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Abstract A method for constructively using non-line-of-

sight GNSS signals from a snapshot of signal samples for

positioning of users in urban areas is presented here. Using

a 3D building model and a ray-tracing algorithm, the

number of reception paths and the corresponding path

delays of reflected signals are predicted, across a rid of

candidate positions. These predictions are then used to

compute a least squares fit to the GNSS receiver’s corre-

lator outputs, and the position with smallest residuals is

selected as the position estimate. Using data collected

along 3.5 km of road in downtown Calgary, Canada, where

buildings reach heights of over 200 m, the root-mean-

square position error is below 10 m in the along-track and

across-track directions. Compared to two pseudorange-

based receivers, the proposed method yields RMS error

improvements of at least 31% in the along-track direction,

63% in the across-track direction, and 53% in the hori-

zontal plane.

Keywords GNSS � Multipath � 3D building model �
Parameter estimation � Constructive use of reflected

signals � Snapshot positioning

Introduction

The day-by-day increase in popularity of global navi-

gation satellite system (GNSS) is evidenced by the

increasing number of applications from mobile phones

to aircraft landing. GNSS has emerged as a mainstream

technology for navigation for several outdoor applica-

tions, maintaining high reliability and accuracy demands

even while using low-cost portable devices. The recent

trend is toward extending GNSS-based applications to

urban canyon environments (Bourdeau et al. 2012;

Groves 2011; Petovello and He 2016; Sahmoudi et al.

2014; Suzuki and Kubo 2013; Xie and Petovello 2015).

In such environments, poor satellite visibility (i.e., a

limited number of signals can be tracked), poor dilution

of precision (DOP), and signal reflections from nearby

buildings conflate to reduce the accuracy of standalone

GNSS-based navigation systems. Reflected or non-line-

of-sight (non-LOS or NLOS) signals, when combined

with the direct LOS signals, create unwanted multipath

effects that remain the dominant source of error

(Braasch 2001; Ward et al. 2006; Xie and Petovello

2015). Multipath cannot be removed by differential

techniques, thus limiting positioning accuracy in mul-

tipath prone areas (Ercek et al. 2006; Misra and Enge

2011; Ward et al. 2006). Several techniques have been

proposed for detection and mitigation of multipath sig-

nals whose methodologies can be broadly categorized as

follows:

• Integration with other sensors/systems, most notably

inertial navigation systems (INS), where the comple-

mentary characteristics of each system are exploited

(Groves et al. 2007; Petovello et al. 2008a; Soloviev

and Graas 2009; Soloviev et al. 2011).
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• Modified GNSS receiver processing strategies to

improve signal processing/tracking such as vector-

tracking, ultra-tight integration with INS, maximum

likelihood tracking, and block processing methods

(Petovello et al. 2008b; Uijt de Haag 1999; Graas

et al. 2009; Weill 2010; Xie and Petovello 2012).

• Use of multi-constellation GNSS to increase the

number of measurements and reduce the DOP (Groves

et al. 2013; O’Driscoll et al. 2010).

• Adoption of signal parameter estimation techniques

(He and Petovello 2013; Sokhandan 2013; Van Nee

1995).

In addition, 3D building models (3DBMs), which are

digital representations of cities containing relevant

geospatial information (Frere et al. 1998), have recently

been used to improve positioning performance in urban

areas. Approaches can be roughly divided into three cate-

gories, either with or without additional sensors: (1) GNSS-

free approaches, (2) NLOS signal identification, estima-

tion, and/or exclusion (but without compensation), and (3)

constructive use of NLOS signals.

GNSS-free approaches include the use of 3DBM and

images for skyline-based positioning without any GNSS

data (Petovello and He 2016; Ramalingam et al.

2009, 2010).

The second category encompasses a range of techniques

that identify, estimate, and/or exclude NLOS signal infor-

mation without attempting to compensate the solution for

their effect. Excluding measurements can be effective at

minimizing position errors, but often leads to poor satellite

geometry. Bradbury et al. (2007) simulated multipath

effect using a 3DBM to identify valid reflectors. Obst et al.

(2012) used a 3DBM along with vehicle’s onboard

odometer to detect and predict GNSS multipath situations

in urban areas. Kumar and Petovello (2015) showed how

3DBMs could be used for multipath parameter estimation.

The third category aims to use the NLOS signal infor-

mation in a constructive manner and includes several dif-

ferent approaches. The concept of shadow matching was

proposed by Groves (2011), which categorizes signals as

LOS or NLOS, largely based on carrier-to-noise density

ratio (C/N0) information, and then uses this classification

for determining the user’s position using 3DBM-predicted

satellite visibility. Several other works have since expan-

ded on this approach. Adjrd and Groves (2015) incorpo-

rated height aiding with shadow matching algorithm; Wang

et al. (2015) improved the implementation efficiency of

basic shadow matching for use in real-time applications;

Yozevitch and Ben Moshe (2015) extended shadow

matching by incorporating a particle filter-based weighting

scheme for LOS/NLOS classification; Ahmad et al. (2013)

and Bourdeau et al. (2012) used 3DBM and a ray-tracer to

correct NLOS-based pseudoranges and incorporate these

corrected measurements with LOS-based pseudoranges;

Miura et al. (2013) and Suzuki and Kubo (2013) proposed a

positioning method using corrected pseudorange with the

help of a 3DBM; Gu et al. (2015) and Hsu et al. (2016a, b)

used 3DBM for correcting pseudorange and comparing it

with observed pseudorange to estimate position in urban

canyons.

Previous research utilizing NLOS signals constructively

using 3DBMs can be categorized as either shadow

matching based or pseudorange based, where the latter is

directly based on continuously tracking a signal or indi-

rectly depends on output from continuously tracking

receivers (in terms of reliable C/N0 estimate). However,

snapshot-based positioning approaches (Fernandez-Her-

nandez and Borre 2016 and Qian et al. 2008) are increasing

in popularity relative to continuously tracking receivers.

Using a snapshot of GNSS data, the authors have previ-

ously demonstrated a signal delay matching technique for

improved positioning accuracy in urban canyons, utilizing

all NLOS signals constructively (Kumar and Petovello

2014). Unfortunately, that approach was limited in its

ability to separate/estimate the LOS and NLOS signals.

In this paper, we describe a novel 3DBM-assisted

positioning algorithm that provides accurate and reliable

positioning in deep urban canyons by constructively using

NLOS signals, using a snapshot of GNSS data. Compared

with previous work, the proposed approach has the fol-

lowing novelties/contributions:

1. Whereas previous algorithms used pseudoranges and/

or C/N0 estimates as inputs, the proposed approach

uses raw correlator outputs generated from short

snapshots of GNSS samples. In turn, this offers the

following advantages:

• By only using snapshots of data, the proposed

method can be more power efficient (compared to

signal tracking), can be used on an as-needed basis,

and can provide a solution more quickly because a

C/N0 estimate is unnecessary. Although previous

work has demonstrated the constructive use of

NLSO signals using corrected pseudoranges (such

as Hsu et al. 2016a, b and Miura et al. 2013), this

still requires the signal be tracked over time.

• Obviating tracking loops avoids issues such as loss

of lock due to signal attenuation and/or user

motion, tracking loop instabilities (Graas et al.

2009), cross-correlation tracking, locking on to side

peaks, and filtering effects when NLOS-only

signals are received/tracked.

• Using all correlator information avoids the loss of

information resulting from reducing all correlator
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data into a single pseudorange (or code phase)

measurement (He and Petovello 2014).

2. The approach does not perform LOS/NLOS character-

ization using C/N0 data, which is known to be

ambiguous for this purpose (Ahmad et al. 2013).

Moreover, in order to get a reliable C/N0 estimate in

weak signal environments, tracking of the signal is

required, which has limitations as mentioned in point 1

above. The proposed method uses ray-tracing to

predict relative path delays and uses these as a priori

information for estimating the received signal param-

eters from all correlator outputs thus making more

complete use of all available information (He and

Petovello 2014).

3. Because the approach uses relative path delay infor-

mation, it is virtually unaffected by traditional GNSS

error sources (receiver clock, atmospheric errors, orbit

errors, etc.) since these are nearly exactly the same

across multiple received paths.

4. In principle, the algorithm can compute a position

using as little as one satellite, albeit with limited

accuracy.

The primary objective of this paper is to introduce and

evaluate a snapshot-based positioning algorithm that uses

3DBM data to constructively use NLOS signals to derive

position solutions in urban canyon environments. The

algorithm is tested and analyzed using real data collected in

downtown Calgary, Canada, and is compared with results

of traditional GNSS positioning algorithms. The contribu-

tions of this research are twofold. First, we introduce a

novel 3DBM-assisted snapshot-based positioning algo-

rithm that utilizes all NLOS signals constructively and

validate its performance using real-world data. Second, we

directly compare results against those from a commercial

high-sensitivity receiver and demonstrate error reductions

of at least 31 and 63% in the along-track and across-track

directions, respectively. Moreover, results from the pro-

posed method were obtained independently from epoch to

epoch, suggesting that the use of a filter (e.g., a Kalman

filter) would yield even smaller positioning errors.

Methodology

At a high level, the proposed algorithm is based on

matching the observed signal parameters present in a

GNSS receiver’s correlator outputs, with predicted signal

parameters obtained from a 3DBM and a ray-tracing

algorithm. By predicting the signal parameters at several

candidate points, the candidate point closest to the true

point should yield best agreement with the observed cor-

relator outputs and that point will be declared as the final

position estimate. Algorithm details are provided in the

following section.

3DBM-assisted snapshot positioning algorithm

The block diagram of the 3DBM-assisted snapshot posi-

tioning algorithm is shown in Fig. 1 and consists of the

following steps:

1. Obtain an approximate initial position using any

available method (e.g., a standard GNSS receiver or

WiFi).

2. Define a position grid (PG) around the initial position

obtained in Step 1. Using the uncertainty of the initial

position, the size of the PG is made large enough to

contain the true position with sufficiently high prob-

ability. Each point in the PG is referred as a candidate

point (CP).

3. Using a 3DBM, knowledge of satellite position

(readily available from GNSS aiding sources) and a

ray-tracing algorithm (‘‘ray-tracer’’), predict the fol-

lowing at each CP: (1) the availability of the LOS

signal and (2) the number of NLOS signals along with

their corresponding path delay(s) relative to LOS.

Collectively, these values are referred to as the

‘‘predicted signal parameters’’ in the following.

4. Obtain correlator outputs from a GNSS receiver using

a snapshot of signal samples. The correlator outputs

contain the true signal parameters (including any LOS

or NLOS signals) corresponding to the true location of

the receiver and are thus referred to as observations, or

‘‘observed signal parameters,’’ in the following. In this

work, we only consider the signal power (Z); Z ¼
I2 þ Q2 where I and Q are the in-phase and quadra-

ture-phase correlator outputs, respectively, but the

algorithm is amenable to using I and Q separately. The

implementation used for this paper generates a grid (or

block) of correlators spanning a range of code phase

and Doppler values.

5. Match the predicted and observed signal parameters as

described in the following subsection. Although a grid

of correlators is generated, the peak correlator output is

identified and only the correlators from the Doppler

shift corresponding to the largest value in the corre-

lator grid are extracted and used (i.e., we only use

correlators spaced in the time, or code phase domain at

a single frequency). In other words, a block of

correlators is not required if a sufficiently good

estimate of the signal Doppler is available (e.g., from

aiding sources).

In summary, the algorithm predicts the received signal

parameters at various positions within an area deemed

GPS Solut (2017) 21:1923–1935 1925

123



likely to contain the true position and then selects the

position whose predicted parameters most closely match

what was observed. In the interest of space, details for

Steps 1–4 are provided in Kumar and Petovello (2014) and

are not repeated here. Step 5 is described in the next

subsection.

Although not used in this work, the Doppler shift of the

signal could conceivably be used to also estimate velocity,

but this is left as future work.

Matching predicted and observed signal parameters

Matching of the observed and predicted signal parameters

is performed using least squares (LSQ) residuals, and the

CP with the smallest residuals (among all CPs) is selected

as the final position estimate.

The first step is to use the total number of predicted

signal paths (i.e., number of NLOS paths and the LOS path,

if present) to select the mathematical model for the cor-

relator outputs (‘‘correlator model’’) that, in turn, is used as

the mathematical model for LSQ estimation. Since we

observed a maximum of three signal paths at any given

time instant in our data, the signal models are limited to the

one-, two-, and three-path models as shown in Table 1, but

increased number of paths could be considered, if neces-

sary. In the table, subscripts 1–3 respectively correspond to

the signals with shortest path, second shortest path, and

third shortest path; An represents the signal amplitude of

the n-th signal path after correlation; dnm is carrier phase

difference between the n-th and m-th signal paths; sn is the
absolute code delay corresponding to n-th signal path;

R(sk) is the autocorrelation function of the ranging code;

sk ¼ snco � sn is delay; snco is the locally generated code

phase; and 1 is noise. The correlator model proposed by

Sharp et al. (2009) was compared against the correlator

model from a Spirent simulator, and a correlation coeffi-

cient of approximately 0.99 was obtained, which is suffi-

cient for this application (Kumar and Petovello 2015)

although other well-fitting models could be used instead.

For reasons that will be obvious below, we only estimate

the absolute code phase of the shortest path and estimate

the delay of all longer paths relative to the shortest path

(even if the shortest path is NLOS), that is, sn = s1 ? Dsn
for n[ 1.

The second step is to initialize the state vector (state

vectors for each model are shown in Table 1) using the

predicted relative path delay estimates, Dsn for n[ 1. The

corresponding a priori covariance matrix of the states P0 is

also initialized based on the accuracy of the 3DBM used

for the relative path delay predictions; states not corre-

sponding to relative path delay are given an a priori vari-

ance of infinity. The LSQ estimates of the state vector are

then obtained using iterative least squares as:

dX ¼ ðHTW�1H þ P�1
0 Þ�1

HTW�1dz ð1Þ

where dX is the error in the current state estimates, H is the

Jacobian matrix of the observations, W is measurement

noise covariance matrix, and dz is the misclosure vector.

Fig. 1 High-level block

diagram of 3DBM-assisted

snapshot positioning algorithm
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The ‘‘Appendix’’ Observation Matrix provides detailed

expressions of H and W matrices.

The a priori covariance matrix is particularly important

since without it the LSQ algorithm would theoretically

converge to the same estimate for all CPs. In turn, the

residuals for all CPs would be the same, meaning that the

various CPs would be indistinguishable from each other in

the context of the proposed positioning algorithm. The a

priori covariance effectively limits how much a path delay

estimate can change from its predicted value, meaning that

predicted path delays with larger errors will converge to a

more erroneous final estimate, thus yielding larger

residuals.

It is also noted that the a priori covariance can help deal

with under-determined estimation problems. This is not

applicable in this work since our testing used 61 correlators

in the time (code phase) domain, which is more than

enough to estimate any of the state vectors in Table 1.

The final step is to compute the root-sum-of-square

(RSS) of residuals for each CP for each satellite. The RSS

of residuals at each CP is then root-sum-summed across all

satellites at a given epoch to yield an overall RSS value.

The CP with the smallest overall RSS is selected as the

final position estimate. Using the above approach, if the

signal model is correctly parameterized at all CPs, the LSQ

residuals will nominally be smallest for the CP closest to

the true location and will increase for CPs further from the

true location. However, since the number of predicted

signal paths may be different for different CPs, it is pos-

sible that the LSQ model will be either over- or under-

parameterized (relative to the true signal). The effect of

these two cases is as follows:

An under-parameterized model (i.e., predicting fewer

signal paths that are actually received) will yield much

larger residuals than a correctly parameterized model. In

other words, no special steps are needed to handle this

specific case.

The over-parameterized model (i.e., predicting more

signal paths that are actually received) will yield artificially

small residuals because of the increased degrees of

freedom. Since incorrectly predicting the total number of

signal paths will only occur at incorrect CPs, this situation

needs to be identified in order to avoid accidentally

selecting these ‘‘incorrect CPs’’ as the final estimate.

With this in mind, an over-parameterized model should

estimate a very small (ideally zero) amplitude for signal

paths that are not actually present in the observed data, and

a threshold for the multipath-to-direct ratio (MDRn = An/

A1 for n[ 1) is used to identify over-parameterization. The

MDR threshold was selected using the simulations

described in Kumar and Petovello (2015). In summary,

these consisted of simulating 21,000 correlator grids cor-

responding to different NLOS signal characteristics (i.e.,

relative amplitude, delay, and phase with respect to LOS

signal as well as different number of paths). For each

simulated correlator grid, LSQ estimates were then

obtained using all of the models in Table 1, thus including

under-, over-, and correctly parameterized solutions. The

cumulative distribution function (CDF) of the estimated

MDR for the different solutions is shown in Fig. 2 where

all over- and under-parameterized results are grouped

together; for example, over-parameterizing a single-path

case with two- and three-path models is shown together

since the degree/extent of over-parameterization is irrele-

vant. Based on these results, if the computed MDR falls

below 0.09, an over-parameterization is detected and that

CP’s RSS of residuals is set to a very large value.

Before presenting the results, a short discussion of the

algorithm’s expected performance will be helpful. As

shown in Kumar and Petovello (2014), predicted delays

vary most quickly in the direction perpendicular to a

reflector. It follows, therefore, that the (dis)agreement

between the predicted and observed signals (as reflected in

the LSQ residuals) will vary most quickly in this direction

as well. In other words, the algorithm is expected to be

more sensitive in this direction. Extending this logic to

urban canyons, since reflectors (buildings) are typically

parallel to the direction of travel and on either side of the

user, the algorithm is expected to be most sensitive (i.e.,

give the best results) in the across-track direction.

Table 1 Correlator model and states for different signal path

# Signal

paths

Correlator model States

1 Z = A1
2R2(s1) ? 1 X ¼ ½A1 s1 �T

2 Z ¼ A2
1R

2 s1ð Þ þ A2
2R

2ðs2Þ
þ 2A1A2Rðs1ÞRðs2Þ cosðd12Þ þ 1

X ¼ A1 s1 A2 Ds2 d12½ �T

3 Z ¼ A2
1R

2ðs1Þ þ A2
2R

2ðs2Þ
þ A2

3R
2ðs3Þ + 2A1A2Rðs1ÞRðs2Þ cosðd12Þ

þ 2A2A3Rðs2ÞRðs3Þ cosðd23Þ
þ 2A1A3Rðs1ÞRðs3Þ cosðd13Þ þ 1

X ¼ A1 s1 d12 A2 Ds2 d23 A Ds3½ �T

GPS Solut (2017) 21:1923–1935 1927

123



Data collection and processing

The algorithm was tested with data collected in downtown

Calgary, Canada. The data collection setup consisted of a

NovAtel SPAN-LCI reference system, a National Instru-

ments (NI) front-end for L1 intermediate frequency (IF)

sample recording at 20 Msps, a NovAtel antenna, and a

base station. The differential GNSS/INS reference trajec-

tory was obtained from NovAtel’s Inertial Explorer soft-

ware using a tightly coupled forward and backward

smoothing configuration and is shown in the upper plot in

Fig. 3. The vehicle traveled with a maximum speed of

about 15 m/s, and the trajectory spanned approximately

3.5 km of road and included deep and mild urban envi-

ronments; the lower plot in Fig. 3 shows the percent of sky

visible as computed from the 3DBM at the reference

position. Positions were also logged from a u-blox 6

receiver for comparison purposes.

The IF data were processed using the University of

Calgary’s GSNRxTM software receiver (Petovello et al.

2009), and the correlator outputs were saved to file at a rate

of 1 Hz. The version of GSNRxTM used was based on a

block processing strategy which was suitable for generating

multiple correlators. The parameter configuration for the

block processing is summarized in Table 2, although a

selection of results with different parameters are briefly

presented later for comparison purposes. For this work,

only the GPS C/A code signal was used.

The coherent integration time was initially selected to be

100 ms to ensure high signal-to-noise ratios during algo-

rithm development. In order to enable longer coherent

integration, the base station data were used for bit wipe-off.

The PG was only defined in the horizontal plane, and the

vertical position was constrained to the true height of the

receiver. Although this was done primarily to limit the

number of computations, it is nevertheless a reasonable

implementation since the height of the user could also be

estimated from the 3D model, assuming that the user is on

the ground (or a fixed height above it).

The 3DBM spanned an area surrounding downtown

Calgary and was purchased from 3D CAD browser (www.

3dcadbrowser.com) in the ‘‘Wavefront Advanced Visual-

izer’’ format. The model has a quoted accuracy of 3 m and

contained 400,668 polygons. The model was obtained by

first extracting building footprints and then associating a

height to each building—as such, details about building

facades are not provided. A MATLAB-based reader was

used to extract all vertex coordinates, transform them to the

WGS 84 reference system, and store them for later pro-

cessing. The ray-tracer was implemented in MATLAB

using a simple ray-triangle intersection model (Bradbury

et al. 2007). The rays were launched from the satellite

toward each polygon in the model. Using the method

described in Kumar and Petovello (2014), only those paths

for which the signal reached the receiver, either directly or

after a single bounce, were considered. The path delay of

Fig. 2 Cumulative distribution function (CDF) of estimated MDR

values for over-parameterized, correctly parameterized, and under-

parameterized cases

Fig. 3 Downtown Calgary data collection trajectory. Top fig-

ure shows the trajectory along with the building heights, and the

bottom figure shows the percentage sky visibility at each location

Table 2 Summary of

processing parameters
Parameter Value

Correlator Doppler search space ±150 Hz in steps of 2 Hz

Correlator code phase search space ±300 m in steps of 10 m

Coherent integration time 100 ms

Size of position grid ±15 m in steps of 1 m (north and east); height fixed
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each reflected signal relative to LOS was also recorded; if

necessary, these were differenced to yield delays relative to

the shortest NLOS path. As noted above, double- or triple-

bounce reflections (or more) are not predicted and may thus

limit the number and quality of matches with the observed

data.

In order to test the feasibility of the algorithm and to

reduce processing requirements, the initial user position

was replaced with the ‘‘true’’ position from the reference

trajectory. The inherent assumption with this approach is

that if the receiver’s estimated position were used with a

larger PG (to accommodate the corresponding uncertainty

in the estimate), the selected position would be the same as

with a smaller PG. This assumption has been confirmed

with empirical testing (shown later), and hence, the results

presented are also indicative of what is possible without a

reference solution.

Finally, to be truly indicative of snapshot-based posi-

tioning algorithms, the results presented below do not

include any filtering (e.g., Kalman filtering). By extension,

filtering of the results should improve the overall perfor-

mance, although this was not evaluated as part of this work.

Experimental results and analysis

Before presenting the statistics and performance compar-

ison with other receivers for the entire trajectory, an in-

depth analysis for two different points along the trajectory

is presented to highlight key findings. The two points have

sky visibilities of 25 and 65% and are shown in Fig. 4; the

upper pictures show the surrounding buildings, and the

lower plots are the idealized skyplots showing sky (blue)

and buildings (gray) as computed from the 3DBM.

Detailed analysis of point 1 (25% sky visibility)

Figure 5 shows the RSS of residuals at each CP for dif-

ferent PRNs for point 1 [RSS values are normalized to the

range of (0, 1) to simply plotting]. The first thing to notice

is that the RSS values are nearly binary in nature (PRN 31

is an exception and is discussed below). Higher RSS values

(red) correspond to under- and over-parameterized CPs;

lower RSS values (blue) correspond to correctly para-

metrized CPs (there are small variations within the blue

regions, but these are not distinguishable at this scale).

Next, the ‘‘shape’’ of the RSS plots differs between

satellites because of the different locations of the satellites

relative to the user and surrounding buildings. The left half

of the plot for PRN 1 is a good example of this: Each of the

three blue regions corresponds to an area where the pre-

dicted signal reflects off of a different building. The other

PRNs have different patterns because their predicted

signals involve different buildings. The exception to this is

PRN 31, which is predicted to have a single path at all CPs.

The single-path model does not receive any a priori

information (i.e., no predicted relative path delays), so the

LSQ estimate is completely unconstrained and converges

to the same solution at all CPs; hence, there are no varia-

tions in the RSS values (and the normalized RSS value will

be unity). In other words, the proposed algorithm only

makes use of reflected signals and does not use LOS sig-

nals at all (including LOS data are left as future work).

With this in mind, PRN 11 was also a single-path satellite

and is thus not shown. These plots also demonstrate that a

position estimate can be obtained using only a single

satellite with multiple paths; for the results shown, using

Fig. 4 Points considered for detailed analysis; upper figures show the

surrounding environment with the approximate user location repre-

sented as a white triangle and the lower figures are skyplots showing

sky (blue) and buildings (gray) computed from the 3DBM

Fig. 5 RSS of residuals for different PRNs at point 1
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either PRN 1, PRN 14, or PRN 22 only yields position

errors of 4.5, 9.8, and 5.4 m, respectively.

Figure 6 shows the overall RSS across all satellites at

each CP, and the final position estimate is indicated with a

white star. In this case, despite only using information from

three satellites, the position estimate has an error of 3.6 m,

about 1 m across-track and 3 m along-track (the vehicle

was moving east/west). This contrasts with traditional

GNSS methods where the across-track error in urban

canyons is typically larger than the along-track error due to

poor across-track satellite geometry/visibility (Groves

2011; Ward et al. 2006) but is consistent with the expected

performance (see closing paragraph of the ‘‘Methodology’’

section). The final point is that the blue area containing the

smallest RSS values spans a relatively small region, about

2–3 m in each horizontal direction. This suggests that the

solution is fairly strong in both the along- and across-track

directions although quantifying the solution uncertainty is

left for future work.

Detailed analysis of point 2 (65% sky visibility)

The RSS of residuals for three different PRNs and the

overall RSS at point 2 are shown in Figs. 7 and 8,

respectively. In addition to the satellites shown in Fig. 7,

PRNs 11, 22, and 31 were single-path satellites and thus

not shown.

Comparing these results with those of point 1, it is

obvious that RSS patterns are quite different and that they

are more widely spread in the east/west direction (direction

of travel). The reason for this is that there are fewer

buildings that come into play at this location, and the

buildings are located on only one side of the road (see

Fig. 4). This means that CPs in the along-track direction

predict similar path delays and hence the variability of the

residuals is much smaller. It is therefore not surprising that

the position error (8.4 m) is larger than at point 1 (3.6 m).

This uncertainty is indirectly shown in Fig. 8 where the

area with the smallest RSS value is much more spread in

the along-track direction.

Analysis of entire trajectory

To extend the above analysis, Fig. 9 shows the horizontal

position error with respect to sky visibility for all points in

the data set. Results from two traditional pseudorange-

based receivers are shown for comparison: One is a high-

sensitivity version of our GSNRxTM software receiver, and

the other is a u-blox 6 receiver. For the proposed algorithm,

there is a clear relationship between position error and sky

visibility with lower sky visibility yielding more accurate

position estimates. This is opposite of what is expected

(and observed) with traditional GNSS receivers, which

perform better as sky visibility increases.

It is also worth noting that the two pseudorange-based

receivers contain large biases for sky visibilities ranging

Fig. 6 Overall RSS of residuals from all PRNs and final estimated

position (white star) at the point 1

Fig. 7 RSS of residuals from PRN 1, 14, and 32 at Point 2

Fig. 8 Overall RSS of residuals from all PRNs and final estimated

position (white star) at the Point 2
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from about 30–50%; this is almost certainly caused by the

receivers’ position filters ‘‘locking on’’ to a poor (biased)

solution that is only corrected once the receiver reaches an

area with more and better measurements. Although this

suggests there may be room for improving the pseudor-

ange-based receivers, it also shows the benefit of the pro-

posed algorithm. Specifically, the proposed method

provides better results in most cases despite using a snap-

shot-based approach (thus offering power savings) and no

filtering. By extension, filtering the results from the pro-

posed solution would likely yield even better performance.

The error statistics for all the three solutions are sum-

marized in Table 3, and the corresponding improvement of

the proposed method’s RMS errors is shown in Table 4.

Overall, error statistics of the proposed algorithm are best

among all solutions. Moreover, the improvement in the

across-track accuracy is profound (31 or 63%, at least) due

to the inherent weakness of pseudorange-based methods in

this regard. Interestingly, the along-track error of the pro-

posed algorithm is also better than that of the other

receivers with RMS position error improvements of at least

31%. Finally, the horizontal error of the proposed algo-

rithm is 53–71% better than what is possible with tradi-

tional methods. Collectively, these results demonstrate that

the proposed algorithm is a viable alternative to pseudor-

ange-based algorithms in urban canyon environments.

Discussion

As a preliminary assessment of the sensitivity of the

algorithm, the data were reprocessed using two separate

changes in the processing parameters listed in Table 2:

• Using 20 ms coherent integration yields an RMS

horizontal error of 14.1 m, 14% higher than for

100 ms of coherent integration due to the lower

signal-to-noise ratios involved.

• Using 5 m CP spacing with PGs of size ±15 and

±100 m yields RMS position errors of 15.4 and

15.8 m, respectively. Although the larger CP spacing

increases in RMS relative to Table 3, increasing the

grid size to accommodate larger position uncertainties

does not adversely affect performance. A larger PG can

therefore avoid situations where the PG does not

contain the true position, for which the proposed

algorithm would still select the CP with the smallest

overall RSS and would be biased.

Finally, although not done here, 3DBM data could be

integrated with GNSS in other ways and the algorithm

presented here should be compared against such approa-

ches to assess the relative metrics and drawbacks. For

example, the 3DBM could be used with traditional pseu-

dorange measurements to apply height constraints; apply

constraints on the direction of travel; and remove signals

with no LOS signals and/or many NLOS signals. Such

implementations may offer benefits in terms of simplicity

but may not use NLOS signals constructively. Such

Fig. 9 Horizontal error with respect to sky visibility for proposed

algorithm and two pseudorange-based high-sensitivity receivers

Table 3 Summary of error

statistics for different solutions
Receiver type Along error (m) Across error (m) Horizontal error (m)

Mean RMS Mean RMS Mean RMS

HS receiver 19.8 22.1 31.9 38.8 39.9 42.2

Commercial receiver 11.2 12.9 19.8 22.6 23.4 26.6

Proposed algorithm 3.7 8.9 1.8 8.4 11.8 12.4

Table 4 RMS positioning

improvement using the

proposed algorithm

Compared with Along error (%) Across error (%) Horizontal error (%)

HS receiver 60 78 71

Commercial receiver 31 63 53
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comparisons, although use 3DBM, are beyond the scope of

this paper and are left as future work.

Conclusions

This paper presents a 3D building model-assisted technique

that uses a snapshot of GNSS data and non-line-of-sight

signals to derive a user’s position in urban canyons. The

feasibility of the proposed algorithm was evaluated using

real data collected in downtown Calgary, Canada. Key

findings include:

• The proposed algorithm provides more accurate posi-

tion estimates in areas with low sky visibility (as low as

20% above 0� elevation). RMS position errors in the

along-track and across-track directions were both

below 10 m (with slightly better across-track perfor-

mance), and the RMS horizontal error was 12.4 m.

• Compared with traditional pseudorange-based

approaches from two different receivers, RMS position

errors were improved by at least 31, 63, and 53% in the

along-track direction, across-track direction, and hori-

zontal plane, respectively.

Collectively, results show that the proposed method is a

viable alternative/improvement to pseudorange-based

approaches in urban areas and offers great potential for

enabling the expansion of GNSS-based applications to such

environments. Furthermore, with low cost of 3DBMs, the

proposed algorithm is a possible answer for increasing

demand of low-cost positioning solution in urban envi-

ronments, ranging from lane-level driving to guiding

visually impaired pedestrian.
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Appendix

Observation matrix (H)

This appendix shows the observation matrix for different

path models. Using states and observation models from

Table 1, the observation matrix for different path model

can be derived as below.

In following equations of observation matrix, we have

used the following notations:

R
0
skð Þ ¼ oR skð Þ

osk

where R(sk) is the autorotation function as

RðskÞ ¼ Ac � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

snco � skð Þ2þr2
q

� �

where Ac is a constant and obtained from simulations, and

r corresponds to bandwidth loss; details are explained in

Sharp et al. (2009). As explained in the Methodology

section, R(sk) = R(s1 ? Dsk); k[ 1.

One-path signal model

oZ

oA1

¼ 2� A1 � R2 s1ð Þ
� �

oZ

os1
¼ 2� A2

1 � R s1ð Þ � R
0
s1ð Þ

� �

Two-path signal model

oZ

oA1

¼ 2� A1 � R2 s1ð Þ
� �

þ 2� A2 � R s1ð Þ � R s2ð Þ � cos d12ð Þð Þ

oZ

os1
¼ 2�A2

1�R s1ð Þ�R
0
s1ð Þ

� �

þ 2�A1�A2� cos d12ð Þð

� R
0
s1ð Þ�R s2ð ÞþR

0
s2ð Þ�R s1ð Þ

� ��

þ 2�A2
2�R s2ð Þ�R

0
s2ð Þ

� �

oZ

oA2

¼ 2� A2 � R2 s2ð Þ
� �

þ 2� A1 � R s1ð Þ � R s2ð Þ � cos d12ð Þð Þ

oZ

oDs2
¼ 2� A2

2 � R s2ð Þ � R
0
s2ð Þ

� �

þ 2� A1 � A2 � R s1ð Þ � R
0
s2ð Þ � cos d12ð Þ

� �

oZ

od12
¼ � 2� A1 � A2 � R s1ð Þ � R s2ð Þ � sin d12ð Þð Þ

Three-path signal model

oZ

oA1

¼ 2� A1 � R2 s1ð Þ
� �

þ 2� A2 � R s1ð Þ � R s2ð Þ � cos d12ð Þð Þ
þ 2� A3 � R s1ð Þ � R s3ð Þ � cos d13ð Þð Þ
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oZ

os1
¼ 2�A2

1�R s1ð Þ�R
0
s1ð Þ

� �

þ 2�A2
2�R s2ð Þ�R

0
s2ð Þ

� �

þ 2�A2
3�R s3ð Þ�R

0
s3ð Þ

� �

þ 2�A1�A2�cos d12ð Þ� R
0
s1ð Þ�R s2ð ÞþR

0
s2ð Þ�R s1ð Þ

� �� �

þ 2�A2�A3�cos d23ð Þ� R
0
s2ð Þ�R s3ð ÞþR

0
s3ð Þ�R s2ð Þ

� �� �

þ 2�A1�A3�cos d13ð Þ� R
0
s1ð Þ�R s3ð ÞþR

0
s3ð Þ�R s1ð Þ

� �� �

oZ

od12
¼ � 2� A1 � A2 � R s1ð Þ � R s2ð Þ � sin d12ð Þð Þ

oZ

oA2

¼ 2� A2 � R2 s2ð Þ
� �

þ 2� A1 � R s1ð Þ � R s2ð Þ � cos d12ð Þð Þ
þ 2� A3 � R s2ð Þ � R s3ð Þ � cos d23ð Þð Þ

oZ

oDs2
¼ 2�A2

2�R s2ð Þ�R
0
s2ð Þ

� �

þ 2�A1�A2�R s1ð Þð

�R
0
s2ð Þ� cos d12ð Þ

�

þ 2�A2�A3�R
0
s2ð Þ

�

�R s3ð Þ� cos d12ð ÞÞ

oZ

od23
¼ � 2� A2 � A3 � R s2ð Þ � R s3ð Þ � sin d23ð Þð Þ

oZ

oA3

¼ 2� A3 � R2 s3ð Þ
� �

þ 2� A2 � R s2ð Þ � R s3ð Þ � cos d23ð Þð Þ
þ 2� A1 � R s1ð Þ � R s3ð Þ � cos d13ð Þð Þ

oZ

oDs3
¼ 2� A2

3 � R s3ð Þ � R
0
s3ð Þ

� �

þ 2� A2 � A3 � R s2ð Þ � R
0
s3ð Þ � cos d23ð Þ

� �

þ 2� A1 � A3 � R s1ð Þ � R
0
s3ð Þ � cos d13ð Þ

� �

and d13 = d12 ? d23.

Measurement noise covariance matrix (W)

The W matrix defined below is a fully populated matrix,

where off-diagonal elements are correlated according to the

ranging code’s autocorrelation function. Assuming n

observations (correlator outputs) for a given satellite, the

matrix can be written as:

W ¼ r2

1 Rðs2Þ . . . Rðsn�1Þ RðsnÞ
Rðs1Þ 1 . . . Rðsn�1Þ RðsnÞ
. . . . . . . . . . . . . . .
Rðs1Þ Rðs2Þ . . . 1 RðsnÞ
Rðs1Þ Rðs2Þ . . . Rðsn�1Þ 1

where R(si) is the value of the autocorrelation function at

the code phase delay corresponding to the ith correlator and

r is variance of the measurement post-correlation, as

defined in Chapter 6 of Van Diggelen (2009).
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