc �GPS/Mag

]T

(73)z =
[
�x �y �z

]T

Table 1  Specifications of inertial sensors (Keighobadi et al. 2011; Mahapatra et al. 2001)

Sensor type Model Full-scale range Noise density Bias stability Initial bias 
error ± 1σ

Nonlinearity 
(% full-scale)

Rate gyroscope ADXRS150 ± 150°/s 0.05°/s/√Hz 0.01°/s ± 3°/s 0.1
Accelerometer (single-axis) ADXL202 ± 20 m/s2 0.01 m/s2 0.05 m/s2 ± 0.02 g 0.2
Accelerometer (dual-axis) ADXL210E ± 100 m/s2 0.01 m/s2 0.05 m/s2 ± 0.02 g 0.2
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(74)

F =

⎡
⎢⎢⎣

�y cos� tan � − �z sin� tan �
�
�y sin� + �z cos�

�
(1 + tan �)2 0

−�y sin� − �z cos� 0 0

�y cos�∕ cos � − �z sin�∕ cos � �y sin� sin �∕ cos2 � + �z cos� sin �∕ cos2 � 0

⎤
⎥⎥⎦

G =

⎡
⎢⎢⎣

1 sin� tan � cos� tan �

0 cos� − sin�

0 sin� sec � cos� sec �

⎤
⎥⎥⎦

H = [1 0 0, 0 1 0, 0 0 1]T

Fig. 3  Implementation block-diagram of quaternion-based AHRS
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The implementation algorithm of both the MPO and the 
EKF with quaternions dynamics is represented in Fig. 3.

Calibration of three‑axial magnetometers

Since the heading angle of GPS‚ �GPS , is not valid at veloci-
ties under about 3 km/h and in particular during on-ground 
alignment process‚ the uncalibrated magnetic heading angle 
�̂�Mag is obtained by the 3-Axis Magnetometers (TAM) as:

Along the XL-YL axes in local level plane‚ which make 
the magnetic heading angle with respect to N-E axes‚ the 
measured magnetic field by TAM is resolved to Mh

x
 and Mh

y
 

components:

where 
[
Mb

x
Mb

y
Mb

z

]T
 denotes the measured magnetic field 

vector by TAM in b-frame coordinates. The complete ver-
sion of (75) gives the magnetic North angle at range 0° 
through 360° as:

The magnetic heading angle is affected by hard- and soft-
iron local magnetic fields mostly produced by the vehicle 
steel parts and its electromechanical driving parts. There-
fore‚ the following swinging calibration process is carried 
out (Keighobadi et al. 2011):

where �̂� and �ref stand for the affected heading angle by 
magnetic disturbances and the reference heading angle of 
calibration‚ respectively. The calibration coefficients A to E 
are computed in the following regression form by the least-
square algorithm:

(75)�̂�Mag = − tan−1

(
Mh

y

Mh
x

)

(76)
�
Mh

x

Mh
y

�
=

�
cos � sin � sin� cos� sin �

0 cos� − sin�

�⎡⎢⎢⎣

Mb
x

Mb
y

Mb
z

⎤⎥⎥⎦

(77)�̂�Mag =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

90 Mh
x
= 0,Mh

y
< 0

270 Mh
x
= 0,Mh

y
> 0

180 − tan−1
�

Mh
y

Mh
x

�
×

180

𝜋
Mh

x
< 0

− tan−1
�

Mh
y

Mh
x

�
×

180

𝜋
Mh

x
> 0,Mh

y
< 0

360 − tan−1
�

Mh
y

Mh
x

�
×

180

𝜋
Mh

x
> 0,Mh

y
> 0

(78)
𝛿𝜓 = A + B sin (�̂�) + C cos (�̂�) + D sin (2�̂�) + E cos (2�̂�)

(79)𝛿𝜓 = 𝜓ref − �̂�

The reference heading angle‚ �ref , is rendered either by a 
rotating calibration table or by the course angle of GPS at 
velocities above 3 km/h. The calibrated magnetic heading 
angle is obtained as:

where �c stands for the calibrated heading angle.

Test results

For experimental evaluation purpose, we perform long-time 
road and flight tests considering a Companav-2 INS/GPS 
as the reference system. Companav-2 is a high-efficiency 
navigation system developed by Teknol Ltd for both ground 
and flight applications (Teknol 2009). Barometric altimeter‚ 
accelerometers‚ magnetometers‚ sensors of angular rate and 
a temperature sensor for thermal calibration of IMU have 
been gathered in the Companav-2 system. The reliability 
and accuracy of the Companav-2 system were illustrated in 
long-time operations and several ground/flight tests (Teknol 
2009). To assess the tracking accuracy of attitude angles‚ 
the precise reference attitude data are supplied by the Com-
panav-2 system. The data set of Garmin-35 receiver and 
ADIS16407 IMU has been used as measurement data and 
process input data of AHRS. The main statistical features 
of both the Companav-2 INS/GPS and ADIS16407 iner-
tial sensors are given in Table 1 (Keighobadi et al. 2011; 
Mahapatra et al. 2001). Since we do not have direct access 
to the internal software of Companav-2 system‚ its magnetic 

(80)

⎡⎢⎢⎢⎣

𝛿𝜓1

𝛿𝜓2

⋮

𝛿𝜓N

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

1

1

⋮

1

sin �̂�1

sin �̂�2

⋮

sin �̂�N

cos �̂�1

cos �̂�2

⋮

cos �̂�N

sin 2�̂�1

sin 2�̂�2

⋮

sin 2�̂�N

cos 2�̂�1

cos 2�̂�2

⋮

cos 2�̂�N

⎤⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

A

B

C

D

E

⎤⎥⎥⎥⎥⎥⎦

(81)
𝜓c = A + B sin (�̂�) + C cos (�̂�) + D sin (2�̂�) + E cos (2�̂�) + �̂�

Fig. 4  AHRS and reference INS/GPS hardware together with test 
vehicle
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sensors could not be calibrated concerning hard-iron and 
soft-iron magnetic fields of the test vehicle. Therefore‚ the 
Companav-2 equipment must be placed out of the vehicle. 
For this reason, the sensors of Companav-2 system‚ the GPS 
receiver and the ADIS16407 IMU all are mounted on a rigid 
aluminum frame fixed to the vehicle body as depicted in 
Fig. 4. The raw measurements of IMU together with the 

orientation‚ velocity and position of INS are provided at 
the same rate‚ 50 Hz. Online data monitoring is executed 
through a serial RS-232 port on a personal computer as 
shown in Fig. 5.

Due to government restrictions for flight test, we pre-
ferred to request this test from a company that has com-
mercial fixed-wing UAVs, flight test permission and a test 
field. Owing to the use of pure kinematical equations of qua-
ternion‚ position and velocity vectors‚ both the GAINS and 
the reference Companav-2 are independent of the dynamical 
and aero-dynamical behavior of the test vehicles. Therefore‚ 
every test vehicle of the ground or flying type merely pro-
duces input trajectory data to IMU‚ INS and GPS. Accord-
ing to Figs. 6 and 7‚ during the flight test the reference Com-
panav-2‚ ADIS16407 IMU‚ GPS and other test equipment 
were under different conditions of trajectory and maneuvers. 
The UAV begins its fly at point  p1 with a high forward veloc-
ity during takeoff and then follows the trajectory with some 
maneuvers to  p2 and returns on the trajectory to  p3. Next‚ it 
continues along the given return trajectory and consequently 
performs the landing in point  p4.

Fig. 5  ADIS16407 IMU and GPS data logger

Fig. 6  Reference geographical latitude–longitude trajectory

Fig. 7  Reference altitude trajectory

Fig. 8  Heading angle trajectories by GPS‚ uncalibrated and calibrated 
magnetometers

Fig. 9  Tracking errors of magnetometer calibration process
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The final calibrated magnetic heading angle based on 
online GPS course angle is obtained as:

The calibration effects on the heading angle and the track-
ing errors are presented in Figs. 8 and 9, respectively. By 
looking at Fig. 8, one can find that following the calibration 
process‚ the magnetic heading angle approximately coin-
cides with the GPS heading angle. The tracking error of 

(82)

𝜓Mag = �̂�Mag + 0.215264 + 0.100083 sin
(
�̂�Mag

)

− 0.261611 cos
(
�̂�Mag

)
+ 0.072486 sin

(
2�̂�Mag

)

+ 0.071829 cos
(
2�̂�Mag

)

calibration process in Fig. 9 confirms considerable removal 
of bias, scale-factor, and other uncertain alignment errors.

The estimated attitude and heading trajectories through 
the MPO and the EKF methods are compared with the 

Fig. 10  Estimated � , � and � angles through MPO and EKF of Euler 
dynamics compared with reference values of Companav-2 in flight 
test#1

Fig. 11  Estimated � , � and � angles through MPO and EKF of qua-
ternions dynamics compared with reference values of Companav-2 in 
test#1

Table 2  The values of vectors‚ a and N for quaternions and Euler 
angles in UAV test

Parameter Value

a1×4
[
0.99999 0.9999 0.9999 0.99999

]
N1×4

[
1 1 1 1

]
a1×3

[
0.99999 0.99999 0.99999

]
N1×3

[
1 70 100

]
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reference trajectories of Companav-2 INS/GPS during the 
long-time flight test in Fig. 10. The test has been carried 
out about 1800 s in an urban area to assess both the Euler 
and quaternion methods‚ simultaneously. Figure 11 repre-
sents the attitude-heading angles obtained by the quaternions 
system. Both Figs. 10 and 11 illustrate better tracking of 
all reference attitude-heading angles by the MPO compared 
with the EKF. The values of MPO parameters‚ a1×4,N1×4 
a1×3, N1×3 in Table 2 as well as NP = 1 are used correspond-
ing to quaternion and Euler angles techniques.

Using Table 1 and the referred sensors datasheet‚ the 
weighting diagonal matrices of process‚ Q3×3 , and meas-
urements‚ R4×4 , R3×3 for both quaternion and Euler based 
AHRS are designated as:

For better evaluation of the proposed MPO method concern-
ing the EKF, the estimation errors of heading and attitude 
components with respect to the reference values of Com-
panav-2 are compared in Figs. 12 and 13. Besides‚ the sta-
tistical mean and standard deviation (SD) of attitude and 
heading errors are released in Table 3. By Figs. 12 and 13‚ 
owing to uncompensated uncertainties and bias term of 
inertial MEMS sensors‚ the EKF estimations are together 

(83)

Q3×3 = diag
[
10−4 10−4 10−2

]

R4×4 = diag
[
10−3 10−2 10−2 10−2

]

R3×3 = diag
[
0.09 0.99 0.99

]

Fig. 12  Estimation errors of � , � and � angles through MPO and 
EKF of Euler angles dynamics in test#1

Fig. 13  Estimation errors of � , � and � angles through MPO and 
EKF of quaternions in test#1
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Table 3  Statistical mean and 
SD of estimation errors using 
Euler angles dynamics in test#1

Attitude-heading angles MPO EKF

Mean of error SD of error Mean of error SD of error

Roll‚ � (°) − 0.30 4.58 − 4.36 6.52
Pitch‚ � (°) − 1.03 2.61 − 1.90 3.98
Heading‚ � (°) 0.35 1.41 0.90 1.29

Table 4  Statistical mean and 
SD of estimation errors by 
quaternions dynamics in test#1

Attitude-heading angles MPO EKF

Mean of error SD of error Mean of error SD of error

Roll‚ � (°) 0.29 3.60 0.36 5.78
Pitch‚ � (°) − 0.10 1.93 0.26 2.23
Heading‚ � (°) 0.29 1.62 0.43 2.32

Fig. 14  Estimated � , � and � angles through MPO and EKF of Euler 
dynamics compared with reference values of Companav-2 in test#2

Fig. 15  Estimated � , � and � angles through MPO and EKF of qua-
ternions system compared with reference values of Companav-2 in 
test#2
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with more bias, drift, and noisy fluctuations. Furthermore‚ 
regarding Tables 3 and 4‚ the statistical mean and SD of 
attitude and heading errors in both Euler and quaternion 
systems of MPO decreased compared to the EKF. There-
fore‚ owing to adaptation regarding nonlinear terms and the 
prediction of long-term behavior of uncertainties‚ the imple-
mentation of MPO technique yields a better low-cost AHRS 
for UAV applications.

The fixed alignment error of the EKF heading angle � 
at the beginning of Fig. 13 is removed by the increase in 
the vehicle velocity above 3 km/h. According to Tables 3 
and 4‚ compared with the EKF, the MPO method results 
in a better performance based on both the Euler angles and 
quaternions. To this end‚ due to affine dynamics of quater-
nions‚ the estimation accuracy of the EKF is affected by 
less nonlinearity and uncertainty compared with the Euler 
angles method. Therefore‚ in the sense of the mean values 
of estimation errors‚ setting the EKF with the quaternions 
vector yields better results compared with the Euler angles. 
The close results of quaternions and Euler angles through 
the MPO show the capability of the proposed method in 
filtering unknown uncertainties and nonlinearities.

In Figs. 14 and 15, the estimated attitude and heading 
angles by the applied MPO and EKF in both the Euler 
angles and quaternion methods are compared with the ref-
erence values of Companav-2 during the 1200 s test#2 of 
the ground vehicle in an urban area. The design parameters 
a1×4 , N1×4 , a1×3 , N1×3 in Table 5 as well as NP = 1 are used 
corresponding to quaternion and Euler techniques for ground 
vehicle test purpose.

The weighting diagonal matrices of the system dynamics‚ 
Q3×3 , and the measurement vector R4×4 and R3×3 for both the 
quaternion and Euler angles methods of test#2 are the same 
as test#1 (83). According to Figs. 14 and 15‚ compared with 
the EKF‚ the implementation of MPO for AHRS mode of 
low-cost GAINS results in a better accuracy of attitude and 
heading angles in the ground vehicle test.

Regarding the reference values of Companav-2 system‚ 
the estimation errors by both MPO and EKF along the atti-
tude and heading angles are compared in Figs. 16 and 17‚ 
respectively. Furthermore‚ the statistical mean and SD of 
these errors are represented in Tables 6 and 7 for both the 
Euler and quaternion systems‚ respectively. Small range 

maneuvers and smooth movements of the ground vehicle 
can interpret the small errors in Table 6. Since the design 
matrices, Q and R of both the EKF and the MPO have been 
tuned for flight test#1‚ larger errors occur in quaternion 
method of the ground vehicle test in Table 7. A separate 
tuning of the design parameters for the vehicular application 
may decrease these errors. However, an AHRS system that 
uses a unique set of design parameters for all applications is 
preferred. In other words, through manipulating the covari-
ance matrices of process and measurement equations‚ we 
may obtain closer results by both the quaternion and the 
Euler angles systems in Tables 6 and 7. However‚ keeping 
the standard parameters of estimation algorithms based on 

Table 5  Values of components 
of a and N for quaternions and 
Euler angles dynamics in test#2

Parameter Value

a1×4 [ 0.2 0.2 0.2 0.2 ]

N1×4 [ 25 20 20 25 ]

a1×3 [ 0.5 0.5 0.5 ]

N1×3 [ 20 20 40 ]

Fig. 16  Estimation errors of � , � and � angles through MPO and 
EKF of Euler angles method in test#2
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the specifications in Table 1 and the AHRS dynamics yields 
the optimal solutions of MPO and EKF.

Conclusion

For MEMS AHRS purpose‚ we designed a new MPO 
method based on the duality principle between observer 
and controller systems. Based on the available dual control-
ler‚ the design process of the MPO was considerably short-
ened. The optimal and robust behavior of the proposed MPO 
adapts to the MEMS AHRS affected by unknown uncer-
tainties of low-cost sensors. Applying the Laguerre network 
of orthonormal basis functions in the MPO system led to 
further attenuation of the uncertainty effects in the AHRS. 
Additionally, the propagation of computational errors due to 
the correlation of AHRS dynamic equations was decreased. 
Practical tests of the AHRS mode of a GAINS with aerial 
and ground vehicles were used to assess the performance 
of the proposed MPO in comparison with the classic EKF. 
During the tests‚ the AHRS sensors were affected by accel-
eration and angular velocity changes of the carrying vehicle. 
In addition to visually improved tracking along the reference 
trajectories of attitude and heading angles‚ the statistical SD 
and mean of estimation errors emphasized on the better per-
formance of MPO with respect to the EKF. The small mean 
values of navigation errors at the scale of a low-cost AHRS 
confirmed the capability of the designed MPO method in 
compensation of uncertainties of MEMS sensors. Further-
more‚ the predictive structure of the MPO renders a better 
dealing with nonlinear dynamics of the AHRS‚ which leads 
to higher precisions compared to the classic EKF.

Acknowledgements The authors are grateful to the Iran National Sci-
ence Foundation for a limited financial support.

Fig. 17  Estimation errors of � , � and � angles through MPO and 
EKF of quaternion method in test#2

Table 6  Statistical mean and 
SD of estimation errors by Euler 
angles in test#2

Attitude-heading angles MPO EKF

Mean of error SD of error Mean of error SD of error

Roll‚ � (°) 0.03 0.08 0.30 0.75
Pitch‚ � (°) − 0.08 0.13 − 0.12 0.22
Heading‚ � (°) 0.10 0.46 0.22 0.71

Table 7  Statistical mean and 
SD of estimation errors by 
quaternions in test#2

Attitude-heading angles MPO EKF

Mean of error SD of error Mean of error SD of error

Roll‚ � (°) − 1.34 0.15 − 2.15 0.89
Pitch‚ � (°) 1.17 0.26 1.42 0.45
Heading‚ � (°) − 0.47 0.91 − 0.53 1.58



 GPS Solutions (2018) 22:29

1 3

29 Page 18 of 18

References

Anderson EW (1966) The principles of navigation. Hollis and Carter, 
London

Bishop G‚ Welch G (2001) An introduction to the Kalman filter. In: 
SIGGRAPH‚ Course 8. Los Angeles

Bucy RS (1970) Linear and nonlinear filtering. Proc IEEE 58(6):854–
864. http s://doi.org/10.1109 /PROC .1970 .7792 

Doostdar P, Keighobadi J (2012) Design and implementation of SMO 
for a nonlinear MIMO AHRS. Mech Syst Signal Process 32:94–
115. http s://doi.org/10.1016 /j.ymss p.2012 .02.007

Fang J, Gong X (2010) Predictive iterated Kalman filter for INS/GPS 
integration and its application to SAR motion compensation. 
IEEE Trans Instrum Meas 59(1):909–915. http s://doi.org/10.1109 
/TIM.2009 .2026 614

Faruqi FA, Turner KJ (2000) Extended Kalman filter synthesis for 
integrated global positioning/inertial navigation systems. Appl 
Math Comput 115(2–3):213–227. http s://doi.org/10.1016 /S009 
6-3003 (98)1006 8-1

Hide C, Moore T, Smith M (2003) Adaptive Kalman filtering for low-
cost INS/GPS. J Navig 56(1):143–152. http s://doi.org/10.1017 /
S037 3463 3020 0215 1

Kailath T, Sayed AH, Hassibi B (2000) Linear estimation. Prentice 
Hall, New York

Keighobadi J, Yazdanpanah MJ, Kabganian M (2011) An enhanced 
fuzzy H∞ estimator applied to low-cost attitude-heading refer-
ence system. Kybernetes 40(1/2):300–326. http s://doi.org/10.1108 
/0368 4921 1111 1806 8

Mahapatra S, Nayak SK, Sabat SL (2001) Neuro fuzzy model for adap-
tive filtering of oscillatory signals. Measurement 30(4):231–239. 
http s://doi.org/10.1016 /S026 3-2241 (01)0000 7-0

Musavi N, Keighobadi J (2015) Adaptive fuzzy neuro-observer applied 
to low cost INS/GPS. Appl Soft Comput 29:82–94. http s://doi.
org/10.1016 /j.asoc .2014 .12.024

NøRgaard M, Poulsen NK, Ravn O (2000) New developments in state 
estimation for nonlinear systems. Automatica 36(11):1627–1638. 
http s://doi.org/10.1016 /S000 5-1098 (00)0008 9-3

Robertson DG, Lee JH, Rawlings JB (1996) A moving horizon-based 
approach for least-squares estimation. AIChE J 42(8):2209–2224. 
http s://doi.org/10.1002 /aic.6904 2081 1

Rogers RM (2003) Applied mathematics in integrated navigation sys-
tems. American Institute of Aeronautics and Astronautics Inc, 
Florida

Simon D (2006) Optimal state estimation: Kalman, H infinity, and 
nonlinear approaches. Wiley, New York

TeKnol Ltd (2009) COMPANAV2‚ integrated MEMS INS/GPS system 
for aviation applications. http ://www.tekn ol.ru/pdf/en/CN-2_over 
view _en.pdf

Titterton D, Weston JL (2004) Strapdown inertial navigation tech-
nology, vol 17. The Institution of Engineering and Technology, 
London

Wang L (2009) Model predictive control system design and implemen-
tation using  MATLAB®. Springer Science & Business Media, 
London

Wang W, Liu ZY, Xie RR (2006) Quadratic extended Kalman filter 
approach for GPS/INS integration. Aerosp Sci Technol 10(8):709–
713. http s://doi.org/10.1016 /j.ast.2006 .03.003

Wilson DI, Agarwal M, Rippin DW (1998) Experiences implementing 
the extended Kalman filter on an industrial batch reactor. Com-
put Chem Eng 22(11):1653–1672. http s://doi.org/10.1016 /S009 
8-1354 (98)0022 6-9

Zhang H, Zhao Y (2011) The performance comparison and analysis 
of extended Kalman filters for GPS/DR navigation. Optik Int J 
Light Electron Opt 122(9):777–781. http s://doi.org/10.1016 /j.ijle 
o.2010 .05.023

Jafar Keighobadi received his 
Ph.D. degree in mechanical engi-
neering and control systems 
from the Amirkabir University 
of Technology in Tehran‚ Iran, in 
2008. He joined the Faculty of 
Mechanical Engineering‚ Uni-
versity of Tabriz‚ as an assistant 
professor in 2008. Dr. Keigho-
badi’s research interests include 
estimation and control of sto-
chastic systems and the applica-
tions in robotic and navigation 
systems.

Hamid Vosoughi received the 
M.S. degree in mechanical engi-
neering from Tabriz University‚ 
Iran‚ in 2016. His current 
research interests include estima-
tion and control of stochastic 
systems and the applications in 
navigation systems‚ optimization 
theory‚ and calibration of low-
precision MEMS inertial sensors 
and implementation of intelli-
gent estimation problems.

Javad Faraji is currently a Ph.D. 
candidate in mechanical engi-
neering at Tabriz University. He 
has been a research assistant in 
the Dynamics and Control Labo-
ratory at University of Tabriz 
since 2014. His current research 
interests include integrated navi-
gation systems‚ estimation and 
optimization theory‚ inertial and 
noninertial sensors calibration 
and nonlinear adaptive control.

https://doi.org/10.1109/PROC.1970.7792
https://doi.org/10.1016/j.ymssp.2012.02.007
https://doi.org/10.1109/TIM.2009.2026614
https://doi.org/10.1109/TIM.2009.2026614
https://doi.org/10.1016/S0096-3003(98)10068-1
https://doi.org/10.1016/S0096-3003(98)10068-1
https://doi.org/10.1017/S0373463302002151
https://doi.org/10.1017/S0373463302002151
https://doi.org/10.1108/03684921111118068
https://doi.org/10.1108/03684921111118068
https://doi.org/10.1016/S0263-2241(01)00007-0
https://doi.org/10.1016/j.asoc.2014.12.024
https://doi.org/10.1016/j.asoc.2014.12.024
https://doi.org/10.1016/S0005-1098(00)00089-3
https://doi.org/10.1002/aic.690420811
http://www.teknol.ru/pdf/en/CN-2_overview_en.pdf
http://www.teknol.ru/pdf/en/CN-2_overview_en.pdf
https://doi.org/10.1016/j.ast.2006.03.003
https://doi.org/10.1016/S0098-1354(98)00226-9
https://doi.org/10.1016/S0098-1354(98)00226-9
https://doi.org/10.1016/j.ijleo.2010.05.023
https://doi.org/10.1016/j.ijleo.2010.05.023

	Design and implementation of a model predictive observer for AHRS
	Abstract
	Introduction
	Strapdown AHRS system
	Output vector

	Duality and equivalence in estimation and control
	Dual of a state-space model
	Equivalent stochastic and deterministic problems

	Design of MPO
	Stability analysis

	Implementation
	Calibration of three-axial magnetometers
	Test results
	Conclusion
	Acknowledgements 
	References




