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Abstract We revisit the geometric interpretation of GPS

dilution of precision (DOP) factors giving emphasis on the

geometric impact of the receiver clock parameter on the

conventional GPS positioning solution. The comparison is

made between the solutions with and without an estimated

receiver clock parameter, i.e., conventional GPS versus

pure trilateration solution. The generalized form of the

DOP factors is also presented for observation redundancy

greater than zero. The DOP factor equations are established

as functions of triangle surfaces and tetrahedron volumes

formed by the receiver-satellite unit vectors or by these

vectors between themselves. To facilitate the comparison

of the solutions with and without a receiver clock param-

eter, the average of receiver-satellite unit vectors is intro-

duced to interpret the DOP factors geometrically. The

geometry of satellite outage is also revisited from a geo-

metric point of view. Finally, the geometric interpretation

of receiver clock constrains within a positioning solution is

also investigated.

Keywords Dilution of precision � Geometry � Receiver

clock parameter � GPS

Introduction

Geometric interpretation of DOP (dilution of precision)

factors has already been studied in the past. However, this

topic still deserves to be revisited, especially with the use

of miniaturized atomic chip clock (Weinbach and Schön

2011) and the calibration of receiver line biases in relative

positioning (Macias-Valadez et al. 2012), for example.

Moreover, let us mention that the geometric interpretation

for positioning can also be transferred to GPS velocity

determination.

The basis of DOP factor calculations are the elements

along the diagonal of matrix Q calculated as follows,

Q ¼ N�1 ¼ ðATAÞ�1 ð1Þ

where

An�4 ¼
�e1

X �e1
Y �e1

Z �1

�e2
X �e2

Y �e2
Z �1

. . . . . . . . . . . .
�enX �enY �enZ �1

0
BB@

1
CCA ð2Þ

for conventional GPS pseudorange solutions.

The terms eX, eY, eZ are the components of the

receiver-satellite unit vector. They come from the

derivative of the topocentric satellite distance with

respect to receiver coordinates (X, Y, Z) in ECEF (Earth-

Centered, Earth-Fixed) coordinate system and the

receiver clock bias (dT, converted in meter). In fact, all

the geometric information about the satellite sky distri-

bution is contained in matrix A.

We address the geometric interpretation of the precision

of GPS positioning, namely the DOP factors. The com-

parison will be made between conventional DOP deter-

mination which considers the receiver clock parameter and

the DOP values from a pure trilateration solution.

& R. Santerre

rock.santerre@scg.ulaval.ca
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Particular cases are also presented from a geometric point

of view, namely the singularity conditions for ill-condi-

tioned positioning, and the clock constraint solving for one

clock parameter for a certain time period instead of esti-

mating it at every epoch.

Notation and definition

Before starting with the development of the geometric

interpretation of DOP factors, let us present the notation

and definition of the most useful quantities.

n: number of observations or number of satellites

u: number of unknown parameters

m: degree of freedom (m = n - u)

c:ij: number of combination of satellite pairs (ij) among

the n satellites

c:ijk: number of combination of satellite triads (ijk)

among the n satellites

c:ijkl: number of combination of satellite quads (ijkl)

among the n satellites

e~i
r : receiver-satellite unit vector from receiver r toward

satellite i

Ei
r; N

i
r; V

i
r: components of the unit vector e~i

r in the local

coordinate system (E, N, V)

�eT
r ¼ �Er; �Nr; �Vrð Þ: average of all unit vectors e~i

r at a

given epoch

e~i
g ¼ e~i

r � �er or Ei
g ¼ Ei

r � �Er, Ni
g ¼ Ni

r � �Nr and

Vi
g ¼ Vi

r � �Vr

Vijk
r : volume of the tetrahedron spanned by unit vectors

e~i
r , e~

j
r and e~k

r

f rijk: height of receiver r to the plane formed by the tips of

unit vectors associated with satellites i, j and k

S
ij
r EN : surface of the triangle spanned by vectors e~i

r and

e~j
r projected onto plane E–N

S
ij
r EV : surface of the triangle spanned by vectors e~i

r and

e~j
r projected onto plane E–V

S
ij
r NV : surface of the triangle spanned by vectors e~i

r and

e~j
r projected onto plane N–V

Vijkl: volume of the tetrahedron spanned by vectors

e~j
r � e~i

r , e~
k
r � e~i

r and e~l
r � e~i

r

S
ijk
EN : surface of the triangle spanned by vectors e~j

r � e~i
r

and e~k
r � e~i

r projected onto plane E–N

S
ijk
EV : surface of the triangle spanned by vectors e~j

r � e~i
r

and e~k
r � e~i

r projected onto plane E–V

S
ijk
NV : surface of the triangle spanned by vectors e~j

r � e~i
r

and e~k
r � e~i

r projected onto plane N–V

Vijk
g : volume of the tetrahedron spanned by vectors e~i

g , e~j
g

and e~k
g

S
ij
g EN : surface of the triangle spanned by vectors e~i

g and

e~j
g projected onto plane E–N

S
ij
g EV : surface of the triangle spanned by vectors e~i

g and

e~j
g projected onto plane E–V

S
ij
gNV : surface of the triangle spanned by vectors e~i

g and

e~j
g projected onto plane N–V

Examples of surface and volume calculations are,

Vijk
r ¼ 1

6

Ei
r Ni

r Vi
r

E j
r N j

r V j
r

Ek
r Nk

r Vk
r

�������

�������
; Vijkl ¼ 1

6

Eij Nij Vij

Eik Nik Vik

Eil Nil Vil

�������

�������
;

Vijk
g ¼ 1

6

Ei
g Ni

g Vi
g

E j
g N j

g V j
g

Ek
g Nk

g Vk
g

�������

�������

S
ij
r EN ¼ 1

2

Ei
r Ni

r

E j
r N j

r

����
����; S

ijk
EV ¼ 1

2

Eij Vij

Eik Vik

����
����;

S
ij
gNV ¼ 1

2

Ni
g Vi

g

N j
g V j

g

�����

�����
ð3Þ

All these surfaces and volumes are unitless because they

are all calculated from dimensionless unit vectors.

Also note that the slant surface of the 3D triangle can be

obtained from the three projected surfaces Sijk
� �2¼

S
ijk
EN

� �2

þ S
ijk
EV

� �2

þ S
ijk
NV

� �2

and that S
ijk
v?

� �2

¼ S
ijk
EV

� �2

þ

S
ijk
NV

� �2

, which is the surface of the 3D triangle projected

onto a vertical plane perpendicular (v\) to the vertical

plane containing the normal to the 3D triangle; the normal

to the vertical plane and the normal to the 3D triangle being

coplanar. Figure 1 illustrates tetrahedron volumes, triangle

surfaces and their projections onto the three orthogonal

planes associated with the local coordinate system (East,

North and Vertical).

Because projections onto the three local orthogonal

planes will be central to the geometric interpretation of the

DOP factors, let us first have a look at the projection of the

GPS satellite traces projected onto those planes (Fig. 2).

Traditionally, the horizontal sky plots are used with regu-

larly spaced concentric circles representing the elevation

(or zenith) angles. In the used projection of the satellite

traces (Fig. 2), the space between the elevation angle cir-

cles (or lines) is no longer equidistant and the equidistance

is different for the vertical planes and the horizontal plane.

The 3D GPS satellite trace shape, as seen from user loca-

tion, is completely revealed with such projections. Similar

graphs are presented in ‘‘Appendix 1’’ for equatorial and

polar sites.
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Let us note that EDOP, NDOP and VDOP factors

multiplied by the 1r (at 68% confidence level) pseu-

dorange precision value (rp) are the projections onto

the three local orthogonal planes centered at the user

location of the confidence (or error) ellipsoid calcu-

lated with the eigenvalues and the eigenvectors asso-

ciated with matrix Q of (1), see for example Kaplan

and Hegarty (2006). Figure 3 illustrates the EDOP,

NDOP and HDOP factors, multiplied by rp, on the

horizontal plane along with the associated (2D) con-

fidence ellipse.

Once the EDOP, NDOP and VDOP values are multi-

plied by the 1r pseudorange precision value (rp), the East,

North and Vertical precision at a 1r level is obtained at a

68% confidence level. The horizontal precision

(HDOP 9 rp) probability level ranges between 63 and

68%, depending on the ratio between EDOP and NDOP,

and the Position precision confidence level (PDOP 9 rp) is

about 61–68%, again depending on the ratio between

EDOP, NDOP and VDOP.

If GPS pseudorange observations were not affected by

clock error, the range observations used for positioning

would be treated similarly to the trilateration method

employed in (2D) land surveying operations (Allan 2007).

In this technique, range measurements are obtained from

two-way electromagnetic wave transmission from a total

station and reflected back from a retroreflector, for exam-

ple. Related to the trilateration method, Fig. 4 (bottom

lines) illustrates the precision of the resulting (2D) position

from three range measurements schematically. The stripes

represent the range precision (or uncertainty).

However, GPS pseudoranges contain receiver clock

bias. In this situation, the receiver clock has to be syn-

chronized, usually at every epoch, to the GPS time scale. In

other words, GPS positioning cannot be determined by

trilateration method. One way to get rid of the receiver

clock is to difference pseudoranges between satellites (r
symbol). Unfortunately, this approach creates artificial

mathematical correlation among the resulting rp observa-

tions which has to be taken into account. In the next sec-

tions, solutions without the r operator will be employed to

avoid such artificial mathematical correlation. In fact,

conventional GPS solution is rather a hyperbolic posi-

tioning technique.

Figure 4 (top lines) illustrates the intersection of two

hyperbolic lines (in 2D) formed by two pairs of transmit-

ters. In this situation, the satellites are located at the focus

of the hyperbolic lines. The dotted lines, linking transmit-

ters (or satellites) 1, 2 and 2, 3, illustrate the baseline

connecting the focus. It can be clearly seen, from the

intersection of the two hyperbolic lines, that the vertical

precision will be worse than the horizontal precision unlike

the trilateration solution discussed above, because in the

real world, the GPS satellites are only visible above the

local horizon. The next sections will present the geometric

interpretation of these two totally different positioning

concepts.

Mathematical development of the geometry
of DOP factors

Let start with the pure trilateration solution using distance

observations (Case 1). In this case, the prime symbol (0)
will be used to distinguish this solution from the conven-

tional GPS solution. Then, the conventional GPS posi-

tioning solution with pseudorange observations will be

presented (Case 2). For both cases, two formulations will

be developed: (1) without observation redundancy where

the number of satellites (n) equals the number of unknown

parameters (u); and (2) for the generalized form where n C

u. In Case 2, a receiver clock has to be estimated. It is well

Fig. 1 Tetrahedron volumes, triangle surfaces and their projections

onto orthogonal planes. Adapted from Santerre and Geiger (1998)
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known that for this type of solution, the GPS height or

vertical coordinate precision (VDOP) deteriorates. The

geometric formulation will allow visual explanation of this

fact among other findings.

Here, the horizontal (East and North) and Vertical com-

ponents of the receiver-satellite unit vectors are directly used.

In real life, the calculation is done in ECEF, and then the DOP

factors are properly transformed, in the local coordinate sys-

tem. The evaluation of the set of Eq. (1) is followed for each

case, but the A matrix content is conditioned accordingly.

Case 1: pure trilateration solutions

without a receiver clock parameter

In this case, matrix A0 contains only three columns and

matrix Q0 is calculated with the adjoint method.

Fig. 2 Projection of GPS

satellite traces onto the three

local orthogonal planes for 24 h

for a mid-latitude site. The

yellow stripes represent a 15�
elevation mask angle

Fig. 3 Geometric interpretation of horizontal DOP components

Fig. 4 Trilateration from three ranges (bottom lines) and hyperbolic

positioning from two range differences (top lines)
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A0
n�3 ¼

�E1
r �N1

r �V1
r

�E2
r �N2

r �V2
r

. . . . . . . . .

�En
r �Nn

r �Vn
r

0
BBB@

1
CCCA;

N 0
3�3 ¼ A0TA0 ¼

Pn
i¼1

Ei
r

� �2 Pn
i¼1

Ei
rN

i
r

Pn
i¼1

Ei
rV

i
r

Pn
i¼1

Ni
rE

i
r

Pn
i¼1

Ni
r

� �2 Pn
i¼1

Ni
rV

i
r

Pn
i¼1

Vi
rE

i
r

Pn
i¼1

Vi
rN

i
r

Pn
i¼1

Vi
r

� �2

0
BBBBBBB@

1
CCCCCCCA
;

Q0
3�3 ¼ N 0�1

3�3 ¼ Adj N 0ð Þ
Det N 0ð Þ

ð4Þ

Equation (4) will be used to calculate the DOP factors

without and with observation redundancy.

Situation without redundancy

After several developments and grouping of terms and

using italic letters for the DOP factors to stress the fact that

the degree of freedom m = 0, one finally gets:

EDOP02 ¼
P3

c¼1 S
c:ij
r NV

� �2

9 V
ijk
r

� �2
; NDOP02 ¼

P3
c¼1 S

c:ij
r EV

� �2

9 V
ijk
r

� �2
;

VDOP02 ¼
P3

c¼1 S
c:ij
r EN

� �2

9 V
ijk
r

� �2

HDOP02 ¼
P3

c¼1 S
c:ij
r v?

� �2

9 V
ijk
r

� �2
; PDOP02 ¼

P3
c¼1 Sc:ijr

� �2

9 V
ijk
r

� �2

ð5Þ

where c:ij represents the number of combination of

satellite pairs (ij), which is 3 or n(n - 1)/2 among the

three satellites. There is only one value associated with

Vijk
r , that is the number of combination of satellite triad

(ijk), which is 1 or n(n - 1) (n - 2)/6 among the three

satellites.

Refer to Fig. 1 (top) and to the notation section for the

definition of the volume and surfaces being generated by

the receiver-satellite unit vectors onto the unit sphere and

their associated projected components. Also note that the

larger the tetrahedron volume and the smaller the projected

surfaces, the smaller will be the DOP0 values. Note for

xDOP0 the surface is projected on the y–z plane. When the

EDOP0 factor, for example, is divided by the tetrahedron

volume, this ratio can be seen as a composite of the term 1/

R(Ei
r)

2, as can be seen in (7) below, for the horizontally

symmetrical (hs) satellite distribution.

Generalization without and with redundancy

Following the same steps as above, but managing a larger

number of satellites combinations and after several devel-

opments and terms grouping, one finally gets:

EDOP02 ¼
Pp

c¼1 S
c:ij
rNV

� �2

9
Pq

c¼1 V
c:ijk
r

� �2
; NDOP02 ¼

Pp
c¼1 S

c:ij
r EV

� �2

9
Pq

c¼1 V
c:ijk
r

� �2
;

VDOP02 ¼
Pp

c¼1 S
c:ij
r EN

� �2

9
Pq

c¼1 V
c:ijk
r

� �2

HDOP02 ¼
Pp

c¼1 S
c:ij
r v?

� �2

9
Pq

c¼1 V
c:ijk
r

� �2
; PDOP02 ¼

Pp
c¼1 Sc:ijr

� �2

9
Pq

c¼1 V
c:ijk
r

� �2

ð6Þ

where c:ij represents the number of combination of satellite

pairs (ij), that is p = n(n - 1)/2 among the n satellites, and

c:ijk represents the number of combination of satellite tri-

ads (ijk), that is q = n(n - 1)(n - 2)/6 among the

n satellites.

Horizontally symmetrical (hs) satellite sky distribution

In this ideal situation, where
Pn

i¼1 E
i
r ¼ 0 andPn

i¼1 N
i
r ¼ 0, the matrix N0 becomes diagonal and the

DOP0 values simplify to:

EDOP02
hs ¼

1Pn
i¼1 Ei

r

� �2
; NDOP02

hs ¼
1Pn

i¼1 Ni
r

� �2
;

VDOP02
hs ¼

1Pn
i¼1 Vi

r

� �2

HDOP02
hs ¼

1Pn
i¼1 Ei

r

� �2
þ 1Pn

i¼1 Ni
r

� �2
;

PDOP02
hs ¼

1Pn
i¼1 Ei

r

� �2
þ 1Pn

i¼1 Ni
r

� �2
þ 1Pn

i¼1 Vi
r

� �2
ð7Þ

Equation (7) is indeed simpler than (6) because hori-

zontally symmetrical satellite sky distribution is assumed.

This ideal situation is often encountered for full satellite

constellation and for sites without obstructions. Note that

for mid-latitude sites, where there is a lack of satellite in

the northern part of the observer’s site (Fig. 2) the termPn
i¼1 N

i
r 6¼ 0, but just slightly different from 0. This situ-

ation will be discussed later in detail.

Case 2: conventional GPS solutions with a receiver

clock parameter

This is the conventional GPS solution, where a receiver

clock parameter has to be estimated along with the three
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receiver coordinates. The A0 matrix (4, left) is then aug-

mented with a column of -1 elements which is the

derivative of the pseudorange with respect to the receiver

clock parameter,

An�4 ¼

�E1
r �N1

r �V1
r �1

�E2
r �N2

r �V2
r �1

. . . . . . . . . . . .

�En
r �Nn

r �Vn
r �1

0
BBB@

1
CCCA;

N4�4 ¼ ATA¼

Pn
i¼1

Ei
r

� �2 Pn
i¼1

Ei
rN

i
r

Pn
i¼1

Ei
rV

i
r

Pn
i¼1

Ei
r

Pn
i¼1

Ni
rE

i
r

Pn
i¼1

Ni
r

� �2 Pn
i¼1

Ni
rV

i
r

Pn
i¼1

Ni
r

Pn
i¼1

Vi
rE

i
r

Pn
i¼1

Vi
rN

i
r

Pn
i¼1

Vi
r

� �2 Pn
i¼1

Vi
r

Pn
i¼1

Ei
r

Pn
i¼1

Ni
r

Pn
i¼1

Vi
r n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

Q4�4 ¼ N�1
4�4 ¼

Adj Nð Þ
Det Nð Þ

ð8Þ

Equation (8) will be used to calculate the DOP factors

without and with observation redundancy.

Situation without redundancy

In this case, a Q (4 9 4) matrix has to be inverted ana-

lytically, and after tedious terms grouping and using again

italic letters for the DOP factors to stress the fact that the

degree of freedom m = 0, one finally gets:

EDOP2 ¼
P4

c¼1 S
c:ijk
NV

� �2

9 Vijklð Þ2
; NDOP2 ¼

P4
c¼1 S

c:ijk
EV

� �2

9 Vijklð Þ2
;

VDOP2 ¼
P4

c¼1 S
c:ijk
EN

� �2

9 Vijklð Þ2
; TDOP2 ¼

P4
c¼1 Vc:ijk

r

� �2

Vijklð Þ2

HDOP2 ¼
P4

c¼1 S
c:ijk
v?

� �2

9 Vijklð Þ2
; PDOP2 ¼

P4
c¼1 Sc:ijk
� �2

9 Vijklð Þ2

ð9Þ

and

GDOP2 ¼ PDOP2 þ TDOP2; PDOP2 ¼
X4

c¼1

1

f lc:ijk

 !2

;

TDOP2 ¼
X4

c¼1

f rc:ijk

f lc:ijk

 !2

ð10Þ

where c:ijk, at the numerator of (9), represents the number

of combination of satellite triads (ijk), which is 4 or

n(n - 1)(n - 2)/6 among the four satellites. There is only

one value for Vijkl, that is the number of combinations of

satellite quad (ijkl), which is 1 or n(n - 1)(n - 2)(n - 3)/

24 among the four satellites.

Refer to Fig. 1 (bottom) and to the notation section for

the definition of these volume and surfaces. In (10), the

symbol f denotes the height of the tip of unit vector asso-

ciated with satellite l (or receiver location, r) to the plane

formed by the tips of unit vectors associated with satellites

i, j and k.

Massatt and Rudnick (1991) already obtained (9) using a

different notation which applies only for four satellites. The

next subsection is a generalization for n C 4, with obser-

vation redundancy. Phillips (1984) already published the

PDOP Eq. (10), which again stands only for four satellites.

We derived the equivalent Eq. (10) for the TDOP factor.

As stressed by Phillips (1984), indeed the PDOP factor is

not just inversely proportional to the volume of the tetra-

hedron linking the tips of the four receiver-satellite unit

vectors.

In Case 2, the surfaces and the volumes are being gen-

erated by the satellite-to-satellite vectors onto the unit

sphere and their associated projected components (Fig. 1,

bottom). It is interesting to note that the TDOP numerator

is a function of the volume of the tetrahedrons having as an

apex, the receiver (r). This is the link between Case 1

(without a receiver clock parameter) and Case 2 (with a

receiver clock parameter).

Generalization without and with redundancy

Again, the inversion of a Q (4 9 4) matrix has to be

calculated analytically and dealing with a larger num-

ber of satellites combinations. After a lengthy devel-

opment and terms grouping, one finally gets the

generalized geometric formulation of the conventional

DOP values:

EDOP2 ¼
Pq

c¼1 S
c:ijk
NV

� �2

9
Ps

c¼1 Vc:ijklð Þ2
; NDOP2 ¼

Pq
c¼1 S

c:ijk
EV

� �2

9
Ps

c¼1 Vc:ijklð Þ2
;

VDOP2 ¼
Pq

c¼1 S
c:ijk
EN

� �2

9
Ps

c¼1 Vc:ijklð Þ2
; TDOP2 ¼

Pq
c¼1 Vc:ijk

r

� �2

Ps
c¼1 Vc:ijklð Þ2

;

HDOP2 ¼
Pq

c¼1 S
c:ijk
v?

� �2

9
Ps

c¼1 Vc:ijklð Þ2
; PDOP2 ¼

Pq
c¼1 Sc:ijk
� �2

9
Ps

c¼1 Vc:ijklð Þ2

ð11Þ

where c:ijk represents the number of combination of

satellite triads (ijk), that is q = n(n - 1)(n - 2)/6 among

the n satellites, and c:ijkl represents the number of

1752 GPS Solut (2017) 21:1747–1763

123



combination of satellite quads (ijkl), that is

s = n(n - 1)(n - 2)(n - 3)/24 among the n satellites.

Unfortunately, with this formulation, this is not possible

to directly compare the DOP factors (11) with the DOP0

factors (6) because their number of combinations is not the

same for a given number of satellites (n). To do so, some

matrix manipulation has to be done.

Noticing that N 0
3�3(4, center) is part of the upper left

hypermatrix N494 (8, center) and rewriting
Pn

i¼1 E
i
r ¼ n�Er,

and similarly for the N and V components; where �eT
r ¼

�Er; �Nr; �Vrð Þ which is the average of the receiver-

satellite unit vectors at a given epoch. Accordingly, the

hypermatrix N can be reformulated as:

N4�4 ¼ N 0
3�3 n�er 3�1

n�eT
r 1�3 n

� �
¼ N11

3�3 N12
3�1

N21
1�3 N22

1�1

� �
ð12Þ

In (12), the indexes (12, for example) are used to identify

the submatrices part of the hypermatrix N.

Matrix inversion partitioning allows reformulating the

upper left (3 9 3) submatrix of Q, as follows:

Q11
3�3 ¼ N 0

3�3 � N12
3�1N

22
1�1N

21
1�3

� ��1

¼

Pn
i¼1

Ei
r

� �2�n �Er

� �2 Pn
i¼1

Ei
rN

i
r � n�Er

�Nr

Pn
i¼1

Ei
rV

i
r � n�Er

�Vr

Pn
i¼1

Ni
rE

i
r � n �Nr

�Er

Pn
i¼1

Ni
r

� �2�n �Nr

� �2 Pn
i¼1

Ni
rV

i
r � n �Nr

�Vr

Pn
i¼1

Vi
rE

i
r � n �Vr

�Er

Pn
i¼1

Vi
rN

i
r � n �Vr

�Nr

Pn
i¼1

Vi
r

� �2�n �Vr

� �2

0
BBBBBBB@

1
CCCCCCCA

�1

ð13Þ

which is equivalent to re-calculate N 0�1 ¼ Q0
3�3 by sub-

stituting e~i
r by e~i

g, where e~i
g ¼ e~i

r � �er or Ei
g ¼ Ei

r � �Er,

Ni
g ¼ Ni

r � �Nr and Vi
g ¼ Vi

r � �Vr. In fact, the vector �eTr ¼
�Er; �Nr; �Vrð Þ is the coordinates of point g (Fig. 1, top).

Lee (1975) already introduced this approach to take

into account the receiver clock parameter, i.e., the clock

synchronization, without the use of the difference

between observations in order to avoid artificial mathe-

matical correlation. However, the geometric interpreta-

tion of the DOP factor with this approach was not

presented.

Completing the development, it can be proven, without

any approximation, that:

Xp

c¼1

Ec:ij
� �2 ¼ n

Xn
i¼1

Ei
g

� �2

;
Xn
i¼1

Ei
g

� �2

¼
Xn
i¼1

Ei
r

� �2 � n �E2
r

Xq

c¼1

S
c:ijk
NV

� �2

¼ n
Xp

c¼1

S
c:ij
g NV

� �2

Xs
c¼1

Vc:ijkl
� �2 ¼ n

Xq

c¼1

Vc:ijk
g

� �2

ð14Þ

It is important to note the factor n in the right parts of

(14). The first line of (14) can also be written similarly

for N and V components and the second line of (14)

can also be written similarly for the E–V and the

E–N projections.

These important relations (14) allow rewriting and

simplifying rigorously without approximation the DOP

values previously obtained in (11), as:

EDOP2 ¼
Pp

c¼1 S
c:ij
gNV

� �2

9
Pq

c¼1 V
c:ijk
g

� �2
; NDOP2 ¼

Pp
c¼1 S

c:ij
gEV

� �2

9
Pq

c¼1 V
c:ijk
g

� �2
;

VDOP2 ¼
Pp

c¼1 S
c:ij
gEN

� �2

9
Pq

c¼1 V
c:ijk
g

� �2

TDOP2 ¼
Pq

c¼1 Vc:ijk
r

� �2

n
Pq

c¼1 V
c:ijk
g

� �2
; HDOP2 ¼

Pp
c¼1 S

c:ij
gv?

� �2

9
Pq

c¼1 V
c:ijk
g

� �2
;

PDOP2 ¼
Pp

c¼1 Sc:ijg

� �2

9
Pq

c¼1 V
c:ijk
g

� �2

ð15Þ

Indeed, these DOP expressions are easier to compare

with the DOP0 expressions (6) because they have now the

same number of combinations in the summation opera-

tors. Note the factor n in the denominator of the TDOP

equation in (15), and note that the TDOP factor is func-

tion of both Vijk
r and Vijk

g volumes with apex r and g,

respectively.

The fundamental difference between the geometric

DOP0 factor Eq. (6) and the geometric DOP factor Eq. (15)

is the origin of the formation of the volume and projected

surfaces. For the first one, it is the receiver location (r), and

for the second one, the origin is located at the tip of the

average receiver-satellite unit vectors, i.e., the coordinates

of point g, at a given epoch. See Fig. 1 (top) to visualize

this fundamental distinction.

To appreciate the importance of the average unit vec-

tors, Table 1 summarizes the values of the average unit

vector, as well as their variability calculated as the stan-

dard deviation around the daily average for a complete

day, for three locations with different elevation mask

angles for the GPS constellation. Figure 5 is a time series

example for 24 h calculated every 5 min for a mid-lati-

tude site.

The North and East components of the average unit

vector do not depart much from 0 from epoch to epoch, but

this is not the case for the vertical component of the

average unit vector. This latter value can be as large as
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0.5–0.6 for a 10� elevation mask angle, and it never gets

below 0.4 for a 0� elevation mask angle.

Figure 6 presents an example which geometrically

illustrates the different approaches for the geometric

interpretation of the DOP(0) factors for four satellites.

The upper right part is for an elevation angle of 10�,
instead of 20� for the three other parts for the three

lowest satellites. The fourth satellite is always at the

zenith. In this simulation, the projected triangles are

colored to illustrate the impact of their surface on the

DOP(0) values. The summation values for their volumes

and projected surfaces, see 6, 11 and 15, are also indi-

cated below each graph along with the resulting DOP(0)
values.

Comparing the two upper parts of Fig. 6, which have

different mask angle, the summation of the SEN squared

value changes from 1.8 to 2.1, but the value of (V123
r )2

almost doubles, so the VDOP gets smaller (from 1.8 to

1.4). Also note the �Vr value changed from 0.5 to 0.4.

The summation of the SNV (and SEV) squared value

changed almost in the same proportion as the (V123
r )2

value, so the EDOP and NDOP values just changed

slightly.

The lower left part of Fig. 6 illustrates the same sit-

uation as the upper left part for a 20� mask angle with an

estimated clock parameter. Note that all summations

(lower left) multiplied by n (= 4) are equal to the cor-

responding summations of the upper left part (see 14),

and as expected, they give the same DOP values. But, as

mentioned above, the number of combinations of satel-

lite pairs and triads is directly comparable to the case

without an estimated clock parameter (lower right part of

Fig. 6). As already explained, this is just the origin or

one of the apexes of the triangles and the tetrahedron

that moves from point g (which is the average unit

vector location) to point r (which is the receiver loca-

tion), a small distinction that makes an important impact

on the DOP values.

Comparing the solution with a clock parameter on the

left lower part and the solution without a clock param-

eter on the right lower part, one sees that the tetrahedron

volume and the triangle surfaces in the E–V and N–V

planes connecting the g point to the tips of the receiver-

satellite unit vector are smaller than the one formed with

respect to the r point (receiver) as the origin. However,

their respective ratios, see 15 and 6, provide the same

EDOP(0) and NDOP(0) values. The situation is very

different for the VDOP(0) factors. In fact, the triangle

surfaces in the E–N plane remain the same and because

(V123
g )2 is four times smaller than (V123

r )2, the VDOP0

value improved by a factor of 2, indeed, a very signifi-

cant improvement.
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Fig. 5 Example of average unit

vector for GPS constellation.

Site latitude 45�, elevation mask

angle 10�

Fig. 6 Surface and volume representations for a 10� elevation mask

angle, and a 20� elevation mask angle with and without receiver clock

parameter. Note that in equations RV2 below some of the graphs, the

V is the tetrahedron volume, not to be confused with the vertical

vector component
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Horizontally symmetrical (hs) satellite sky distribution

In this ideal situation, where
Pn

i¼1 E
i
r ¼ 0 and

Pn
i¼1 N

i
r ¼0,

matrix Q11
3�3 becomes diagonal and the DOP values sim-

plify to:

EDOP2
hs ¼

1
Pn

i¼1 Ei
g

� �2
¼ 1Pn

i¼1 Ei
r

� �2
¼ EDOP02

hs;

NDOP2
hs ¼

1
Pn

i¼1 Ni
g

� �2
¼ 1Pn

i¼1 Ni
r

� �2
¼ NDOP02

hs

VDOP2
hs ¼

1
Pn

i¼1 Vi
g

� �2
;

TDOP2
hs ¼

Pn
i¼1 Vi

r

� �2

n
Pn

i¼1 Vi
g

� �2

HDOP2
hs ¼

1Pn
i¼1 Ei

r

� �2
þ 1Pn

i¼1 Ni
r

� �2
¼ HDOP02

hs;

PDOP2
hs ¼

1Pn
i¼1 Ei

r

� �2
þ 1Pn

i¼1 Ni
r

� �2
þ 1
Pn

i¼1 Vi
g

� �2

ð16Þ

Equation (16) is indeed simpler than (15) because hor-

izontally symmetrical satellite sky distribution is assumed.

This ideal situation is largely respected for a full con-

stellation and for open sky sites as this can be seen in Fig. 7

and presented later with more discussions, even for a mid-

latitude site, where a shadow area is present in the northern

part of the observer’s sky.

Now, comparing VDOP2
hs ¼ 1=

Pn
i¼1 Vi

g

� �2

from (16) to

VDOP02
hs ¼ 1=

Pn
i¼1 Vi

r

� �2
from (7), because the span ofVi

g is

twice smaller than the span of Vi
r ( �Vr is about 0.5), the VDOP

value gets twice larger than the VDOP0 value. Moreover,

because the span of Ei
g (Ni

g) is comparable to Ei
r (Ni

r), one

obtains EDOP = EDOP0 and NDOP = NDOP0. Further-

more, the span of Ei
g(E

i
r) is similar to the span of Ni

g (Ni
r), and

this gives that EDOP = NDOP = NDOP0 = EDOP0. For the

case without clock parameter, because the span of Vi
r is about

the same as Ei
r(N

i
r), the VDOP0 value is about the same as the

EDOP0 and NDOP0 values.

Furthermore, for this ideal situation (hs), the following

relations also hold,

Fig. 7 East, North and Vertical DOP values with and without clock

parameter estimation for site latitude of 0� (top), 45� (middle) and 90�
(bottom) for a 10� elevation mask angle
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Equations (17) show the close relationships between

VDOP0, VDOP and TDOP factors.

Now, let us have a look at the situation when �Vr is equal

to 0. As seen from (17, line 2), the VDOP value will be

equal to VDOP0. This situation can be achieved with the

addition of terrestrial transmitters such as pseudolites or

signals of opportunity located below the user’s horizon, see

for example Morales et al. (2016), Montillet et al. (2014)

and Meng et al. (2004). In this continuation, let us imagine

a transparent earth to the GPS signals. What would happen

to the DOP(0) values? ‘‘Appendix 2’’ presents the results

for this hypothetical situation.

Indeed, the addition of terrestrial sources, at and below

the user’s horizon, is another approach to improve GPS

VDOP factors even if a receiver clock parameter has to be

estimated. The other approaches to improve VDOP factors

are the constraint of receiver clock (Weinbach and Schön

2011) and the calibration of cable biases for connected

antennas to a single receiver in relative mode (Macias-

Valadez et al. 2012). Note that the combination of both

approaches, which are the use of additional terrestrial

sources or the receiver clock parameter elimination, does

not significantly further improve the VDOP value than the

case when each approach is implemented separately. In

other words, when �Vr = 0, VDOP = VDOP0 (see 17). This

fact can also be seen from Fig. 11.

Furthermore, if �Vr is equal to 0, TDOP2 ¼ 1
n

(see 17, line

5), i.e., the TDOP factor becomes just a function of the

number of observed satellites (n). Figure 7 presents the

East, North and Vertical DOP time series with and without

an estimated clock parameter for site latitudes of 0�, 45�
and 90�, for a 10� elevation mask angle and for 24 h cal-

culated at every 5 min. The average values and their

associated standard deviation are reported in the legend.

Also note that the vertical scale of the polar site graph is

twice the size of the two other graphs.

Here, the emphasis is given on the geometric loss

when a receiver clock parameter has to be estimated. In

other words, this can be seen as the position gain if the

clock parameter could be eliminated (at least in relative

positioning, e.g., Macias-Valadez et al. 2012) or con-

strained (Weinbach and Schön 2011). These two studies

will be discussed in detail later. From Fig. 7, one can

see that the horizontal (E and N) DOPs do not change

significantly. For the mid-latitude site, the NDOP0

slightly improves and the NDOP value is larger, com-

pared to the two other latitude sites, due to the lack of

GPS satellites in the northern part of the observer’s

site. The standard deviation of the horizontal DOPs for

the polar site is smaller because the satellite sky dis-

tribution is more homogenous, see bottom figure in

‘‘Appendix 1.’’ However, the improvement is really

important for the vertical component which is better by

a factor of 3 to 4. The VDOP0 variability is also largely

reduced, e.g., note the smoothness of the VDOP0

curves. When comparing the values between different

site latitudes, keep in mind that the average number of

satellites is slightly larger for the polar site (10.5)

compared to 8.7 for the mid-latitude site and 10.0 for

the equatorial site.

Let us note that the same geometric interpretation of the

DOP factors is also applicable for GPS velocity DOP

factors because both types of solutions have the same

design matrix, such as:

o _q

o _X
¼ oq

oX
¼ �eX;

o _q

o _Y
¼ oq

oY
¼ �eY ;

o _q

o _Z
¼ oq

oZ
¼ �eZ ;

o _q

cod _T
¼ oq

codT
¼ �1

ð18Þ

where _X; _Y ; _Z are the receiver velocity components and d _T

is the receiver clock drift.

VDOP2
hs ¼

VDOP02
hs

1 � n �V2
r VDOP02

hs

� � or VDOP02
hs ¼

VDOP2
hs

1 þ n �V2
r VDOP2

hs

� �

VDOP�2
hs ¼ VDOP0�2

hs � n �V2
r or VDOP0�2

hs ¼ VDOP�2
hs þ n �V2

r

VDOP2
hs ¼ n TDOP2

hs VDOP02
hs or VDOP02

hs ¼
VDOP2

hs

n TDOP2
hs

VDOP2
hs

VDOP02
hs

¼ n TDOP2
hs ¼ 1 þ n �V2

r VDOP2
hs

� �
¼ 1

1 � n �V2
r VDOP02

hs

� �

TDOP2
hs ¼

1

n 1 � n �V2
r VDOP02

hs

� � ; TDOP�2
hs ¼ n 1 � n �V2

r VDOP02
hs

� �
; TDOP2

hs ¼
1

n
þ �V2

r VDOP2
hs

ð17Þ
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Geometry of satellite outage

More attention has to be paid to matrix Q (4 9 4) of

Eq. (8) which stands for the solution with a receiver clock

parameter, to analyze its potential singularity. Matrix Q can

be partitioned to emphasis its relation to matrix Q0 (3 9 3),

from the solution without the estimation of a clock

parameter (4). Copps (1984) already presents such a

development. Here, the interpretation of the results is made

from a geometric point of view.

The partition of matrix Q (8) can be made as follows:

Q4�4 ¼ N�1
4�4 ¼ N11

3�3 N12
3�1

N21
1�3 N22

1�1

� ��1

¼ Q11
3�3 Q12

3�1

Q21
1�3 Q22

1�1

� �

ð19Þ

Q4�4 ¼
Q0 þ n2

b
Q0�er�e

T
r Q

0� �
� n

b
Q0�er
� �

� n

b
�eT
r Q

0� � 1

b

0
BB@

1
CCA ð20Þ

where

b ¼ n� n2 �eT
r Q

0�er
� �

ð21Þ

TDOP2 ¼ 1

b
ð22Þ

which will allow the geometric interpretation of GPS

satellite outage.

The term n2

b Q0�er�e
T
r Q

0� �
represents the penalty to have to

estimate a receiver clock parameter. The other way around,

this can be seen as the gain if the receiver clock parameter

can be removed from the conventional GPS positioning

solution.

The resultant vector Q0�er(3 9 1), also present in the

scalar b (21), especially deserves a detailed analysis,

Q0�er ¼
�Er Q

0ð1; 1Þ þ �Nr Q
0ð2; 1Þ þ �Vr Q

0ð3; 1Þ
�Er Q

0ð1; 2Þ þ �Nr Q
0ð2; 2Þ þ �Vr Q

0ð3; 2Þ
�Er Q

0ð1; 3Þ þ �Nr Q
0ð2; 3Þ þ �Vr Q

0ð3; 3Þ

0
@

1
A ð23Þ

In fact, this is the projection of the first, the second and the

third columns of the Q0 matrix on the average receiver-

satellite unit vector. After Copps (1984), this is the direction

where the singularity can happen. According to Leick et al.

(2015, p. 302), as the constellation observed and the satellites

approach critical configuration, the DOP values increase, and

the resulting positioning solution becomes ill conditioned.

The singularity happens where b = 0, note that b is

contained in the numerator of all DOPs equation, or when:

�eT
r Q

0�er ¼
1

n
ð24Þ

where n is the number of satellites.

In this situation, the direction of the vector Q0�er corre-

sponds to the principal axis of a singularity cone (Fig. 8).

The intersection of this cone with the unit sphere defines a

small circle where all the receiver-satellite unit vector tips

end. The aperture angle of the cone, or the angle between

the cone principle axis and each receiver-satellite unit

vector, is given by:

j ¼ arccos
1

n Q0�erk k ð25Þ

The singularity cone is also illustrated in Fig. 8.

On a stereographic satellite sky plot, the circle shape

will be kept (Wunderlich 1998; Antonopoulos 2003). In a

vertical plane, containing the cone principal axis, the circle

will be projected into a straight line (Fig. 9).

As seen in Fig. 8, Vijk
g = 0, because the vectors e~i

g ¼
e~i
r � �er lie in a single plane which is the base of the cone

formed by the tip of receiver-satellite unit vectors, i.e.,

the cone’s principal axis being perpendicular to the cone

base. The cross-product of every pair of vectors (e~i
g; e~

j
g)

also gives the direction of the cone’s principal axis. Note

that Vijk
r can also be equal to zero when the receiver-

satellite unit vector tips lay in a great circle forming a

plane with the receiver position. Indeed, in Fig. 9, note

that the DOP0 values remain very small because the tips

of the receiver-satellite unit vectors are not laying on a

great circle. The red star in the figure represents the

intersection of the cone’s principal axis with the unit

sphere. Figure 9 is a situation that can happen, for

example in urban canyons, even with a complete GPS

constellation.

Fig. 8 Singularity cone and satellite outage
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Receiver clock parameter constraint

In conventional GPS kinematic mode, three new coordi-

nates and one receiver clock parameter are estimated each

epoch. Matrices A and N for two epochs, t1 and t2 with n1

and n2 satellites, respectively, are presented in the fol-

lowing equations:

A
2Ep

ðn1þn2Þ�8
¼

�1 0

A0t1
n1�3 0n2�3 �1 0

. . .

�1 0

0 � 1

0n1�3 A0t2
n2�3 0 � 1

. . .

0 � 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

;

N
2Ep
8�8 ¼

N 0t1
3�3 03�3 n1 �et11�3 01�3

03�3 N 0t2
3�3 01�3 n2 �et21�3

n1 �et11�3

T
0 n1 0

0 n2 �et21�3

T
0 n2

0
BBBB@

1
CCCCA

ð26Þ

Generalization for more than two epochs (nE) can be

constructed with the same scheme.

As suggested by Weinbach and Schön (2011), if the

clock parameters can be constrained and only one common

receiver clock parameter is estimated for the two epochs,

the design matrix A and matrix N look like:

A
2Ep; 1clk

ðn1þn2Þ�7
¼

�1

A0t1
n1�3 0n2�3 �1

. . .

�1

�1

0n1�3 A0t2
n2�3 �1

. . .

�1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

;

N
2Ep; 1clk
7�7 ¼

N 0t1
3�3 03�3 n1 �et11�3

03�3 N 0t2
3�3 n2 �et21�3

n1 �et11�3

T
n2 �et21�3

T
n1 þ n2

0
B@

1
CA

ð27Þ

In fact, partitioning the inversion of matrix

N2Ep;1clk
� ��1¼ Q2Ep;1clk allows linking the positioning

solution with one receiver clock parameter estimated at

each epoch Q2Ep ¼ N2Epð Þ�1
. The same demonstration

stands for any number of epochs (nE). Note that the epoch-

wise solution (8) will give the same results, at each epoch,

then the inversion of Q2Ep ¼ N2Ep
� ��1

from (26).

For proof of concept simplification, let us assume that

the number of satellites (n) associated with each epoch is

equal and that the coordinate DOPs at epoch 1 equal those

of epoch 2 and �Vt1 = �Vt2, which are fair assumptions

because the number of regrouped epochs is small and of

short time duration. Furthermore, considering that the

satellite distribution is horizontally symmetrical, i.e.,
�Er = 0 and �Nr = 0, then, for nE epochs, under the above

Fig. 9 Projections of a

singularity cone
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assumptions, there is no change for EDOP and NDOP

values, but the TDOP and VDOP values become smaller

according to the following equations:

TDOP2
WS ¼ 1

nE

TDOP2 ð28Þ

VDOP2
WS ¼ 1 � 1

nE

� �
VDOP02 þ 1

nE

VDOP2 ð29Þ

where nE is the number of epochs where the receiver

clock parameter is assumed to be constant and WS is the

index associated with the Weinbach and Schön (WS)

approach.

As shown in Table 2, as the number of epochs (nE)

increases, the VDOPWS value approaches the VDOP0

value, i.e., the solution without receiver clock parameter.

However, as mentioned by Weinbach (2013, p. 65), this

approach creates a mathematical correlation between the

vertical coordinate estimation between epochs.

The VDOP improvement due to the WS approach is not

perceptible at all for static positioning as explained and

noticed in Weinbach (2013, p. 64) and Santerre (1991).

Under the same preceding assumptions, the DOP factors

associated with the coordinates remain the same if one

clock parameter per epoch, which is equivalent to double

difference processing, or if only one clock parameter is

estimated for the whole static session. Of course, when

there is no clock parameter estimated, the VDOP value

improves in the same proportion in static mode as for

kinematic mode as demonstrated in Santerre and Beutler

(1993).

The WS approach combined with the calibration pro-

totype realized by Macias-Valadez et al. (2012) to get rid

of the receiver clock parameter will be the perfect match to

improve the vertical GPS relative positioning in real situ-

ation. In fact, the WS approach would be used to absorb

any uncalibrated electronic delay which can slowly vary

with time or with temperature. In the proposed method and

the prototype developed by Macias-Valadez et al. (2012),

the receiver clock parameter is eliminated because anten-

nas are connected to the same receiver and differential

delays in the optical fiber cables were calibrated in real

time.

Conclusions

We revisited the geometric interpretation of GPS dilu-

tion of precision (DOP) factors. The emphasis has been

given on the geometric impact of the receiver clock

parameter on the conventional GPS positioning solution.

The comparison has been made between the solutions

with and without an estimated receiver clock parameter,

i.e., conventional GPS versus pure trilateration solution.

The generalized form of the DOP factors was also pre-

sented for observation redundancy greater than zero. The

DOP factor equations are established as functions of

triangle surfaces and tetrahedron volumes formed by the

receiver-satellite unit vectors or by these vectors

between themselves. To facilitate the geometric com-

parison of the two positioning solution cases, without

and with an estimated receiver clock parameter, the

average receiver-satellite unit vector has been used. In

fact, for these two different cases, the triangles and

tetrahedron have different apexes. This helped to explain

from a geometric point of view, why the VDOP factor is

larger than the EDOP and NDOP factors. The geometry

of satellite outage was also revisited using the average

receiver-satellite unit vectors at a given epoch. Finally,

the geometric interpretation of receiver clock constraints

within a positioning solution, as proposed by Weinbach

and Schön (2011), has been demonstrated to be a

weighted average of the solutions with and without an

Table 2 Coefficients of the weighted average of the VDOP factors for the WS approach as a function of the number of epochs

nE 1 – 1/nE 1/nE VDOPWS

(if VDOP = 2VDOP0)
VDOPWS

(if VDOP = 3VDOP0)

1 0 1 2 VDOP0 = 1 VDOP 3 VDOP0 = 1 VDOP

2 1/2 = 0.50 1/2 = 0.50 1.6 VDOP0 = 0.8 VDOP 2.2 VDOP0 = 0.7 VDOP

3 2/3 = 0.67 1/3 = 0.33 1.4 VDOP0 = 0.7 VDOP 1.9 VDOP0 = 0.6 VDOP

4 3/4 = 0.75 1/4 = 0.25 1.3 VDOP0 = 0.7 VDOP 1.7 VDOP0 = 0.6 VDOP

5 4/5 = 0.80 1/5 = 0.20 1.3 VDOP0 = 0.6 VDOP 1.6 VDOP0 = 0.5 VDOP

10 9/10 = 0.90 1/10 = 0.10 1.1 VDOP0 = 0.6 VDOP 1.3 VDOP0 = 0.4 VDOP

100 99/100 = 0.99 1/100 = 0.01 1.01 VDOP0 = 0.51 VDOP 1.04 VDOP0 = 0.35 VDOP

? (no clock) 1 0 1 VDOP0 = 0.50 VDOP 1 VDOP0 = 0.33 VDOP
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estimated receiver clock parameter, as a function of the

number of epochs used to constrain the receiver clock

parameter.
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Appendix 1: projections onto the three local
orthogonal planes of the GPS satellite traces

See Fig. 10.

Fig. 10 Projections of GPS

satellite traces onto the three

local orthogonal planes for 24 h

for equatorial site (top) and

polar site (bottom). The yellow

stripes represent a 15� elevation

mask angle
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Appendix 2: GPS DOP factors for a transparent
earth

See Fig. 11.

A simulation with the real GPS constellation (May 17,

2016, 31 satellites) has been done for 24 h calculated at

every 5 min and for site latitudes of 0� (Fig. 11, top), 45�N
(middle) and 90�N (bottom) with an elevation mask of

-90� to simulate an all-in view constellation. Because

there are more satellites below the local horizon at each

site, the �Vr value is negative (-0.16) for all three sites,

which explains that the VDOP values are slightly different

than the VDOP0 values. The �Er and �Nr values are equal to 0

for the three sites, and the average TDOP value is 0.19,

with a range between 0.184 and 0.193. Note the smooth-

ness of the curves even when a receiver clock parameter is

estimated. All daily averages of the DOP values are the

same for all three sites, except for the N component for a

mid-latitude site with a slight difference of 0.01.
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