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Abstract
The coordinate time series determined with the Global Positioning System (GPS) contain annual and semi-annual periods 
that are routinely modeled by two periodic signals with constant amplitude and phase-lag. However, the amplitude and phase-
lag of the seasonal signals vary slightly over time. Various methods have been proposed to model these variations such as 
Wavelet Decomposition (WD), writing the amplitude of the seasonal signal as a Chebyshev polynomial that is a function of 
time (CP), Singular Spectrum Analysis (SSA), and using a Kalman Filter (KF). Using synthetic time series, we investigate 
the ability of each method to capture the time-varying seasonal signal in time series with different noise levels. We demon-
strate that the precision by which the varying seasonal signal can be estimated depends on the ratio of the variations in the 
seasonal signal to the noise level. For most GPS time series, this ratio is between 0.05 and 0.1. Within this range, the WD 
and CP have the most trouble in separating the seasonal signal from the noise. The most precise estimates of the variations 
are given by the SSA and KF methods. For real GPS data, SSA and KF can model 49–84 and 77–90% of the variance of the 
true varying seasonal signal, respectively.

Keywords  GPS · Least squares estimation · Wavelet decomposition · Singular spectrum analysis · Kalman filter · 
Chebyshev polynomials

Introduction

Global Positioning System (GPS) position time series are 
used to study geophysical phenomena such as plate tecton-
ics (Tobita 2016), post-glacial rebound (Larson and van 
Dam 2000), and vertical land motion at tide gauges (Teferle 
et al. 2009). In all these cases, one normally estimates a 
secular motion or velocity together with seasonal signals. 
These annual and semi-annual signals have amplitudes of 
few millimeters and are partially caused by atmospheric 
and hydrological loadings (van Dam et al. 2001; Tregon-
ing et al. 2009; Bogusz and Figurski 2014), thermal expan-
sion of ground and monuments (Yan et al. 2009; Hill et al. 
2009), varying tropospheric delay (Munekane et al. 2008) 
or multi-path variations (King et al. 2008). Although the 

seasonal signals are generally modeled as having constant 
amplitudes and phase-lags with the parameters estimated 
using Weighted Least Squares (WLS), their values might 
vary slightly from year to year because their geophysical 
causes are not constant.

Noise or a so-called residuals are created when the deter-
ministic model was removed. For the GPS position time 
series, the power spectrum of the noise follows a power-law 
behavior at the low frequencies with spectral indices varying 
between −2 and 0. This noise has a significant impact on the 
uncertainty of velocity (Zhang et al. 1997; Williams et al. 
2004; Santamaría-Gómez et al. 2011; Bogusz and Kontny 
2011). Moreover, if any seasonal signal or residual periodic-
ity is not properly modeled and removed, it will move the 
stochastic part to much more correlated noise causing the 
uncertainties to be artificially overestimated (Bogusz and 
Klos 2016).

The time-varying seasonal signals can be studied by sev-
eral methods. Chen et al. (2013) applied Singular Spectrum 
Analysis (SSA) to model time-varying signals in weekly 
GPS position time series. They cross-compared the SSA 
results with Kalman Filter (KF) estimates. Didova et al. 
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(2016) used Kalman Filter (KF) to estimate time-varying 
trends and seasonal signals in Gravity Recovery and Climate 
Experiment (GRACE) and GPS data. Although the noise 
level may have a significant impact on the precision of the 
estimated seasonal signals, up until now, no special atten-
tion has been paid to its influence on the effectiveness of 
each method. Only recently, Xu and Yue (2015) emphasized 
that the seasonal signals filtered with SSA may contain an 
artificial signal driven by colored noise. Therefore, some of 
the power may be artificially removed from power spectra 
of the residuals, leading to imprecise estimates of the noise 
level. A good separation between noise and seasonal sig-
nal ensures that once the time-varying seasonal signal has 
been removed, the data can be processed using standard GPS 
time series analysis packages such as CATS (Williams 2008), 
est_noise (Langbein 2010) or Hector (Bos et al. 2013) to 
estimate the velocity and its uncertainty. The objective of 
this research is to perform a comparison of these various 
methods to estimate the time-varying seasonal signal in GPS 
time series while taking the noise level into account.

We discuss the Kalman Filter (KF), Singular Spectrum 
Analysis (SSA), Wavelet Decomposition (WD), Moving 
Ordinary Least Squares (MOLS), and Chebyshev polyno-
mials (CP) approaches and compare them with the standard 
WLS approach which provides time-constant curves. Using 
the noise level derived for real GPS position time series, 
we create various sets of synthetic position time series 
with time-varying seasonal signals. Then, we estimate the 
seasonal signals with the KF, SSA, WD, MOLS, and CP 
approaches in order to determine the noise level for which 
the variations in the seasonal signal can be modeled pre-
cisely. Finally, we analyze real GPS position time series and 
predict how precisely the varying seasonal signal can be 
captured under real noise conditions.

GPS coordinate time series

In this section, we characterize the noise level in the true 
GPS position time series in order to use this information 
to create realistic synthetic time series. We employed daily 
GPS time series processed at the JPL/NASA from 174 sta-
tions (Fig. 1). The time series have a time span longer than 
13 years to ensure reliable estimation of the time-varying 
seasonal signal. Outliers were removed using the median cri-
terion (Klos et al. 2015). Epochs of offsets were taken from 
the information provided by JPL. Additional offsets were 
estimated using the Sequential t test algorithm (Rodionov 
2004) with a segment length of 100 days and a confidence 
level of 95%. Gaps in the data ranged between 0.1 and 11% 
of the entire time series. The SSA method described below 
requires that these missing data are filled. Therefore, gaps 
were interpolated with a linear interpolation which is the 

simplest and most often employed to interpolate any miss-
ing value.

The following model was fitted to the time series:

where x0 and vx are the initial position and velocity, respec-
tively. ai and bi are constants for the sine and cosine term 
of the periodic signal of ωi angular velocity. The last term 
represents noise. The t0 term is the reference epoch.

Parameters describing the initial position, velocity, sea-
sonal signals, and combination of power-law and white noise 
model were estimated using Maximum Likelihood Estima-
tion (MLE) as implemented in the Hector software (Bos 
et al. 2013). From the parameter estimation in Hector, we 
know that the uncertainties of parameters a and b are nearly 
equal. We used the Rice distribution to compute uncertainty 
of the total amplitude A =

√

a2 + b2 (Rice 1944). For the 
GPS position time series which we analyzed, the ampli-
tude of the annual signal of the vertical component varied 
between 0.6 and 8.2 mm with a median of 2.4 mm. The 
minimal and maximal amplitudes of the semi-annual signal 
are, respectively, 0.6 and 2.7 with a median of 1.3 mm. For 
the vertical component, the spectral indices (κ) of a power-
law process were estimated to vary between − 1.27 ± 0.08 
and − 0.37 ± 0.02 with a median of − 0.68. The power-
law noise amplitudes ranged between 7.39 and 21.01 mm/
year− κ/4 with a median of 12.05 mm/year−κ/4. Supported and 
confirmed by previously published papers (Williams et al. 
2004; Klos et al. 2014), this range of noise level was used to 
create a set of synthetic series.

To estimate the variability of the annual and semi-
annual signals in the GPS coordinate time series, we first 
removed the velocity. Next, we split the time series into 
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Fig. 1   A total of 174 GPS stations are used in this research. The color 
of the circles indicates standard deviation (mm) of the annual ampli-
tudes estimated with MOLS for vertical component. Stations AUCK 
(Auckland, Australia) and ULAB (Ulaanbaatar, Mongolia), which we 
focus on in this research, are also marked
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3-year segments that are overlapping with each other with 
a separation of 1 year. For each segment, we estimated the 
annual and semi-annual signals with the constant-amplitude 
approach (see Eq. 1). In Fig. 1, we present the standard devi-
ation of the annual amplitude in the vertical direction. This 
indicates how much the amplitudes differ from each other 
between the consecutive segments. The largest variations 
are observed in the East Europe and Asia. The mean value 
of the standard deviation is 0.8 mm. For about 30% of sta-
tions, this value is smaller than 0.5 mm, while for about 15% 
of stations it is larger than 1.0 mm. For the North and East 
components (not presented in the figure), the mean standard 
deviation is 0.4 mm.

In Fig.  2, we show the detrended vertical compo-
nent of station AUCK (Australia) and ULAB (Mongo-
lia) with the annual amplitude varying in each segment 
from 0.3 ± 0.1 mm to 2.6 ± 0.1 mm for AUCK and from 
0.1 ± 0.1 mm to 1.1 ± 0.1 mm for ULAB. This simple 

exercise gives us a clear insight into the variability of the 
seasonal signal over time.

Methods used for modeling the time‑varying 
seasonal signal

In the previous section, we demonstrated that for tens of 
GPS stations, the amplitude of the annual and semi-annual 
signals significantly varies over time. We will now review 
various methods that subtract the time-varying seasonal 
signal.

Moving Ordinary Least Squares: MOLS

In the previous section, we presented the Moving Ordinary 
Least Squares (MOLS) approach to estimate seasonal signals 
in 3-year segments. To generate a single time series with 
the varying seasonal signal, we used linear interpolation to 
guarantee a smooth transition between the segments. Next, 
we found that the difference between applying weighted or 
ordinary least squares, which ignores the properties of the 
noise, only produced sub-millimeter differences. The MOLS 
method is fast, easy to implement and, also, can deal with 
missing data and offsets.

Wavelet decomposition: WD

Wavelet Decomposition (WD) is a pyramidal algorithm that 
enables us to capture time-varying seasonal signal at various 
resolution levels. We used seventh and eighth levels of Mey-
er’s wavelet (Meyer 1990) to model time-varying signals 
with periods between 128 and 512 days, which include the 
annual and semi-annual periods. The Wavelet Decomposi-
tion technique can be used to extract the time-varying sea-
sonal signal in a preprocessing step after which the residu-
als can be analyzed to estimate the velocity (Bogusz 2015). 
Although it is a promising tool to model time-changeable 
seasonal curves for any modulating signal (Wu et al. 2015), 
its main disadvantage is that it models both signal and noise 
between the frequency limits that define the resolution. No 
separation between signal and noise is performed.

Singular Spectrum Analysis: SSA

Singular Spectrum Analysis (SSA; Broomhead and King 
1986; Vautard and Ghil 1989; Allen and Robertson 1996) is 
based on the idea to use pairs of Empirical Orthogonal Func-
tions (EOFs) to model oscillations that change over time. 
SSA was introduced to GPS time series analysis by Chen 
et al. (2013) to model the nonlinear trend along with time-
varying seasonal signal in weekly data. Zerbini et al. (2013) 
used SSA to analyze the inter-annual variability of different 
series. Recently, Xu and Yue (2015) used daily GPS vertical 
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Fig. 2   Variations in annual and semi-annual signals for stations 
AUCK (top panel) and ULAB (bottom panel) estimated with MOLS 
for vertical component. The annual amplitude varies in each seg-
ment from 0.3  ±  0.1  mm to 2.6  ±  0.1  mm for AUCK and from 
0.1 ± 0.1 mm to 1.1 ± 0.1 mm for ULAB
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coordinate time series, to investigate seasonal SSA-filtered 
signals. Although it was not quantified, they concluded that 
SSA might absorb a part of the colored noise. Using a set of 
synthetic time series, we investigated the use of a 2-, 3- and 
4-year moving window lengths to deliver the most precise 
results under different noise levels.

Kalman Filter: KF

The standard model, as shown in Eq. (1), was modified by 
Davis et al. (2012) as follows:

where ai(t) and bi(t) are now instantaneous amplitudes which 
are assumed to consist of a mean value plus a random walk 
component. The parameters x0, vx, ai(t) and bi(t) are solved 
using a Kalman Filter (KF, Kalman 1960). We manually 
tuned the variances of the stochastic part of ai(t) and bi(t) 
to obtain the best fit between the estimated time-varying 
seasonal signal and the synthetic seasonal signal. The 
state vector of parameters and covariance were estimated 
in a forward pass and smoothed in a backward pass with a 
Rauch–Tung–Striebel smoother (Gelb 1974).

It must be noted that the noise term ε(t) has disappeared 
in (2) (compare to (1)). As a result, the power spectrum of 
the noise in the GPS position time series flattens for frequen-
cies below the annual period. However, as it was shown by 
Didova et al. (2016), it can be modified by adding the ε(t) 
term in the form of a third-order autoregressive model which 
mimics a power-law noise. They tuned their filter so that the 
low frequencies were not absorbed in the stochastic part. 
They limited the standard deviation of the parameters ai(t) 
and bi(t) to the estimated standard deviation of the series 
by cutting the time series into segments and estimating the 
annual signal for each segment. It was noted that this is a 
complex nonconvex optimization problem and advocated 
the use of the likelihood function to determine the values 
of variances in the filter. In this research, we limited our-
selves to find the optimal values of the stochastic variables 
of the seasonal signal in the state vector by trial and error 
approach. This approach is explained in the next section.

Modeling the seasonal amplitudes with polynomials: CP

Bennett (2008) assumed that the variations in the ampli-
tude of the seasonal signals vary slowly over time. These 
variations in the amplitude can be estimated using n + 1 
orthonormal basis functions ηj(t). Thus, the following model 
is used:
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We have implemented this model into the Hector soft-
ware package. We used simple Chebyshev polynomials (CP) 
as basic functions for ηj(t), where j indicates the degree of 
the polynomial, instead of orthonormal basis functions 
derived from the representors of amplitude deviation (Ben-
nett 2008). For j = 0, the Chebyshev polynomial is 1, and 
we have the case of constant amplitudes. For j = 1, linear 
variations are allowed; for j = 2, a quadratic function is fit-
ted and so on until degree n. All functions �j(t) cos
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 were made orthogonal to each other by 
applying the Gram–Schmidt’s algorithm to improve numeri-
cal stability (Bennett 2008). Thus, we also created a set of 
orthonormal basis functions, only they are not derived from 
representors. We tested a set of polynomial degrees between 
1 and 10 for the synthetic data set. We chose degree 4 as the 
most appropriate single value to model time-varying curves 
in both synthetic and real data for a wide range of noise 
values. However, also higher degrees were tested to estimate 
the seasonal signal under different noise levels.

Synthetic GPS time series

To test the efficiency of the various techniques mentioned 
in the previous section, we generated 500 synthetic time 
series without gaps with a length of 6000 days which makes 
16.4 years (Fig. 3). We assumed a pure flicker noise (spectral 
index of −1) with the amplitudes between 1 and 25 mm/
year0.25 which covers the range of 7–21 mm/year−κ/4 that we 
found in the real GPS JPL time series and is the most com-
mon noise type seen in the GPS position time series. The 
noise amplitude of 1 mm/year0.25 is very low, but was used to 
investigate how the various methods perform in an ideal situ-
ation. The annual and semi-annual signals were simulated 
in all time series with mean amplitudes of, respectively, 3.0 
and 1.0 mm, and various phase-lags between 1 and 6 months 
and added to pure flicker noise. The modeled variations in 
the amplitude of the seasonal signal were chosen to have 
standard deviations of 1.0 and 0.5 mm for annual and semi-
annual signals, respectively, to mimic the mean values of 
real time-varying signals (Fig. 2).

To investigate the effect that data gaps may have on the 
precision of each approach, we also simulated time series 
with missing data that varied from 4 to 16% of the total 
length of data, with a mean of 8%. These missing data were 
filled using linear interpolation.

Having estimated the seasonal signal individually for each 
of the data with the MOLS, CP, SSA, KF and WD meth-
ods, we removed this curve from the synthetic series. Then, 
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residuals were analyzed with MLE assuming white plus 
power-law noise model to deliver the parameters of noise.

Parameters of CP, SSA, and KF

For the CP method, we tried degrees of the Chebyshev poly-
nomial from 2 to 10. We found that for low noise levels, 
degrees equal to or higher than 8 produced a maximum mis-
fit (or standard deviation) of 0.18 mm, which was slightly 
smaller than it was for lower degrees. For a normal noise 
level of 10 mm/year0.25, the opposite was true: lower degrees 
of CP produced smaller misfit. For a minimum degree of 
2, the misfit was equal to 1.19 mm. It seems that lowering 
the degree is necessary to avoid the situation when the CP 
method starts fitting to the noise instead of fitting to the 
annual signal. In our analyses, we used a degree of 4, rep-
resenting a mean value that can be used for a wide range of 
noise levels.

The performance of the SSA method is dependent on the 
length of the window employed to compute SSA. Chen et al. 
(2013) have already investigated the influence of the window 
length on the performance of SSA, but did not link it directly 
to the noise levels. We analyzed the misfit between seasonal 
curves simulated and estimated with 2-, 3- and 4-year win-
dows. For the highest noise level of 25 mm/year0.25, a win-
dow length of 4 years produced a misfit between the syn-
thetic and estimated varying seasonal signals of 1.61 mm. 
For a window length of 3 years, this value was equal to 
1.68 mm. For a noise level of 1 mm/year0.25, for a window 
length of 3 years, the misfit was equal to 0.22 mm, while 
for a 2-year window, it was equal to 0.18 mm. We found 
that in the presence of higher noise levels, longer window 
lengths, as 4-year window, produce better results. For low 
noise levels, smaller windows behave better. Due to the fact 
that the differences in these misfits are small enough, in our 
analyses, we used a window length of 3 years.

As explained in the previous section, the KF method 
of Davis et al. (2012) differs from the one of Didova et al. 
(2016), as, in the former, the temporal correlated noise was 
omitted in the state vector. To obtain the best fit, we tried 
various values for the variances by which the amplitude of 
the seasonal signal is assumed to vary between each of the 
time steps. Then, we implemented both filters, but after tun-
ing the filter of Davis et al. (2012), we could not obtain 
misfits lower than 0.21 and 1.15 mm for the 1 and 10 mm/
year0.25 noise levels, respectively. These values are larger 
than the values we obtained using the filter of Didova et al. 
(2016). Therefore, the latter was used in this research. We 
ran KF with an additional third-order autoregressive model, 
AR(3). The coefficients for this process were estimated by 
fitting a third-order autoregressive model to pure synthetic 
flicker noise of a length of 6000 days to mimic a power-law 
noise. Then, they were directly employed in the KF. If the 
variances of the seasonal signals are too large, then the sea-
sonal signal will start to model the noise as well. This results 
in a too low value for the estimated spectral index and an 
underestimation of the trend uncertainty.

Results for synthetic time series

The results of all the methods are summarized in Tables 1 
and 2, which show the estimated trend uncertainty, the esti-
mated spectral index of the power-law noise κ, and the esti-
mated amplitude of the power-law noise σ. The last column, 
which we label as ‘misfit,’ shows the standard deviation 
computed between the seasonal signal estimated with a cer-
tain method and the seasonal signal which was simulated. 
The results of the analyses of the time series with interpo-
lated data gaps are given within the brackets
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Tables 1 and 2 also include a case when the seasonal 
signal was not modeled, although being present in the series 
(label ‘no seasonal assumed’). This generates an overestima-
tion of the spectral index and, as a result, a too large trend 
uncertainty. The last row contains the actual trend error esti-
mated using Eq. (29) of Bos et al. (2008), in case there is no 
seasonal signal present in the time series and trend uncer-
tainty is generated only by the synthetic noise.

First, to examine how precisely we can retrieve time-
changeability of the synthetic series, we employed MOLS. 
For very low noise levels, that is, for 1 mm/year0.25, the 
standard deviation computed for the estimated annual ampli-
tudes was equal to 0.55 mm and for the highest noise levels, 
that is, for 25 mm/year0.25, the value was equal to 1.34 mm. 
This difference highlights that the ability of the MOLS 

method to separate noise from the annual signal decreases 
when noise levels increase. A conclusion is that a part of the 
noise is absorbed in the estimated annual signal.

Table 1 proves that for the case when the flicker noise 
amplitude is very low compared to the size of the variations 
in the seasonal signal, estimating a constant seasonal sig-
nal with WLS performs as expected worse than any of the 
methods that try to model the varying seasonal signal. Fur-
thermore, there is a good agreement between the modeled 
and synthetic seasonal signals for all methods, with SSA and 
KF obtaining the lowest misfit values. On the other hand, 
Table 2 shows that when normal noise levels are employed, 
i.e., 10 mm/year0.25, the varying seasonal signal can no 
longer be estimated so precisely. At the same time, these 
results show that for normal noise levels, the WD absorbs a 
part of the noise which results in an underestimation of the 
spectral index. The higher the noise level, the more power 
is in fact absorbed by WD.

Tables 1 and 2 show that estimating a varying seasonal 
signal always results in lower noise amplitudes and lower 
spectral indices compared to estimating a constant seasonal 
signal. For low noise levels, it stems from the fact that the 
varying seasonal signal is correctly removed, eliminating 
the spikes in the power spectrum at the annual and semi-
annual periods. For high noise levels, part of the noise in a 
seasonal frequency band is absorbed in the estimated vary-
ing seasonal signal. Figure 4 shows the power spectral den-
sity (PSD) plots estimated with Welch periodogram (Welch 
1967) for two synthetic time series, one with a flicker noise 
amplitude of 1 and the other of 10 mm/year0.25, after remov-
ing the seasonal signal with various methods. For a low 
noise level of 1 mm/year0.25, both the CP and WLS methods 
give similar poor results, and the WD method appears to 
absorb too much of the seasonal signals for both low and 
normal noise levels.

Figure 5 presents the standard deviations of the difference 
between estimated and synthetic seasonal signals, labeled 
as a misfit, for different noise levels and methods. We also 
provide the empirical ratio of the estimated standard devia-
tion of the annual signal to the noise level, i.e., standard 
deviation of annual signal divided by noise amplitude. As 
was expected, not estimating a seasonal signal gives the larg-
est misfit. Estimating a constant seasonal signal with WLS 
produces misfits that are equal to the standard deviations of 
the estimated variations in the annual signal. SSA and KF 
have excellent performance for high signal-to-noise ratios in 
capturing the varying seasonal signal, but the precision of 
SSA deteriorates for higher noise levels. KF suffers from the 
same problem, but to a lesser extent. CP absorbs noise for 
high noise levels which makes it worse than WLS.

The mean total variance of the synthetic varying sea-
sonal signal is equal to 5.5 mm2. At the lowest noise level of 

Table 1   Mean trend uncertainty, spectral index κ, noise amplitude 
σ and a misfit estimated from 500 simulations of the synthetic time 
series of the length of 6000 days (16.4 years)

Various methods were employed. The values within the brackets were 
obtained from the time series with linearly interpolated data gaps. 
The noise amplitude of the synthetic flicker noise (κ = −1) was equal 
to 1 mm/year0.25

Method Trend uncer-
tainty (mm/
year)

κ σ (mm/
year−κ/4)

Misfit (mm)

No seasonal 
assumed

0.475 (0.485) − 1.76 3.39 2.39 (2.40)

WLS 0.061 (0.064) − 1.23 1.47 0.56 (0.59)
MOLS 0.027 (0.029) − 1.05 1.08 0.24 (0.24)
CP 0.031 (0.034) − 1.07 1.12 0.27 (0.27)
KF 0.020 (0.022) − 0.98 0.96 0.16 (0.17)
SSA 0.021 (0.029) − 0.99 0.98 0.16 (0.22)
WD 0.030 (0.032) − 1.07 1.07 0.24 (0.25)
Actual 0.022 − 1.00 1.00

Table 2   Same as Table 1, but for a normal noise amplitude of 10 mm/
year0.25

Method Trend uncer-
tainty (mm/
year)

κ σ (mm/
year−κ/4)

Misfit (mm)

No seasonal 
assumed

0.294 (0.301) − 1.07 11.18 2.44 (2.42)

WLS 0.221 (0.228) − 1.00 9.95 1.11 (1.09)
MOLS 0.205 (0.211) − 0.98 9.63 1.31 (1.31)
CP 0.209 (0.215) − 0.98 9.67 1.29 (1.27)
KF 0.209 (0.215) − 0.98 9.71 0.73 (0.74)
SSA 0.191 (0.195) − 0.96 9.35 1.08 (0.96)
WD 0.175 (0.180) − 0.94 9.00 1.53 (1.52)
Actual 0.222 − 1.00 10.00
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1 mm/year0.25, the variances of the misfits are equal to 0.162 
for SSA and KF, respectively, see the last column of Table 1, 
and thus explain 99.1–99.5% of the seasonal signal variance. 
At a noise level of 10 mm/year0.25, these values decrease to 
84 and 90%, respectively, while for 25 mm/year0.25, these 
numbers are equal to 49 and 77%. Thus, not only the qual-
ity of the method determines the precision of the estimated 
varying seasonal signal, but also the noise level in the inves-
tigated time series.

For the highest amplitude of power-law noise, that is, 
25 mm/year0.25, CP produces the largest misfit, i.e., higher 
than 2 mm. The WLS method, although assuming a time-
constancy of the seasonal signal, performs better than CP, 
producing a misfit of approximately 2 mm. KF-derived sea-
sonal curve is the closest to the original synthetic seasonal 
curve with a misfit of around 1 mm.

The results we presented in this section are valid also for 
synthetic series with gaps being filled using simple linear 
interpolation. As shown in Tables 1 and 2, the trend uncer-
tainties and the misfit differ insignificantly for both sets of 
data.

Observed GPS position time series

We introduced the ratio of standard deviation of the annual 
signal to the power-law noise amplitude. We showed that 
this ratio provides an indication of how precisely one can 
estimate the varying seasonal signal using various meth-
ods; see also the top of Fig. 5. For the 174 GPS stations we 
described, we have plotted this ratio in Fig. 6 for the North, 
East, and Up components. It can be noticed that the signal-
to-noise ratio is similar for all components.

For each individual station, the varying seasonal signal 
was estimated with SSA, KF, and CP. After subtraction of 
this signal from the observations, the residuals were ana-
lyzed using MLE assuming a power-law plus white noise 
model. Table  3 presents the mean spectral indices and 
power-law noise amplitudes we estimated. The average 
power-law noise has an amplitude of around 4 mm/yearκ/4, 
falling within the range of synthetic noise levels presented 
before. Together with the fact that the signal-to-noise ratios 
are similar for all components, our conclusions are also 
applicable to all three components. The table also shows that 
omitting the modeling of the varying seasonal signal leads to 
an overestimation of the spectral index of around 0.1 which 
will result in an overestimation of the trend uncertainty. The 
smallest uncertainties were found for WD. However, this 
arises from the artificial removal of some power in a fre-
quency band we analyzed. The results of trend uncertainty 
and noise parameters, after WLS, MOLS, CP, KF, and SSA 
were applied, are similar to each other. The difference in 
trend uncertainty is equal to 0.03 mm/year at maximum.
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Fig. 4   PSDs of synthesized time series and residuals after applying 
the WLS, MOLS, WD, KF, SSA, and CP methods for two levels of 
noise: 1 mm/year0.25 and 10 mm/year0.25. Top panel: When the flicker 
noise amplitude is very low relating to the size of the variations in the 
seasonal signal, estimating a constant seasonal signal performs worse 
than any of the methods. Bottom panel: When normal noise levels are 
used, the varying seasonal signal can no longer be estimated so pre-
cisely, as it absorbs some part of the noise. PSD was estimated with 
Welch periodogram
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According to the results we obtained for synthetic series 
(Fig. 5), the KF is the best to model varying seasonal signals 
for series characterized by a signal-to-noise ratio between 
0.02 and 0.05 or power-law noise amplitude between 10 and 

25 mm/year−κ/4. In our case, from a set of 174 stations ana-
lyzed in this research, the North, East, and Up components 
are characterized by such a ratio for 17, 12, and 34 stations 
(Fig. 6). KF and SSA produced similar results for 110, 108, 
120 stations, with a signal-to-noise ratio between 0.05 and 
0.10 or power-law noise amplitude between 5 and 10 mm/
year−κ/4, KF and SSA. For any signal-to-noise ratio higher 
than 0.10 or power-law noise amplitude lower than 5 mm/
year−κ/4, the KF, SSA, and CP behave in a similar way and 
all of them are applicable in this ideal case.

Figure 7 presents PSD for original series and residuals 
of MOLS, CP, KF, SSA, and WD for station AUCK for 
the vertical time series. The Up component of AUCK is 
characterized by spectral index κ of −0.92 and amplitude of 
power-law noise of 9.11 mm/year0.23. Signal-to-noise ratio is 
equal to 0.07 for Up. It means that KF and SSA should work 
similarly and will produce similar misfit between the esti-
mated seasonal curve and real data. The CP method removes 
too much power from the frequency of 1 cpy, which is in 
very good agreement with what we showed for the synthetic 
dataset (Fig. 5). For amplitude of power-law noise around 
10 mm/year−κ/4, the CP works much worse than KF and 
SSA. Also, WLS leaves some power around 1 cpy, which 
can be noticed as a small peak at the PSD. WD absorbs too 
much power between 0.8 and 3 cpy, causing the dip in the 
curve. The uncertainty of trend delivered from WD residu-
als will be the smallest from all methods applied, but is not 
really what we aim at. We should remove time-changeable 
signals, but leave the stochastic properties intact if we want 
to continue to use a simple power-law plus white noise 
model in the time series analysis.

Discussion and conclusions

Nowadays, the annual and semi-annual signals in the GPS 
position time series are routinely modeled using periodic 
signals with constant amplitudes using WLS. However, on 
physical grounds, it is likely that the amplitudes vary slightly 
over time. To estimate these signals, various methods have 
been developed such as WD, SSA, KF, and writing the 
variations in the seasonal signal as a sum of orthonormal 
polynomials (CP). In addition to these techniques, we also 
presented a new method based on Ordinary Least Squares, 
but applied to 3-year segments of data that are overlapping 
with a spacing of 1 year, which we call Moving Ordinary 
Least Squares (MOLS). For each segment, an annual and 
semi-annual signal was estimated. The main purpose of this 
method is to quantify the temporal variations in the annual 
signal. However, its performance as an estimator of the vary-
ing seasonal signal is acceptable considering its simplicity.

The performance of above-mentioned methods was inves-
tigated using 500 synthetic time series using a period of 
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16.4 years with pure flicker noise with amplitudes between 
1 and 25 mm/year0.25, which means that noise properties 
delivered from real GPS position time series are covered.

Fitting Chebyshev polynomials through the amplitudes of 
the seasonal signal performed slightly better than the MOLS 
method, but we found that for higher noise levels it started 
to absorb power-law noise which decreased its usefulness. 
Lowering the degree of the Chebyshev polynomials reduced 
this problem to some degree.

That SSA is a good estimator of the varying seasonal 
signal has been demonstrated by several people (Chen et al. 

2013; Klos et al. 2017). Here, we confirm these findings, 
but also show its performance for various noise levels in the 
time series. We found that in the presence of higher noise 
levels longer window lengths, e.g., 4-year window, produce 
better results. For a noise level of 25 mm/year0.25, a window 
length of 4 years produces a misfit between the real and 
estimated varying seasonal signals of 1.61 mm. While for 
a window length of 3 years, this value is 1.68 mm. For our 
synthetic time series, SSA with a window length of 3 years 
can model 49–84% of the variance of the true varying sea-
sonal signal and this for most common noise levels found 
in real GPS data.

The KF, with a correct tuning of the variances in the fil-
ter, as described by Didova et al. (2016), was found to be 
the most precise method for estimating the varying seasonal 
signal. The addition of temporal correlated noise in the state 
vector was found to give superior results compared to the KF 
of Davis et al. (2012) who did not include this type of noise. 
We concur with Didova et al. (2016) that the search for the 
optimal values of the variances of the temporal correlated 
noise and the random walk part of the seasonal signal is a 
complex problem. However, when this task is well done, the 
KF is able to estimate better the varying seasonal signal at 
normal to high noise levels than the afore-mentioned meth-
ods. For this range of noise levels, and length of time series, 
it can model 77-90% of the total variance of the varying 
seasonal signal.

Table 3   Mean values of the 
trend, spectral index and noise 
amplitude we estimated from a 
set of 174 JPL stations

Component Method Trend uncertainty 
(mm/year)

κ σ (mm/year−κ/4)

North No seasonal assumed 0.15 − 1.13 4.29
WLS 0.07 − 0.92 3.80
MOLS 0.05 − 0.79 3.49
CP 0.05 − 0.81 3.55
KF 0.05 − 0.81 3.55
SSA 0.07 − 0.93 3.81
WD 0.04 − 0.67 3.19

East No seasonal assumed 0.13 − 1.09 4.28
WLS 0.07 − 0.90 3.84
MOLS 0.04 − 0.75 3.48
CP 0.05 − 0.78 3.56
KF 0.05 − 0.78 3.57
SSA 0.08 − 0.94 3.92
WD 0.03 − 0.62 3.19

Up No seasonal assumed 0.31 − 0.94 13.78
WLS 0.14 − 0.74 12.17
MOLS 0.11 − 0.66 11.52
CP 0.12 − 0.67 11.66
KF 0.14 − 0.73 12.15
SSA 0.11 − 0.64 11.47
WD 0.09 − 0.58 10.76
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For series with power-law noise amplitude between 5 and 
10 mm/year−κ/4, KF and SSA will produce similar results. 
For any signal with power-law noise amplitude lower than 
5 mm/year−κ/4, KF, SSA, and CP will work in a similar way, 
and all of them are applicable in this ideal case.

SSA, KF, and CP have all been investigated in previous 
studies, but none emphasized the fact that their performance 
is dependent on the noise level in the time series that were 
analyzed. We demonstrated that the noise level is one of the 
most important factors that determine the precision of the 
results. The higher the noise level, the more difficult it is to 
extract the desired signal. Our contribution is that we have 
quantified this effect and our results can serve as a recom-
mendation for future studies to estimate how much of the 
estimated varying seasonal model is real signal and how 
much is noise. This not only applies to GPS position time 
series, but also to other geophysical observations such as 
temperature and sea level time series which are also affected 
by power-law noise (Bos et al. 2014; Fredriksen and Rypdal 
2016) and thus experience similar difficulties to separate the 
varying seasonal signal from the background noise.
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