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Abstract Extensive studies have concluded that the GNSS

observations are heteroscedastic and physically correlated.

Typically, the observation precisions are elevation depen-

dent and between-frequency cross-correlations and time

correlations exist. The influence of these stochastic char-

acteristics on the GNSS positioning has been numerically

well understood. However, their influence on the statistic

tests of reliability has been rarely studied. We will sys-

tematically study the influence of GNSS stochastic char-

acteristics on the statistic tests involved in reliability. With

BeiDou as an example, the realistic elevation-dependent

model, cross-correlations and time correlations are esti-

mated. Then their impacts on the reliability are numerically

analyzed by comparing with the empirical stochastic model

where the stochastic characteristics, i.e., elevation-depen-

dent precisions, cross-correlations and time correlations,

are not adequately specified. Besides the overall test and w-

test, the minimal detectable bias (MDB) and the separa-

bility of two w-test statistics are examined. The results

show that the realistic elevation-dependent model will

reduce probabilities of both false alarm and wrong detec-

tion for both overall test and w-test. Introducing the cross-

correlations and time correlations properly can obtain the

realistic MDBs together with reasonable separability

measures, which all are helpful for users to make objective

decisions in quality control of real GNSS applications.

Keywords GNSS � Stochastic model � Variance
component estimation (VCE) � Hypothesis testing �
Reliability � Overall test � w-test � Minimal detectable bias

(MDB)

Introduction

In a data adjustment system, the functional model describes

the relationship between observations and parameters,

while the stochastic model describes the observation pre-

cisions and their correlations to each other. The stochastic

model can be specified by a covariance matrix, being the

second-order central moments of the random observation

errors. Despite the principle that an arbitrarily positive-

definite covariance matrix can be used to compute the

unbiased estimator in least squares adjustment, one can

never achieve the optimal estimate with the minimal

variance unless the correct stochastic model is applied

(Koch 1999; Li et al. 2011).

In global navigation satellite system (GNSS) applica-

tions, the stochastic model is very important for reliable

integer ambiguity resolution and for precise positioning.

Compared with the correct stochastic model, any approx-

imate stochastic model will result in a smaller success rate

of both integer least squares and integer bootstrapped

ambiguity resolution (Teunissen 2007; Amiri-Simkooei

et al. 2016). Hence, refining the GNSS stochastic model is

a worthy aspiration and significant research efforts have

been done in the past two decades. The earlier studies were
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based on the elevation dependence of random observation

errors (Euler and Goad 1991; Brunner et al. 1999), and

later took into account the physical correlations, typically

the between-frequency cross-correlation and time correla-

tion, by post-analysis (Tiberius and Kenselaar 2003; Bona

2000; Li et al. 2008; Amiri-Simkooei et al. 2009), variance

component estimation together with positioning (Wang

et al. 2002; Li et al. 2011) and turbulence theory (Schön

and Brunner 2008; Kermarrec and Schön 2014). Based on

these studies, it is concluded that in general the observation

precision is elevation-dependent and the cross-correlation

and time correlation may exist. Moreover, these stochastic

characteristics vary with both receiver and observation

types.

Besides achieving the precise parameter estimator, the

correct stochastic model is also required to retrieve the

objective precision measures and the covariance matrix of

the estimator. For short baselines and short observation

sessions, the physical correlations have no significant

effects on the baseline solutions, but significant effects on

the covariance matrix of the baselines, as numerically

shown in El-Rabbany (1994), Han and Rizos (1995),

Howind et al. (1999) and Li (2016). Existing studies of

refining GNSS stochastic models almost all focus on the

improvement of positioning. In fact, the stochastic model is

even more important for the reliability of quality control.

The reliability measures the capability of an equation

system to detect, identify and resist outlier(s). It consists of

internal and external reliabilities, of which the internal

reliability is more important for detecting and identifying

the outlier with hypothesis testing (Teunissen 2006). Usu-

ally, the probabilities of type I and type II errors with a

given significance in hypothesis testing, the separability of

two outlier detection statistics as well as the minimal

detectable bias (MDB) are applied as indicators. In relia-

bility, the covariance matrix is involved in testing statistics,

for instance, the overall statistic for model specification

and the w statistic for outlier detection. Such statistics are

known to be sensitive to the stochastic model (Baarda

1968; Teunissen 2006; Li et al. 2016).

However, in the GNSS community, the influence of the

stochastic model on the statistical reliability tests has been

rarely studied. Teunissen (1998) derived the analytical

formulae of MDB for canonical forms of different GNSS

application models. Li et al. (2016) numerically demon-

strated the impact of the elevation-dependent model on the

overall and w statistic tests. We will study the influence of

the GNSS stochastic model on the statistical tests involved

in reliability with triple-frequency BeiDou as an example.

We first apply the variance component estimation (VCE)

method to achieve realistic elevation-dependent precision,

cross-correlation and time correlation. Compared with the

empirical stochastic models, we numerically demonstrate

the influence of these realistic stochastic properties on the

overall and w statistic tests. In addition, the MDBs together

with separability defined by the correlation coefficient of

two w-test statistics are analyzed. To the best of our

knowledge, this is the first comprehensive study on the

reliability influence of BeiDou stochastic modeling. The

achieved results will be very helpful for users to do quality

control in real applications.

The symbols and operators used below are described as

follows. The matrix In denotes the ðn� nÞ identity matrix

and en is the n-column vector with all elements of ones. 0

denotes a matrix of all elements of 0’s with proper dimen-

sions. The symbols E and D are the expectation and disper-

sion operators, while tr is the trace of a matrix. diag(aÞ is the
operator to form a diagonal square matrix with elements a at

the diagonal, while blkdiag is the operator of block diagonal

concatenation of matrices. The symbols � and vec are

Kronecker product and vectorization operator. The proper-

ties ðABÞ � ðCDÞ ¼ ðA� CÞðB� DÞ, vec(ABCÞ ¼ ðCT�
AÞvec(BÞ, and vec(AÞTvec(BÞ ¼ tr(ATBÞ will be frequently
applied in derivations. See Koch (1999) for more properties

about these mathematical operators.

GNSS model and its solutions

In this section, we first give the SD phase and code

observation model between two receivers, followed by

derivation of the representation of the full-rank model.

Based on the full-rank SD model, two types of solutions,

namely the float solution and fixed solution, are presented.

Between-receiver SD observation model

We study the reliability statistics based on the between-

receiver single-difference (SD) model of short baseline, as

it allows to explicitly analyze the satellite-specific prop-

erty, where the satellite-dependent biases are eliminated.

For a short baseline, the remaining systematic biases, such

as the atmospheric biases, can be reduced sufficiently and

basically ignored. Then, the single-epoch SD observation

equations of f -frequency phase and code read

E
/

p

� �� �
¼ ef � G If � es 0 K� Is

ef � G 0 If � es 0

� � x
dt
dt
a

2
64

3
75

ð1Þ

where / ¼ ½/T
1 ; . . .;/

T
f �

T
and p ¼ ½pT1 ; . . .; pTf �

T
are the

vectors of f -frequency SD code and phase observations,

respectively, /j ¼ ½/1
j ; . . .;/

s
j �
T
is the SD phase observa-

tion vector of s satellites on frequency j; pj has the same
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structure as /j. G is the design matrix to the baseline vector

x. K ¼ diag([k1; . . .; kf �Þ is the design matrix to the SD

ambiguity vector a ¼ ½aT1 ; . . .; aTf �
T
with aj ¼ ½a1j ; . . .; asj �

T

being the SD ambiguity vector of frequency j including the

initial SD receiver phase bias. kj is the wavelength of the

jth frequency. dt ¼ ½dt1; . . .; dtf �T and dt ¼ ½dt1; . . .; dtf �T ,
with dtj and dtj being the SD receiver clock errors (hard-

ware delays included) of the jth frequency in meters for

phase and code, respectively.

Obviously, Eq. (1) is rank-deficient since the coeffi-

cients of dt and the SD ambiguities a satisfy

If � es K� Is½ � K

�If � es

� �
¼ 0fs�f ð2Þ

This equation indicates that the SD phase clocks dt are

dependent on the SD ambiguities a with rank deficiency f.

To eliminate this rank deficiency, we conduct the repa-

rameterization as:

d�t ¼ dt1 þ a11; . . .; dtf þ a1f

h iT

zj ¼ a2j � a1j ; . . .; a
s
j � a1j

h iT ð3Þ

where zj is the DD ambiguities of frequency j. The full-

rank version of model (1) reads

E
/

p

� �� �
¼ ef � G If � es 0 K� C

ef � G 0 If � es 0

� � x
d�t
dt
z

2
64

3
75

ð4Þ

with C ¼ ½0ðs�1Þ�1; Is�1�T . The integer nature of DD

ambiguities in (4) can be retrieved, which is exactly

equivalent to the DD equation system. The equations are

rewritten in a compact form as

y ¼ Azþ Bbþ �y; Qyy ¼ blkdiag([Q//;Qpp�Þ ð5Þ

where y ¼ ½/T ; pT �T 2 Rm with m ¼ 2fs; A ¼ ½1; 0�T �
K� C to DD integer ambiguity vector z 2 Zn with

n ¼ f ðs� 1Þ. B ¼ ½e2f � G; Isf � es� is the design matrix

to the real parameter vector b ¼ ½xT ; d�tT ; dtT �T 2 Rp with

p ¼ 2f þ 3. �y is the random observation noise assumed to

be normally distributed with zero mean and covariance

matrix of Qyy, where Q// and Qpp are the covariance

matrices of SD phase and code observations. Here the

cross-correlation between phase and code observations is

ignored.

Float and fixed solutions

In general, a three-step procedure is employed to solve

model (5) based on the least squares criterion.

Step 1: Float solution

The integer property of the ambiguities z 2 Zn is disre-

garded, and the so-called float solution is computed,

ẑ
b̂

� �
¼ Qẑẑ Qẑb̂

Qb̂ẑ Qb̂b̂

� �
ATQ�1

yy y

BTQ�1
yy y

" #
ð6Þ

where

Qẑẑ Qẑb̂

Qb̂ẑ Qb̂b̂

� �
¼ ATQ�1

yy A ATQ�1
yy B

BTQ�1
yy A BTQ�1

yy B

" #�1

Then, the residuals of float solution are computed as

�̂y ¼ y� Aẑ� Bb̂ ð7Þ

Q�̂�̂ ¼ Qyy � AQẑẑA
T � BQb̂b̂B

T � AQẑb̂B
T � BQb̂ẑA

T

ð8Þ

Step 2: Integer estimation

The float ambiguity estimate ẑ is used to compute its

integer counterpart, denoted as

�z ¼ IðẑÞ ð9Þ

with I : Rn 7!Zn the integer mapping from the reals to the

integers in n-dimensional space. There are different choices

of mapping function I possible, which correspond to dif-

ferent integer estimation methods. Integer rounding, inte-

ger bootstrapping and integer least squares (ILS) are

examples of such integer estimators. Of all choices, ILS is

optimal as it can achieve the largest success rate (Teunissen

1999). ILS is efficiently mechanized in the LAMBDA

method (Teunissen 1995). Recently, a new version of the

LAMBDA software (version 3.0) was released with a more

efficient search strategy and more integer estimation

methods (Verhagen and Li 2012).

Step 3: Fixed solution

The float solution of the baseline parameters is updated

using the fixed integer parameters,

�b ¼ b̂� Qb̂ẑQ
�1
ẑẑ ðẑ� �zÞ; Q�b�b ¼ Qb̂b̂ � Qb̂ẑQ

�1
ẑẑ Qẑb̂ ð10Þ

and the residuals of the fixed solution are

��y ¼ y� A�z� B�b; Q���� ¼ Qyy � BQ�b�bB
T ð11Þ

It is pointed out that the covariance matrix Q�b�b is derived

based on the error propagation law with assumption that

the integer solution �z is deterministic. This holds true only

when the success rate is sufficiently close to 1. In that case,

Q�b�b � Qb̂b̂ since after successful ambiguity fixing, the
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phase measurements start to act as very precise pseudor-

ange measurements. However, if the success rate is not

sufficiently high, the fixed solution �b is not necessarily

more precise than the float solution b̂ (de Jonge et al. 2000;

Verhagen et al. 2013; Li et al. 2014).

Overall test, w-test and MDB

As well known in the Gauss-Markov model, the least

squares solution is optimal only when no outlier exists nor

any other misspecifications of the functional and stochastic

model (Koch 1999). It is therefore important to validate

this precondition by using some proper statistical testing.

Often, two test statistics, overall test and w-test, are pop-

ularly applied to check the specification of the mathematic

model. The overall test is to test the overall discrepancy

between the underlying observation model and the real

observations, while the w-test is to test whether the outliers

in individual observations are present. In GNSS applica-

tions, one can apply these two statistical tests to both float

and fixed solutions.

Once the float solution is obtained in the first step of

solving the mixed GNSS model, one can apply the overall

test to check the compatibility of the mathematic model.

The overall test statistic is (Koch 1999; Teunissen 2006)

Tq ¼
�̂Ty Q

�1
yy �̂y

q
ð12Þ

For the null hypothesis that no misspecification exists, the

overall statistic has a Fisher distribution with q ¼ m� n�
p ¼ f ðs� 1Þ � 3 and 1 degrees of freedom, i.e.,

Tq � Fðq;1Þ. Given the correct stochastic model Qyy, it is

emphasized that the expectation of Tq is equal to 1 if the

function model is overall well specified. Therefore, given a

significance level a, if Tq\F1�aðq;1Þ, we accept the null

hypothesis that there is no misspecification in the func-

tional and/or stochastic model; otherwise, we accept the

alternative hypothesis that the misspecification exists in the

functional and/or stochastic model.

If the null hypothesis is rejected, one may then need to

further identify the cause of the misspecification between

model and data. Usually, one starts with testing for outliers

in individual observations by using the w-test. The w-test

statistic of the ith observation reads (Baarda 1968; Teu-

nissen 2006)

wi ¼
cTi Q

�1
yy �̂yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cTi Q
�1
yy Q�̂�̂Q

�1
yy ci

q ð13Þ

where ci is m-column vector with all elements of 0 except

the ith element of 1. The wi is standard normally distributed

with zero mean [i.e., wi � Nð0; 1Þ] for null hypothesis H0

and with nonzero mean (i.e., non-centrality parameterffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTi Q

�1
yy Q�̂�̂Q

�1
yy ci

q
r with r an unknown scalar as expec-

tation of bias) for alternative hypothesis Ha. In any statis-

tical hypothesis test, one encounters the type I error of false

alarm and the type II error of wrong detection, namely the

error of rejecting a correct hypothesis and the error of

accepting a wrong hypothesis (Neyman and Pearson 1933).

In the w-test, with a significance level a, the null hypothesis
will be accepted that the ith observation is not an outlier if

wij j\N1�a=2; otherwise, the corresponding alternative

hypothesis will be accepted if it has the largest wij j of all m
alternatives. In such case, the corresponding detection

power, c ¼ 1� b with b being the probability of the type II

error, can be computed under Ha.

In theory, with a significance level a0, the largest rj j
will receive the largest detection power c. If the detection

power is further controlled to a level c0, the absolute non-

centrality parameter
ffiffiffiffiffi
k0

p
as a function of a0 and c0 can be

obtained. For instance, for a0 ¼ 0:001 and c0 ¼ 0:8, it

follows that k0 ¼ 17. Once the non-centrality parameter is

known, the corresponding size of the bias is (Baarda 1968;

Teunissen 2006)

rj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k0
cTi Q

�1
yy Q�̂�̂Q

�1
yy ci

s
ð14Þ

If the outlier is smaller than this size, the testing power will

be smaller than c0. Hence, this size is defined as the min-

imal detection bias (MDB) related to the probabilities of a0
and c0.

For the fixed solutions, one can apply the overall test

and the w-test and compute the MDB exactly following

(12), (13) and (14), respectively; But now ��y and Q���� must

be used instead of their float counterparts �̂y and Q�̂�̂. Note

in the overall test the degree of freedom becomes q ¼
2f ðs� 1Þ � 3 since the f ðs� 1Þ DD ambiguities are fixed.

To intuitively get some insight on how the stochastic

model (covariance matrix Qyy) affects the least squares

solutions and the hypothesis testing statistics, we assume

simply that the structure of Qyy is correct but scaled by a

factor j, i.e., Qyy ! jQyy. Then, the least squares float

estimate, b̂, is invariant but its covariance matrix

Qb̂b̂ ! jQb̂b̂, which is the case also for the fixed solution �b.

The overall and w-test statistics as well as MDB become

Tq ! Tq=j, wi ! wi=
ffiffiffi
j

p
and rj j !

ffiffiffi
j

p
rj j, respectively.

It is obvious that the scaled stochastic model has immediate

effect on both the overall and w-test statistics and MDB

although it does not affect the parameter estimate b̂. In the

following, we will numerically demonstrate how the ele-

vation-dependent precisions, the cross-correlations and
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time correlations in the stochastic model affect the

hypothesis tests by comparing between the realistic and

empirical stochastic models.

Realistic stochastic model estimation

In the section, we will present the formulation of stochastic

model and its estimation. Here, the stochastic model refers

to the SD functional model with unknown variance and

covariance components. The LS VCE method will be

employed for solving these unknown components.

Formulation of unknown stochastic model

The following issues are taken into account in formulating

the unknown stochastic model. First, to address the satel-

lite-specific variance and its elevation dependence, the

unknown variances are assigned to individual satellites for

each observation type and frequency type over a short

period of K epochs during which the satellite elevation is

nearly invariant. Second, the cross-correlations are

assumed to be present between two arbitrary frequencies

for phase and code, respectively, while absent between

phase and code. In addition, the different time correlations

are assigned for each frequency and each observation type.

In terms of above assumptions on the stochastic model,

the covariance matrix of SD observations for K consecutive

epochs follows as

Qyy ¼ QT � QC � QE ð15Þ

where the matrices QC ¼ blkdiag ðQC;/;QC;pÞ, QT and QE

are defined as

QC;/ ¼
r2/1

r/1/2
r/1/3

r/1/2
r2/2

r/2/3

r/1/3
r/2/3

r2/3

2
64

3
75 ð16Þ

and

QT ¼

1

r½1�
..
.

r½K�1�

r½1�
1

..

.

r½K�2�

� � �
� � �
. .
.

� � �

r½K�1�
r½K�2�

..

.

1

2
6664

3
7775 ð17Þ

and

QE ¼ 2� diag([r21; . . .; r
2
s �Þ ð18Þ

The diagonal and off-diagonal elements of QC;/ denote the

variances and the covariances between observation types,

respectively. QC;p has the same structure as QC;/. The K �
K Toeplitz matrix QT represents the possible time corre-

lation of observations, where K is the number of

observation epochs. Finally, QE is an s� s matrix repre-

senting the dependence of observation precision on the

satellite elevation, where s is the number of satellites. Here,

the factor 2 is due to the single differencing of the obser-

vations, which is based on the fact that the satellite ele-

vations for two stations are very close with difference

smaller than 0.58 for the baselines as long as 20 km.

One may express the observation precision as an ele-

vation-dependent function rh ¼ f ðcjhÞ with unknown c and
observation elevation h. This elevation can be the satellite

elevation of either baseline station or the average elevation

of two baseline stations. In such case,

QE ¼ 2� diag([f 2ðcjh1Þ; . . .; f 2ðcjhsÞ�Þ ð19Þ

Then, one estimates the unknown c instead of satellite

variances. These unknown variance and covariance com-

ponents in QC, QT and QE will be estimated by using the

variance component estimation (VCE) method.

LS VCE for estimating realistic stochastic model

There are many VCE methods to solve the formulated VCE

problem, such as Helmert-type VCE, MINQUE, RMLE

and LS VCE, which are equivalent under certain condi-

tions. For more information, one can refer to Amiri-Sim-

kooei (2007). We will employ the LS VCE method due to

its superior properties as elaborated in Teunissen and

Amiri-Simkooei (2008). We implement the VCE based on

fixed solutions. The observation model and stochastic

model is organized in the general linear Gauss-Markov

model,

E(y� A�zÞ ¼ Bb; Qyy ¼ Q0 þ
Xp
k¼1

rkUk ð20Þ

where Qyy is decomposed into the known part Q0 and the

unknown part specified by p unknown variance and

covariance components rk and their associated cofactor

matrices Uk. The normal equations of LS VCE read

(Amiri-Simkooei 2007)

Nr̂ ¼ x ð21Þ

where r̂ ¼ ½r̂1; . . .; r̂p�T and the entries of normal matrix N

and vector x are

nkl ¼ tr UkQ
�1
yy P

?
BUlQ

�1
yy P

?
B

� �
ð22Þ

xk ¼ ��Ty Q
�1
yy UkQ

�1
yy ��y � tr UkQ

�1
yy P

?
BQ0Q

�1
yy P

?
B

� �
ð23Þ

with projector matrix P?
B ¼ I � BðBTQ�1

yy BÞ
�1BTQ�1

yy .

Obviously, it needs iterative computations since the

covariance matrix Qyy is involved in the normal equations.

Usually given the initial values for unknown variance and
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covariance components, denoted by r0k ; ðk ¼ 1; . . .; pÞ, one
computes the initial values for Qyy and P?

B and then the

updated unknowns. The iteration continues until the com-

puted unknowns between two consecutive iterations are

stationary. For more information on computation aspect,

see Li (2016).

Estimation of BDS stochastic model

The purpose of this research is to numerically investigate

the impacts of a realistic stochastic model on the

hypothesis tests compared with those with empirical

stochastic model. In addition to the effect of receiver and

antenna types, the GNSS stochastic model is in principle

data-dependent due to the specific observation situations.

Therefore, in real applications, the realistic stochastic

model should be estimated together with parameter

estimation unless the assumed stochastic model can

indeed adequately capture the real observation

randomness.

Data description

Two data sets of triple-frequency BeiDou observations are

collected on a zero baseline by using Trimble receivers and

on a short baseline of about 6 m by ComNav receivers. The

total number of epochs is 86,400 for both baselines, i.e., a

daily observation span with sampling interval of 1 s. In the

computations, the cutoff elevation is 10�.
The DD integer ambiguity resolution is the precondition

to analyze the stochastic model. In this study, the data sets

are collected on a zero baseline and a 6-m short baseline.

Such precisely known short baseline can be applied to

extremely enhance the ambiguity resolution such that the

ambiguity resolution can be reliably done epoch by epoch

with the LAMBDA method.

Result of estimated stochastic model

Given the data window K = 60 epochs, we estimate the

precision of each satellite per frequency and observation

type. More precisely, the standard deviation of the obser-

vation should be used here and in the following instead of

precision, which is the square root of estimated variance of

the observation. Then, the precision estimates of all satel-

lites for the same observation type are sorted in ascending

order of elevations. For each elevation interval of 0.5� from
10� to 90�, we take the mean of the precision estimates in

the elevation interval as the precision of this elevation. The

results of elevation-dependent precisions are shown in

Fig. 1 for all three-frequency phase and code observations.

Taking K = 60 can guarantee the precision of the estimate

precision to better than 1%, which has been proven by

many numerical data analyses though they are not pre-

sented here.

In addition, two elevation-dependent functions are ana-

lyzed, denoted by model A and B, respectively. We choose

model A as (Li et al. 2016; Li 2016)

rh ¼ f ðcjhÞ ¼ c1=ðsinhþ c2Þ ð24Þ

and its reduced version model B:

rh ¼ f ðcjhÞ ¼ c=sinh ð25Þ

It is noted that we choose these two elevation-dependent

models just as a case study due to their simplicity. More-

over, these two models are representative. That is, model

(24) can fit the elevation-dependent observation precisions

very well, while model (25) will do so poorly, particularly

for zero baseline of Trimble receivers as seen in latter

results. One can of course choose other elevation-depen-

dent models, for instance, exponential function (Euler and

Goad 1991), which may generate different numerical

results.

The results show that the observation precisions are

overall elevation-dependent for all triple-frequency

phase and code observations, although the dependence

patterns differ by observation and receiver types. For the

short baseline using ComNav receivers, both phase and

code of B3 are more precise than those of B1 and B2,

especially for B3 code when the elevation angle is larger

than 30�. For the zero baseline using Trimble receivers,

we cannot see any obvious precision difference for

phases between frequencies, while the code precisions of

B1 are relatively larger for low elevations. The model A

can overall fit the precisions better than model B. For

model B, an over-fitting problem exhibits. In other

words, the precision values of low elevations are overly

enlarged while those of high elevations are overly

reduced. The fitting parameters of model A and B are

presented in Table 1, and their associated fitting curves

are shown in Fig. 1. Also, the elevation-independent

model denoted by model C is also analyzed. In model C,

the average precision over all elevations is actually

taken, which is the estimate of parameter c.

The estimated cross-correlation coefficients are pre-

sented in Table 2. For each receiver, six cross-correlation

coefficients are computed for phase and code observations

among three frequencies. For the ComNav receiver, all

cross-correlation coefficients deviate from 0 with values

smaller than 0.2; especially for phase, which means that no

cross-correlation exists. However, for the Trimble receiver,
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very significant cross-correlation with correlation coeffi-

cient 0.76 exists between B2 and B3 code observations.

The estimated time correlation coefficients are shown

in Fig. 2 as a function of time lags for both phase and

code of all three frequencies. For zero-baseline data of

Trimble receivers, the time correlations are absent for

both phase and code of all frequencies at time lag of 1 s.

For the short baseline using ComNav receivers, the time

correlations exist for all triple-frequency phase and code

observations. The time correlations of triple-frequency

phase observations drop sharply to a small value at the
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Fig. 1 Estimated elevation-

dependent precisions (discrete

points) and their fitting curves

(solid lines) for triple-frequency

phase and code observations of

zero baseline with Trimble

receivers (a–d) and of short

baseline with ComNav receivers

(e–h). The solid lines in

subplots (a, b) and (c, d) are for
model A (Eq. 24) and B

(Eq. 25) of zero-baseline data,

respectively. The solid lines in

subplots (e, f) and (g, h) are for

model A and B of short-baseline

data, respectively
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time lag of 1 s. However, for code observations the time

correlations are still significant at the first 5 s.

Impact of BDS stochastic model on reliability

We analyze the impacts of individual stochastic quantities,

elevation-dependent precisions, cross-correlations and time

correlations, on the reliability including the overall test, w-

test and MDB.

Impact of elevation-dependent models on reliability

We demonstrate the impact of observation precisions on

reliability by comparing two elevation-dependent models,

A and B, and the elevation-independent model C. Here-

after, they are also called weighting models. As an exam-

ple, the Trimble zero-baseline data was processed with

these three models, respectively. Their parameters are

taken from Table 1.

Figure 3 illustrates the statistics of overall test for sin-

gle-epoch float and fixed solutions with three models.

Given a significance level a ¼ 0:05, the critical values are

computed by F0:95ðq;1Þ for float and fixed solutions with

q ¼ 3s� 6 and 6s� 9 for f ¼ 3, respectively. The results

of models A and C are very close with each other, while

they differ significantly from model B. Since the baseline

data were collected in an ideal environment, very few

outliers were found and excluded in our postprocessing. In

Table 1 Fitting parameters of

elevation-dependent model A

and B and elevation-

independent model C for zero-

baseline data using Trimble

receivers and short-baseline

data using ComNav receivers,

respectively

Receiver Obs. Types Model A Model B Model C

B1 B2 B3 B1 B2 B3 B1 B2 B3

ĉ1 ĉ2 ĉ1 ĉ2 ĉ1 ĉ2 ĉ ĉ ĉ ĉ ĉ ĉ

Trimble Phase 1.35 0.57 1.60 0.68 1.60 0.68 0.53 0.57 0.57 1.11 1.20 1.20

Code 0.15 0.43 0.63 3.79 1.78 13.63 0.07 0.06 0.05 0.14 0.14 0.12

ComNav Phase 1.34 0.12 1.38 0.14 1.61 0.41 0.98 0.99 0.75 1.91 1.90 1.57

Code 0.25 0.34 0.25 0.24 0.14 0.10 0.12 0.14 0.11 0.26 0.29 0.20

In model A, the unit of c1 is meter for code and millimeter for phase while c2 is a scalar parameter. For

model B and C, the unit of c is meter for code and millimeter for phase

Table 2 Estimated cross-correlation coefficients for all three-fre-

quency phase and code observations of zero baseline and short

baseline with two types of receivers

.½c�/1/2
.½c�/1/3

.½c�/2/3

.½c�p1p2 .½c�p1p3 .½c�p2p3

Trimble -0.01 -0.01 -0.07 0.12 0.13 0.76

ComNav -0.09 -0.09 -0.08 0.02 0.03 -0.03
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Fig. 2 Estimated time

correlation coefficients as a

function of time lags for phase

and code observations of zero

baseline with Trimble receivers

(top) and short baseline with

ComNav receivers (bottom)

1102 GPS Solut (2017) 21:1095–1112

123



other words, there is no outlier in the observations used

anymore. In such case, if the model specifies the obser-

vations very well, the expectation of the overall statistics is

equal to 1. From the figure, the statistics of models A and C

are indeed overall close to 1, but those of model B have

significant deviations from 1. The mean of all epoch

statistics can be deemed as an empirical approximation to

expectation. Therefore, the smaller the difference of the

computed mean from 1, the better is the corresponding

elevation-dependent model. The means of overall statistics

are shown in Table 3. The result indicates that model A is

best, followed by model C and then model B. The devia-

tions of means of overall statistics from 1 are only 0.03 and

0.02 for float and fixed solutions of model A, while they are

0.10 and 0.07 for model C and 1.33 and 1.16 for model B,

respectively.

In absence of outliers, the computed statistics should be

statistically smaller than the critical values. If the statistic is

larger than its associated critical value, it leads to a false

alarm. The probabilities of false alarm are shown in

Table 3 for both float and fixed solutions with three

models. Obviously, model A is clearly better than the other

two models, and model C better than model B. The prob-

abilities of false alarm for model A are smaller than 4 and

7% for float and fixed solutions, respectively, while they

increase to 7.1 and 11.23% for model C. For model B, they

are worst and even reach about 67 and 80% for float and

fixed solutions, respectively. Roughly, the probabilities of

false alarm of model A are smaller than those of model C

by about 2 times and model B by more than 10 times. In

addition, the false alarm probabilities of model A are much

closer to the given significant level 5%, which makes sense

statistically for a clear system with only random errors.

Such performance reveals that if the elevation-dependent

function is not properly specified, it will derive even worse

results than the elevation-independent model.

In the single-epoch float solution model, the ambiguity

parameters are to be estimated for all three-frequency

phase observations. Such model formation leads to zero

denominators in (13) and (14), i.e., cTi Q
�1
yy Q�̂�̂Q

�1
yy ci ¼ 0,

for phase observations. This means that the statistics of the

w-test and MDB cannot be computed for phase observa-

tions with single-epoch float solutions. Therefore, we focus

on analyzing the statistics of w-test and MDB for single-

epoch fixed solutions.

Figure 4 shows the computed w-test statistics as a func-

tion of elevations for all triple-frequency code and phase

observationswith two elevation-dependentmodels, A andB,

and elevation-independent model C. Recall the theoretical

relation that wi ! wi=
ffiffiffi
j

p
if Qyy ! jQyy. It means that the

downscaling variance (j\1) derives the larger wi statistic,

and vice versa. In model C, the smaller precision is used

instead of its actual value for low-elevation observation,

which leads to the enlarged w-statistic values. This is the

opposite for the high-elevation observations, see right col-

umn of Fig. 4. As observed in Fig. 1, themodel B overfits the

elevation dependence of observation precisions, which

means that a too large j is assigned to low-elevation obser-

vations while a too small j to high-elevation observations.

As a result, the w-test statistics of low elevations are smaller

than those of high elevations, especially for code of B2 and

B3, as seen from the figure. The model A outperforms the

models B and C, where its w-test statistics are basically

comparable for all elevation observations.

For a normal observation, wi is of standard normal dis-

tribution. Given the significance level a ¼ 0:05, the empir-

ical probability of false alarm is computed as a ratio between

the number of w-test statistics outside the confident region

Na=2;N1�a=2

	 

and the total number ofw-test statistics. Given

the elevation intervals of 108 from 108 to 908, there are in

total 8 elevation intervals. For each elevation interval, this

empirical probability of false alarm can be computed. The

results of all 8 elevation intervals are shown in Fig. 5 as a
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Fig. 3 Statistics of single-epoch overall tests with two elevation-

dependent models, A and B, and elevation-independent model C for

Trimble zero-baseline data. The subplots (top) and (bottom) are for

the float and fixed solutions, respectively

Table 3 Means of overall test statistics and probabilities of false

alarm with significance level a ¼ 0:05 for two elevation-dependent

models A and B, and elevation-independent model C

Mean of statistics False alarm (%)

A B C A B C

Float 1.03 2.33 1.10 3.80 66.88 7.10

Fixed 1.02 2.16 1.07 6.75 80.30 11.23

Float and fixed denote the results at their corresponding rows related

to the float and fixed solutions
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function of elevation intervals for phase and code observa-

tions with three weighting models. Again, the model A is

best, followed by model C and model B.

We now analyze the MDB results with three weighting

models. The MDBs are computed with single-epoch fixed

solution following (14) for triple-frequency code and phase

observations. The results are shown in Fig. 6. Again recall

the theoretical relation that rj j !
ffiffiffi
j

p
rj j if Qyy ! jQyy. It

means that the MDB is positively proportional to the

observation precision with arithmetic square root of a

scalar. The more precise observation will receive a smaller

MDB, and vice versa. In other words, with a given sig-

nificance level a and detection power c, the

detectable outlier becomes smaller if the observation pre-

cision is improved. The model A receives the realistic

MDBs since it can reflect the precisions of observations

Fig. 4 w-test statistics of single-epoch fixed solutions as a function of elevations with elevation-dependent model A (left) and B (middle), as well

as elevation-independent model C (right) for Trimble zero-baseline data
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model C (right) for Trimble zero-baseline data. The elevation interval

is 10�, and eight elevation intervals are from 10� to 90�
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realistically. However, models B and C obtain unrealistic

MDBs, which can be either too small or too large. Com-

pared to the MDBs of model A, the model B obtains too

large MDBs for low elevations while too small ones for

high elevations. In other words, the outliers at low eleva-

tions that can be actually detected become non-de-

tectable in terms of MDB with a certain reliability. More

conservatively, some normal observations at high eleva-

tions may be wrongly excluded as outliers.

Impact of cross-correlation on reliability

To investigate the impact of cross-correlation on reliability,

we use the B2 and B3 code observations of the Trimble

zero baseline for the baseline resolution, where the B2 and

B3 code is strongly correlated with correlation coefficient

0.76 seen in Table 2. Here, we do not incorporate B1 data

for simplicity due to its minor correlations with B2 and B3

data. Referring to (1), the single-epoch SD model with only

B2 and B3 code observations reads

E
p2
p3

� �� �
¼ G es 0

G es es

� � x
dt2
dt3

2
4

3
5; 2

Qp2p2
.cQc

.cQc Qp3p3

� �

ð26Þ

where Qp2p2
¼ diag([ðr1p2Þ

2; . . .; ðrsp2Þ
2�Þ with rsp2 is the

undifference observation precision of satellite s computed

by elevation-dependent model A (24) with fitting parame-

ters from Table 1. Qp3p3
is similar to Qp2p2

and computed

with its own elevation-dependent parameters. The matrix,

Qc ¼ Q1=2
p2p2

Q1=2
p3p3

, is scaled by a cross-correlation coefficient

.c between B2 and B3 code observations.

For the realistic stochastic model with .c ¼ 0:76 and the

empirical model with .c ¼ 0, one can solve the model (26)

to obtain the corresponding LS solutions epoch by epoch.

Then, the statistics of overall tests are computed as shown

in Fig. 7 with respect to two stochastic models. They are

very close to each other and their means are 1.0756 and

0.9176, respectively. With significance level a = 0.01, the

probabilities of false alarm are 2.24 and 2.75% for

stochastic models with .c ¼ 0:76 and 0, respectively.

The w-test statistics of all observations are computed for

these two stochastic models with and without cross-corre-

lations. The histograms of w-test statistics are shown in

Fig. 8. For these two stochastic models, the means of w-test

statistics are 5 9 10-5 and 0.001 with standard deviations

1.0345 and 0.9544, respectively. Although the w-test

statistics with stochastic model of .c = 0.76 are slightly

closer to the standard normal distribution, they are practi-

cally very similar to those with stochastic model of .c = 0.

For the significance level a = 0.01, the probability of false

alarm is 0.79 and 1.34%, respectively. In summary, the

cross-correlation in stochastic model has very minor effects

on the overall and w-test.

Let us now analyze the impact of cross-correlation on

the MDBs. By considering and ignoring the cross-

Fig. 6 MDBs of single-epoch fixed solution as a function of elevations with two elevation-dependent models, A (left) and B (middle), and

elevation-independent model C (right) for Trimble zero-baseline data
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Fig. 7 Statistics of single-epoch overall tests for two stochastic

models with .c ¼ 0:76 and 0 for Trimble zero-baseline data
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correlations in stochastic model, the MDBs are computed

for all B2 and B3 code observations of all satellites, shown

in Fig. 9. Obviously, considering the cross-correlation will

decrease the MDBs, namely the smaller outliers are

detectable if the cross-correlations are properly assimilated.

In principle, the information content in the correlated B2

and B3 observations should be less than that in the B2 and

B3 observations if they are independent. Hence, with less

information contents for correlated B2 and B3 observa-

tions, the outlier detection should become difficult and the

MDBs should be larger. The theoretical expectation is

opposite to the result obtained in Fig. 9. Such contradiction

attracts our further analysis. The correlation coefficient of

two w-test statistics of B2 and B3 code observations for a

satellite is defined as (Förstner 1983)

.wiwj
¼ cTi Xcjffiffiffiffiffiffiffiffiffiffiffiffi

cTi Xci
p ffiffiffiffiffiffiffiffiffiffiffiffi

cTj Xcj

q ¼ X i; jð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
X i; ið Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
X j; jð Þ

p ð27Þ

where X ¼ Q�1
yy Q�̂�̂Q

�1
yy . For a larger correlation coefficient

.wiwj
between the ith and jth observations, it is more dif-

ficult to discriminate the outlier exactly on either the ith or

jth observation. In other words, one may detect the outlier,

but wrongly position the outlier location, which will derive

the type III error (Förstner 1983; Yang et al. 2013). In real

applications, if the w-test statistics of two observations are

highly correlated and an outlier is statistically detected on

either one observation, an advisable strategy is to exclude

both observations simultaneously to control the type III

error.

The correlation coefficients .wiwj
between two w-test

statistics of B2 and B3 code observations for individual

satellites are computed and illustrated in Fig. 10. The mean

correlation coefficients over the whole observation span for

all satellites are shown in the figure as well. The correlation

increases from about –0.2 (.c = 0) to –0.8 (.c ¼ 0:76).

That makes sense since the cross-correlation makes the B2

and B3 observations of one satellite correlated and then

their w-test statistics correlated. Therefore, if the outlier is

detected for B2 or B3 observation, it is advisable to

exclude both B2 and B3 observations of this satellite to

control the type III error for high reliability of positioning

solutions.

Impact of time correlation on reliability

To demonstrate the impact of time correlation on reliabil-

ity, we use the short-baseline code observations using

ComNav receivers. We solve the baseline solutions based

on the SD model by using triple-frequency code observa-

tions of with two consecutive epochs, where all triple-

frequency code observations are time correlated. The

associate model reads

E
pk
pkþ1

� �� �
¼ e3 � Gk I3 � es 0

e3 � Gkþ1 0 I3 � es

� � x
dtk
dtkþ1

2
4

3
5

ð28Þ

with stochastic model

D
pk
pkþ1

� �� �
¼ I3 .t

.t I3

� �
� Is

� �
I2 � Qpp

� �
ð29Þ

where Qpp ¼ blkdiag(Qp1
;Qp2

;Qp3
Þ is the covariance

matrix of single-epoch SD triple-frequency code observa-

tions. Qpi
is the covariance matrix of single-epoch SD code

observations of the ith frequency, which is computed by the
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elevation-dependent model A (24) with fitting parameters

in Table 1. The diagonal matrix .t ¼ diag([.t;1; .t;2; .t;3�Þ
consists of the time correlation coefficient between two

consecutive epochs for triple-frequency code observations.

Sampling from the bottom-right subplot of Fig. 2, they are

equal to 0.7, 0.54 and 0.75 for triple-frequency code

observations, respectively.

For two stochastic models specified by .t ¼ 0 and

.t ¼ diag([0:7; 0:54; 0:75�Þ, i.e., ignoring and considering

time correlation, the statistics of overall and w-test and

MDBs are computed. The statistics of overall test and the

histograms of w-test statistics are shown in Figs. 11 and 12,

respectively. The means of overall test statistics are 1.1670

and 1.1515 for .t ¼ 0 and .t 6¼ 0, respectively. Here .t 6¼ 0

means that one takes the realistic time correlations into

account. The corresponding probabilities of false alarm are

3.54 and 2.29% for significance level a = 0.01. The means

of w-test statistics are 0.0025 and 0.0014 with respect to

.t ¼ 0 and .t 6¼ 0. The corresponding probabilities of false

alarm is 2.26 and 2.12% for the significance level

a = 0.01. Therefore, in general, the time correlation has

minor impact on the overall test and w-test.

The MDB results of all triple-frequency code observa-

tions are shown in Fig. 13. For each baseline solution, triple-

frequency code observations of two epochs are involved.

The smaller variations of MDBs are for GEO satellites due

to their stable elevations and then precisions. For a given

satellite and frequency, the correlations of two w-test

statistics of two-epoch observations are computed with (27).

The results are shown in Fig. 14 for the whole observation

span. The means of MDBs and correlation coefficients of w-

test statistics are shown in Fig. 15 as function of satellite

PRNs. TheMDBs of B3 are the smallest, followed byB1 and

B2. This is due to the B3 code being most precise and then

B1 and B2 as shown in subplots (f) and (h) of Fig. 1. Similar

to the impact of cross-correlation onMDB and correlation of

w-test statistics, the MDBs of all observations are indeed

reduced when taking into account the time correlation, while

the correlations of w-test statistics between two epochs are

significantly increased from –0.2 (.t ¼ 0) to even –0.9

(.t 6¼ 0). As a result, it is more difficult to discriminate
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Fig. 11 Statistics of overall tests of single-epoch baseline solutions

with two stochastic models specified by .t ¼ 0 and .t 6¼ 0 for

ComNav short-baseline data
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exactly on which observation the outlier has occurred if the

observations are time correlated. Again an advisable strat-

egy is to exclude the observations of these two epochs

simultaneously to control the type III error if the outlier is

detected at either epoch.

Concluding remarks

The importance of stochastic model on achieving optimal

parameter estimator and realistic covariance matrix of the

estimator has been well documented by GNSS researchers
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in the past. That is, the ambiguity resolution and posi-

tioning can be improved by refining the stochastic model.

However, the importance of stochastic model on the reli-

ability of quality control has been rarely studied, where the

covariance matrix is involved in statistical reliability tests.

We have studied the influence of the stochastic model on

the statistical tests with triple-frequency BeiDou as an

example. Compared with the empirical stochastic models,

the influences of estimated realistic stochastic models on

the overall and w statistical tests as well as the MDBs have

been numerically investigated. Based on our studies, the

conclusions are summarized as follows:

• The GNSS observation precision is in general eleva-

tion-dependent, and cross-correlations and time corre-

lations may exist. These stochastic characteristics differ

from the receiver and observation types and frequen-

cies, which should be taken into account for establish-

ing a realistic stochastic model.

• Comparison of elevation-dependent and -independent

models in overall test and w-test reveals that a realistic

elevation-dependent model can reduce the probabilities

of both false alarm and wrong detection. Without

proper elevation-dependent model, the probabilities of

false alarm and wrong detection could be even worse

than those of elevation-independent model.

• The cross-correlations and time correlations have very

marginal effects on the baseline (positioning) solutions

(Li 2016). However, they affect the covariance matrix

of the baseline solutions and then the reliability test

statistics significantly. In other words, one may not

expect the improved baseline solutions by properly

considering the physical correlations, but indeed more

realistic reliability results. That is, taking into account

the physical correlations, the probabilities of both false

alarm and wrong detection will be reduced in statistical

reliability tests; the MDBs become smaller with more

difficulty of discriminating the outlier location. Hence,

when the physical correlations exist among observa-

tions, an advisable strategy is to exclude these obser-

vations simultaneously, if either observation is detected

as outlier, to control the type III error for reliable

positioning.

• Considering the complexity of stochastic model and its

dependence on the receiver type, antenna type and also

observation environment, in real applications one

should estimate the realistic stochastic model with the

data set to capture the real stochastic characteristics of

data set itself.

To the best of our knowledge, this is the first compre-

hensive study for analyzing the influence of stochastic

model on statistical reliability tests. With realistic

stochastic model, one can obtain the reasonable reliability

test results, which are helpful for users to make objective

decisions in quality control of real GNSS applications.
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