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Abstract Following the recent development of wide-area

differential technology, satellite-based augmentation sys-

tems (SBASs) have been applied in many fields. However,

the capability of monitoring stations used for generating

error correction might degenerate with the aging of ground

equipment over time, and the poor geometry between

ranging and integrity monitoring stations (RIMS) and

satellites could affect the reliability of navigation systems in

supplying safety of life service. Therefore, it is necessary to

predict SBAS availability so that users can choose a safe

and efficient navigation system. Predictions of user differ-

ence range error indicator (UDREI) and grid ionospheric

vertical error indicator (GIVEI) are the two difficulties in

predicting SBAS availability. Considering the effect of

geometry on UDREI, satellite geometric dilution of preci-

sion is defined to distinguish different geometries such that

the relationship between the number of visible RIMS and

UDREI in different geometries can be obtained. With

regard to the effect of geometry on GIVEI, a weighted

number of visible ionospheric pierce points (IPPs) is

defined to describe the geometric IPP distribution such that

the relationship between the number of visible IPPs and

GIVEI in different geometries can be achieved. Finally,

experiments are performed to evaluate the effectiveness of

our proposed method. With the prediction algorithm, the

prediction is consistent with actual performance over

75.17% of the entire European region. In particular, when

focusing on central Europe, where the distribution of RIMS

is uniform, the level of consistency can reach 95–100%. It

can be concluded that the prediction performance of the

algorithm is encouraging and that this model may be con-

sidered a good contender for predicting SBAS availability.

Keywords European geostationary navigation overlay

service � Grid ionospheric vertical error � User difference
range error � Availability prediction algorithm � Satellite-
based augmentation systems

Introduction

The ability to predict the availability of satellite navigation

augmentation systems has become increasingly important.

In the field of airborne-based augmentation systems,

receiver autonomous integrity monitoring (RAIM) avail-

ability prediction has become an essential part of the sys-

tem. This is because for a receiver to execute RAIM

algorithm, two conditions must be met: a minimum number

of satellites and adequate satellite geometry (Feng et al.

2006), which means RAIM does not work in some cases

referred to as RAIM holes. Consequently, availability

prediction must be conducted to exclude the risk of running

into a RAIM hole. Currently, the USA, Australia, Ger-

many, and China have developed mature RAIM avail-

ability prediction systems, and they demand that

availability prediction be performed before using RAIM

(Zhu et al. 2009). In the field of ground-based augmenta-

tion systems, the Federal Aviation Administration has

clearly defined the requirements of availability prediction

in the paper AC20-138B (FAA 2010). Research on ground-

based augmentation system availability prediction has been

undertaken (Wang et al. 2014), and the SLS-4000 Service

Prediction Tool, developed by the Navigation Branch
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(ANG-C32), has been recommended for the Federal Avi-

ation Administration as an acceptable method for meeting

prediction requirements. In the field of satellite-based

augmentation systems (SBASs), there is similar demand

for availability prediction. Although research on this sub-

ject is limited, some relevant agencies, such as the Euro-

pean Satellite Services Provider (ESSP) and Iguassu

Software Systems, have commenced research programs

(Rovira-Garcia et al. 2015). We attempt to build a model to

predict availability based on system architecture and the

operational mechanism of SBASs.

SBASs are commonly composed of multiple ground-

based monitoring stations, upload stations, and GEO

satellites. With messages broadcast by GEO satellites, the

SBAS supports wide-area or regional augmentation. The

SBAS not only provides differential corrections, but it also

ensures integrity, continuity, and availability. Currently,

SBASs should meet the requirements of LPV-200. The

European Geostationary Navigation Overlay Service

(EGNOS) is the second most mature operational SBAS

serving all the European countries. EGNOS consists of

three segments: the space segment, ground segment, and

user segment, as shown in Fig. 1. The space segment is

composed of two geostationary satellites: AOR-E

(PRN120) and SES-5 (PRN136) which took over the role

of IOR-W (PRN126) on August 19, 2015. The main task of

this segment is to maintain and implement communication

between the RIMS and the master control center (MCC), as

well as to transmit instructional information sent by the

MCC to the users. The ground segment comprises 39

RIMS, 2 MCCs, and six navigation earth stations. The

main task of this segment is to conduct comprehensive

control and data processing for EGNOS. The user segment

consists of EGNOS standard receivers, which need to be

able to receive signals from EGNOS, GPS, and GLONASS

simultaneously and interpret them compatibly. EGNOS has

been used in applications such as aviation, marine, ground

transportation (Gicquel et al. 2016).

Inevitably, the capability of monitoring stations used for

providing error corrections might degenerate over time,

and poor geometry between the RIMS and satellites could

affect the reliability of the navigation system in supplying

safety of life (SOL) service. For example, a report has

suggested that frequent road traffic accidents happened on

Calle Hartzenbusch in Spain (Telegraph 2013). The lack of

accurate corrections for GPS is believed to be an important

factor. Coincidentally, accidents occurred in December

2014, when an Embraer aircraft prepared to land on a

runway under the guidance of a satellite navigation system.

Therefore, SBAS availability has become increasingly

important. In summary, it is necessary to propose a method

for predicting SBAS availability to avoid unnecessary

losses.

Primary availability prediction algorithm

In this section, a primary availability prediction algorithm

is proposed by the following three steps. First, through

combing the calculation flow of SBAS availability, the

difficulties of prediction algorithm are attributed to two

real-time integrity parameters, user difference range error

indicator (UDREI) and grid ionospheric vertical error

indicator (GIVEI). Second, based on the calculation pro-

cess of UDREI and GIVEI, the relationship between

UDREI and the number of visible RIMS and the relation-

ship between GIVEI and the number of visible ionospheric

pierce points (IPPs) are analyzed statistically. Finally,

experiments are performed to evaluate the effectiveness of

the primary algorithm.

Calculation flow of SBAS availability

The Radio Technical Commission for Aeronautics speci-

fies calculations for SBAS availability. In fact, SBAS

availability depends on whether a user’s protection level

(PL) is greater than the alarm limit. The vertical protection

level (VPL) and horizontal protection level (HPL) can be

calculated as follows (RTCA 2006):

HPLSBAS ¼ KH;NPA � dmajor for NPA

KH; PA � dmajor for PA

�
ð1Þ

VPLSBAS ¼ Kv � dU ð2Þ

where KH,NPA, KH,PA, Kv are the fractiles corresponding to

the allocation of integrity risk under different approach

modes. Furthermore,

dmajor ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2est þ d2north

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2est � d2north

2

� �2

þd2EN

svuut ð3Þ
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Fig. 1 Space segment, ground segment, and user segment of EGNOS
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i
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where dmajor is the error uncertainty along the semimajor

axis of the error ellipse, dest
2 is the variance of model dis-

tribution that overbounds the true error distribution in the

east axis, dnorth
2 is the variance of model distribution that

overbounds the true error distribution in the north axis, dEN
is the covariance of model distribution in the east and north

axes, dU
2 is the variance of model distribution that over-

bounds the true error distribution in the vertical axis, Seast,i
is the partial derivative of positional error in the east

direction with respect to the pseudorange error on the ith

satellite, Snorth,i is the partial derivative of positional error

in the north direction with respect to the pseudorange error

on the ith satellite, and SU,i is the partial derivative of

positional error in the vertical direction with respect to the

pseudorange error on the ith satellite. The Seast,i, Snorth,i, and

SU,i are elements of the projection matrix S from the

pseudorange domain to the position domain, which is

defined as:

S ¼

seast;1 seast;2 � � � seast;N
snorth;1 snorth;2 � � � snorth;N
sU;1 sU;2 � � � sU;N

st;1 st;2 � � � st;N

2
664

3
775 ¼ ðHTWHÞ�1

HTW

ð5Þ

where H is an observation matrix corresponding to the

geometry of the visible satellites, and W is a diagonal

weight matrix corresponding to the variance of measure-

ment noise.

The variance of measurement noise on the ith satellite is

defined as:

r2i ¼ r2i;flt þ r2i;UIRE þ r2i; air þ r2i; tropo ð6Þ

where ri,flt
2 is the model variance for the residual error,

ri,UIRE
2 is the model variance for the slant range ionospheric

error, ri,air
2 is the model variance for the multipath receiver

noise error, and ri,tropo
2 is the model variance for the tro-

pospheric delay estimation error.

Analysis of the calculation process presented above

indicates that the PL is determined by two factors. One is

the geometry of the visible satellites, which could be pre-

dicted using a satellite almanac. The other is the standard

deviation of the satellite pseudorange measurement, which

consists of four parts: model variance for the residual error,

model variance for the slant range ionospheric error, model

variance for the multipath receiver noise error, and model

variance for the tropospheric delay estimation error. The

latter two are related to satellite elevation angles, which

means they also could be predicted using a satellite

almanac. However, to predict the first two variances, we

need two real-time integrity parameters broadcast by GEO

satellites. One is UDREI, which is used to describe integ-

rity related to the satellite clock/ephemeris error correction

for each satellite. The other is GIVEI, which is used to

describe integrity as related to the ionospheric error cor-

rection for each ionospheric grid point (IGP). Therefore,

the focus here is on predicting UDREI and GIVEI through

mathematical statistics.

Statistical treatment of UDREI

The user difference range error (UDRE) bounds the error

of the computed ephemeris and clock corrections for each

satellite with a probability of 0.999. The following

important steps are used in the UDREI computation (Sar-

don et al. 1998).

1. Compute the residual error at the ith monitoring

station, dRi due to estimated range Ri and measured

range Rmi as:

dRi ¼ Rmi � Ri ð7Þ

2. Estimate the mean dR and standard deviation rR of the

satellite’s ephemeris and clock error, respectively, for

m monitoring stations as:

dR ¼ 1

m

Xm
k¼1

dRk ð8Þ

rdR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðm� 1Þ
Xm
k¼1

ðdRk � dRÞ2
s

ð9Þ

3. UDRE is a conservative tolerance error bound as:

UDRE ¼ dRþ jðPrÞrdR ð10Þ

where j(Pr) is the statistical confidence factor given

the confidence level Pr.

4. UDREI is obtained from UDRE using the conversion

table specified by DO-229D.

Analysis of the above calculation process indicates that

if a satellite has more visible RIMS, then it can get more

pseudoranges, making the estimation of UDREI more

accurate (Fang et al. 2013). Therefore, it is believed that a

high correlation exists between UDREI and the number of

visible RIMS, and practical measured data are processed to

analyze their relationship. The processing procedure

includes the following three steps. First, based on the

positions of the RIMS and the satellite’s positions calcu-

lated from a satellite almanac, the number of visible RIMS

for each satellite can be derived. Second, based on the

satellite’s clock/ephemeris error correction information,
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broadcast by the GEO satellites, the UDREI value of each

satellite can be parsed. Finally, according to the number of

visible RIMS and the corresponding UDREI value for each

satellite, the relationship between UDREI and the number

of visible RIMS can be analyzed. Given this relationship, it

would be possible to predict the UDREI of a satellite at any

time, because the number of visible RIMS could be

obtained easily from a satellite almanac. The processing

flow is shown in Fig. 2.

Statistical treatment of GIVEI

There could be variations in the estimated delay at the IGP

because of many error factors, e.g., modeling errors,

mapping function errors, and measurement noise. These

errors become translated from IPP locations to selected

IGPs in the delay estimation process. Therefore, an error

bound (grid ionospheric vertical error, GIVE) on such an

error is also generated at each IGP. GIVE is the maximum

error bound that an IGP can have. The error bound can be

on either side of the estimated IGP delay value. The con-

dition to GIVE estimation is that for every IGP there

should be at least three surrounding squares, each with at

least one IPP. This refers to the sufficiency of IPP density

around an IGP. The following important steps are used in

the GIVEI computation (Prasad and Sarma 2004):

1. Compute the residual error eIPP due to the estimated

user’s IPP delay ÎIPP and measured IPP delay IIPP as:

eIPPðtÞ ¼ IIPPðtÞ � ÎIPPðtÞ ð11Þ

2. Estimate the mean �eIPPj j and standard deviation re of
the user’s IPP vertical delays, respectively, for m epoch

(i.e., time t1 to tm) measurements as:

�eIPPj j ¼ 1

m

Xm
k¼1

eIPPðtkÞ ð12Þ

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðm� 1Þ
Xm
k¼1

ðeIPPðtkÞ � j�eIPPjÞ2
s

ð13Þ

3. Estimate the grid vertical absolute error bias êIGP at the

surrounding four IGPs from the absolute value of the

residual error at the ith user’s IPP, i.e., eIPPiðtÞj j, for
m epoch data using:

êIGP ¼

Pn
i¼1

1
di

� �
� eIPPiðtÞj j

Pn
i¼1

1
di

ð14Þ

where di is the distance from the ith user’s IPP to the

selected IGP, and n is the number of IPPs adjacent to

the selected IGP.

4. Generate a conservative tolerance error bound EIPP for

every valid user’s IPP in a surrounding square. EIPP is

derived from a two-sided statistical tolerance interval c
that contains a proportion p of a normally distributed

population over a given sample size m as:

EIPP ¼ �eIPPj j þ gðc; p;mÞre ð15Þ

where �eIPPj j is the absolute value of the mean error and

g(c; p; m) is the statistical confidence factor. The

confidence factor can be computed for given values of

c, p, and m. For c = 0.999 (i.e., 99.9%), p = 0.999,

and m = 5, g(c; p; m) is 23.54, and for m = 30, it is

5.43, i.e., it decreases with the number of data samples.

5. GIVE at the elected IGP is the sum of êIGP, maximum

tolerance error bound max (EIPP), and an allowance for

vertical ionospheric delay quantization q as:

GIVE ¼ maxðEIPPÞ þ êIGP þ q=2 ð16Þ

where q = 0.0625 m.

6. GIVEI is obtained from GIVE using the conversion

table specified by DO-229D.

Although ionospheric delay is very dynamic, the resid-

ual error between the estimate value and the real value is

relatively stable. Since GIVE is used to bound this residual

error, the dynamic characteristic of GIVE is not obvious.

Analysis of the above calculation process suggests it is

possible to draw a law similar to that obeyed by UDREI,

i.e., if the IGP has more visible IPPs, then it can get more

ionospheric delay, making the estimation of GIVEI more

accurate (Fang et al. 2013). Therefore, its value can be

attributed to the number of visible IPPs. In fact, this view is

reflected in many papers. Blanch (2002) points out that

‘‘integrity failures are more likely to happen when there are

few IPP measurements.’’ Juan et al. (2002) believe that in

regions well surrounded by IPP measurements, even in the

GEO Satellites

Read  Satellite 
Clock/Ephemeris 

Messages

Parse UDREI 
for each satellite

Relationship between UDREI and number of visible RIMSs  

RIMS  
Positions

Count number of visible RIMS for 
each satellite

Read Almanac

Calculate Satellites 
Positions

GPS Satelllites

Fig. 2 Flowchart of the statistics and analysis of UDREI
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most adverse ionosphere conditions, delay estimate can be

tightly bounded. Li et al. (2011) analyzed ionospheric

delay estimation residuals over China and found in the

central region of China where IPP measurements are suf-

ficient, the confidence bound are small, at 0.1 m or less,

while in the edge region where IPP measurements are

sparse, confidence bound can reach more than 0.4 m.

However, the above research only qualitatively revealed

the relationship between the GIVE and IPP measurements;

we will quantitatively analyze how the IPP measurements

affect GIVE values.

Practical measured data are processed to analyze the

relationship. The processing procedure includes the fol-

lowing four steps. First, based on the positions of the RIMS

and the satellite’s positions calculated using a satellite

almanac, the locations of the IPPs can be calculated. Sec-

ond, having derived the locations of the IPPs and given the

positions of the IGPs, the number of visible IPPs for each

IGP can be obtained. Third, based on the ionospheric

correction information, broadcast by the GEO satellites, the

GIVEI value of each IGP can be parsed. Finally, according

to the number of visible IPPs and the corresponding GIVEI

value for each IGP, the relationship between GIVEI and the

number of IPPs can be established. Given this relationship,

it would be possible to predict the GIVEI of an IGP at any

time, because the number of visible IPPs could be obtained

easily from a satellite almanac. The processing flow is

shown in Fig. 3.

Experiment and discussion

Currently, EGNOS has 39 operational RIMS and 287 IGPs,

which are distributed in four vertical bands (band 3, band 4,

band 5, and band 6) and one crosswise band (band 9). The

positions of all the RIMS and IGP are known precisely, as

shown in Fig. 4.

The broadcast data of EGNOS are available from

EGNOS data collection stations at ENAC University in

France. Here, 1 month of EGNOS data (December 1–30,

2014) were processed using the method presented above,

and the result of the statistical treatment of UDREI is

shown in Fig. 5.

It is evident from Fig. 5 that when the number of visible

RIMS is small, the value of UDREI is 14, which means

UDRE is not monitored. As the number of visible RIMS

increases, UDREI decreases. When the number of visible

RIMS reaches 32, the value of UDREI is 6.

The mean of UDREI for the same number of visible

RIMS is calculated. To ensure the integrity of the system,

the mean value is rounded up to be conservative; the results

are shown in Table 1.

The result of the statistical treatment of GIVEI is shown

in Fig. 6. It is obvious that when the number of visible IPPs

is small, the value of GIVEI is 15, which means GIVE is

not monitored. As the number of visible IPPs increases,

IGPs 
Positions

RIMS  
Positions

Count  number of visible IPP for each IGP 

Relationship between GIVEI and  number of visible IPPs

Read  Almanac

Satellites 
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GPS Satelllites

Calculate Positions Distribution of IPP

GEO Satellites
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Ionospheric
Correction 
Messages

Parse GIVEI for 
each IGP

Fig. 3 Flowchart of the statistics and analysis of GIVEI
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GIVEI decreases. When the number of visible IPPs reaches

15, the value of GIVEI is 8.

The mean of GIVEI for the same number of visible IPPs

is calculated. To ensure the integrity of the system, the

mean value is rounded up to be conservative; the results are

shown in Table 2.

Given the relationships shown in Tables 1 and 2, GIVEI

and UDREI can be predicted, which means it should be

possible to predict the standard deviation of the satellite

pseudorange measurement. Then, by combining the stan-

dard deviation with the geometry of the satellites, the

user’s VPL and HPL could be predicted. Furthermore, the

availability of the SBAS could also be obtained. Based on

the MATLAB Algorithm Availability Simulation Tool

(MAAST), which is the SBAS simulation tool developed

by GPSLAB of Stanford University (Jan et al. 2001), the

availability prediction algorithm presented above is simu-

lated. Prediction results for May 18, 2015, are shown in

Figs. 7, 9 and 11.

To verify these prediction results, they were compared

with maps (Figs. 8, 10 and 12) produced by ESSP, which is

an authoritative institution monitoring the actual perfor-

mance of EGNOS. It can be concluded that the prediction

results are consistent with the actual performance in the

central region, while a slight difference exists on the edge

of the region.

ESSP provided quantitative values of actual availability

so that further analysis could be undertaken. Figure 13

shows the difference between the actual and predicted

availabilities. Statistical analysis demonstrates that the

prediction is consistent with the actual performance over

72.28% of the region; it is smaller than the actual avail-

ability over 23.79% of the region and larger than the actual

availability over 3.93% of the region.

These results indicate that the predicted availability

conservatively reflects the actual availability. This means

that as long as the predicted availability meets the opera-

tional requirements, the SBAS could be used safely with a

probability of 96.07%.
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Table 2 Relationship between the number of visible IPPs and GIVEI

in EGNOS

Number of the

visible IPPs

GIVEI

value

Number of the

visible IPPs

GIVEI

value

0 15 6 11

1 15 7 11

2 14 8 10

3 14 9 10

4 13 10–14 9

5 12 C15 8

Table 1 Relationship between the number of visible RIMS and

UDREI in EGNOS

Number of the

visible RIMSs

UDREI

value

Number of the

visible RIMSs

UDREI

value

0–7 14 14 8

8 13 15 8

9 12 16 8

10 11 17 8

11 11 18 8

12 10 19–31 7

13 9 32–39 6
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Fig. 7 Predicted HPL on May 18, 2015. Different colors represent

different ranges of values as defined in color bar, e.g., the HPL of the

red area is between 30 and 40 m
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Fig. 8 Actual HPL on May 18, 2015. Different colors represent

different ranges of values in meters as defined in color bar

Fig. 10 Actual VPL on May 18, 2015

Fig. 12 Actual availability on May 18, 2015
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Fig. 13 Difference between the actual and predicted availabilities on

May 18, 2015. Different colors represent different ranges of values as

defined in color bar, e.g., in red area the prediction is 40% smaller

than the reality
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Fig. 9 Predicted VPL on May 18, 2015
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Improved availability prediction algorithm

In this section, an improved availability prediction algo-

rithm is proposed which mainly contains three aspects.

First, the necessity of data preprocessing is discussed and a

new sampling strategy is defined to ensure sample inde-

pendence. Second, considering the effect of geometry on

UDREI, S-GDOP is defined to distinguish different

geometries such that the relationship between the number

of visible RIMS and UDREI for different geometries could

be obtained. Third, with regard to the effect of geometry on

GIVEI, a weighted number of visible IPPs is defined to

describe the geometric distribution of the IPPs. Finally,

experiments are performed to evaluate the effectiveness of

the improved algorithm.

Independence of samples

As mentioned earlier, PL is the key indicator in predicting

SBAS availability. PL overbounds the positioning error,

which can be estimated using independent samples.

Therefore, to improve the accuracy of the prediction, the

independence of the samples must be guaranteed. How-

ever, in reality, the samples obtained are often not inde-

pendent (Hauschild and Montenbruck 2016) because of the

following two factors. First, the satellite ground trace

repeats each day. Taking GPS as an example, every 23 h

and 56 min, the relative position of the satellite and the

user will repeat. This means that the multipath error related

to the relative position has strong correlation in the adja-

cent time. It has been proven that variations in satellite

orbits and ground conditions can cause the multipath error

to become independent after 1 week (Shively et al. 2000).

Thus, 1 week is skipped between samples in the improved

algorithm. Second, when calculating the integrity param-

eters, the code measurements are smoothed with carrier

phase measurements in a complementary filter with a 100-s

time constant. Although this operation can effectively

reduce the receiver noise and multipath error, it makes the

adjacent pseudorange relevant. It is generally accepted that

samples should be spaced two time constants apart to

achieve acceptable independence (Luo et al. 2012). In

summary, a new sampling strategy is obtained, which

involves selecting 1 day each week and setting the sam-

pling interval to 200 s for the selected day.

Under the new sampling strategy, the mean of UDREI

for the same number of visible RIMS is calculated. To

ensure the integrity of the system, the mean value is

rounded up conservatively; the results are shown in

Table 3, which upgrades Table 1 considering the effect of

the independence of samples.

Then the mean of GIVEI for the same number of visible

IPPs is calculated. The mean value is also rounded up

conservatively to ensure the integrity of the system; the

results are shown in Table 4, which upgrades Table 2

considering the effect of the independence of samples.

Given the relationships shown in Tables 3 and 4, GIVEI

and UDREI can be predicted. Furthermore, the availability

of the SBAS can be obtained. The prediction performance

under the new sampling strategy is shown in Fig. 14, where

it is clear that the difference between the actual and pre-

dicted availabilities transits gently in the edge region, in

contrast to Fig. 13, which has noticeably sharper bound-

aries with the original sampling strategy. It means that the

deviation is reduced in the edge region and that the per-

formance of the prediction is improved under new sam-

pling strategy.

Effect of geometry on UDREI

The UDREI prediction algorithm presented above only

considers the number of RIMS, ignoring the effects of the

geometry between the RIMS and satellites. In fact, the

geometry has direct impact on the error distribution; thus, it

also influences UDREI (Pandya et al. 2000). As analyzed

earlier, UDREI has the following two characteristics: It

describes the UDRE of a single satellite, and it is calculated

using the pseudorange from a plurality of stations.

Before analyzing the impact of geometry, a variable

must be defined that can describe such multi-station versus

Table 3 Relationship between the number of visible RIMS and

UDREI in EGNOS considering sample independence

Number of the

visible RIMSs

UDREI

value

Number of the

visible RIMSs

UDREI

value

0–7 14 14 8

8 13 15 8

9 12 16 8

10 11 17 8

11 10 18 8

12 10 19–31 7

13 9 32–39 6

Table 4 Relationship between the number of visible IPPs and GIVEI

in EGNOS considering sample independence

Number of the

visible IPPs

GIVEI

value

Number of the

visible IPPs

GIVEI

value

0 15 6 11

1 15 7 11

2 14 8 10

3 13 9 10

4 12 10–18 9

5 12 C19 8
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mono-satellite geometry, denoted S-GDOP, which can be

defined as:

S� GDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11 þ G22 þ G33 þ G44

p
ð17Þ

G ¼ ðHTHÞ�1 ð18Þ

H ¼

l1 m1 n1 1

l2 m2 n2 1

..

. ..
. ..

. ..
.

ln mn n
n

1

2
6664

3
7775 ð19Þ

This description refers to the definition of GDOP, except

that the ith row of the observation matrix H here (i.e., [li mi

ni]), is the line-of-site vector from the ith RIMS to the

given satellite.

The correlation between UDREI and the number of

visible RIMS as well as the correlation between UDREI

and S-GDOP is analyzed (Fig. 15). It can be seen that

when UDREI has a peak, the number of visible RIMS

probably reaches a minimum and S-GDOP tends to be

larger. Quantitative analysis indicates that UDREI displays

strong correlation with the number of visible RIMS

(Pearson Correlation = -0.72, P = 0) and weak correla-

tion with S-GDOP (Pearson Correlation = 0.21,

P = 4 9 10-31). When analyzing the effect of geometry

on UDREI, two facts should be considered. The first is that

the significance level of S-GDOP is 4 9 10-31, which

means S-GDOP must be considered when predicting

UDREI. The second is that the Pearson Correlation of

S-GDOP is 0.21, which means S-GDOP is only a sec-

ondary factor; i.e., it is less important than the number of

visible RIMS. Based on these facts, a new prediction

algorithm is designed, where samples are grouped by

S-GDOP, and then UDREI is predicted separately for each

group using the traditional algorithm presented above. In

this case, samples whose deviation of S-GDOP is within

100 were classified as a group because these samples are

believed to have similar geometries.

Statistical analysis shows that when S-GDOP is small,

the geometry between the RIMS and satellites is good.

Consequently, the number of visible RIMS tends to be

sufficient and the UDREI is small accordingly. As S-GDOP

increases, the geometry deteriorates, making the number of

visible RIMS decreases and UDREI increases simultane-

ously. To demonstrate this feature, the relationship

between the number of visible RIMS and average of

UDREI in different geometries characterized by S-GDOP

is shown in Fig. 16. These curves generally display a

downward trend showing the impact of the number of

visible RIMS, and the different groups, characterized by

S-GDOP, have slightly different curves, characterizing the

impact of geometry. The tail of most curves is abnormal,

because when S-GDOP is large, the geometry between the
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RIMS and satellites is poor. Hence, the maximum number

of visible RIMS revealed in samples can no longer reach

40. In this situation, the predicted UDREI is set to 15 to

indicate ‘‘unmonitored.’’

To ensure the integrity of the system, the average of

UDREI is rounded up conservatively; the results are shown

in Fig. 17, which allows predicting UDREI with the given

position of satellites and RIMS. The prediction is carried

out through the following three steps: first, S-GDOP is

computed as defined in (17); then, a specific color curve is

selected according to the S-GDOP; finally, UDREI is

predicted according to the number of visible RIMS with the

selected curve.

Figure 18 shows consistency, i.e., the percentage of the

area where the prediction is consistent with the reality, as a

function of number of groups. The consistency between the

prediction and reality is chosen as an indicator for evalu-

ating the performance of the algorithm for different num-

bers of groups. For a larger number of groups, geometry is

considered more adequately because the deviation of

S-GDOP in each group becomes less. However, it does

increase the complexity of the algorithm because more

prediction curves need to be analyzed. In the meanwhile,

an increase in the number of groups means a reduction in

the number of samples within a single group, which could

diminish the credibility of the statistical results. The fig-

ure shows that when the number of groups is small, an

increase in that number improves the consistency signifi-

cantly. When the number reaches three, the consistency

tends to vary slightly with a further increase in the number

of groups. When the number of groups reaches five, opti-

mum consistency is achieved, which means the geometry

has been considered adequately. If the number of groups is

increased further, the consistency declines because

overfitting magnifies the influence of accidental errors

(Hawkins 2004). In our research, the number of groups is

set to five, which is based on the result of the analyses

shown in the figure.

Effect of geometry on GIVEI

As discussed above, GIVEI has been modeled as a function

of the number of visible IPPs, denoted N. This count can

capture approximately the law of change for GIVEI.

However, it omits the details of the geometric distribution

of the IPPs. It is obvious that an IPP closer to the IGP

contributes more when calculating GIVEI than one further

away. According to the Triangular Interpolation (TRIN)

model (Mannucci et al. 1993) adopted by EGNOS (Trilles

et al. 2015), when interpolating the ionospheric delay of the
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IGP, inverse-distance weighting is believed to roughly

weigh each IPP’s contribution to the generation of GIVEI.

Thus, a weighted number of visible IPPs, denoted Nweighted,

is defined as:

Nweighted ¼
X
i

C

di
ð20Þ

where the summation goes over the visible IPPs, di is the

distance between the ith IPP and the IGP, and C is the

constant distance between the IGP and the selected IPP

whose weight is 1.

The relationship between the weighted number of visible

IPPs and GIVEI is shown in Fig. 19. The top panel reveals

the relationship between this number and the average of

GIVEI. To ensure the integrity of the system, the average of

GIVEI is rounded up conservatively; the results are shown

in the bottom panel. The curve is believed to better predict

GIVEI than Table 2, because it considers the details of the

geometric distribution of the IPPs.

Performance of improved algorithm

With the improved algorithm, the predicted PL and avail-

ability are obtained. Quantitative analysis of the improved

algorithm is shown in Fig. 20. The statistical analysis of

the difference demonstrates that the prediction is consistent

with the actual performance over 75.17% of the region; it is

smaller than the actual availability over 22.14% of the

region, and it is larger than the actual availability over

2.69% of the region. In particular, when focusing on

Region I, shown by the red box in the figure (longitude

-10� to 16�, latitude 37�–58�), the consistency can be up

to 100%. This can be explained by the geometric distri-

bution of RIMS. Apparently, the RIMS distribution in

Region I is uniform, whereas in the edge regions, where the

performance of the prediction algorithm is poor, the RIMS

distribution is deficient.

The core of the prediction model is to obtain the number

of visible RIMS and the number of visible IPPs. The height

of the ionospheric spherical shell is so low in comparison

with the height of the satellite that the geometric distri-

bution of the IPPs can be approximately characterized by

the geometric distribution of RIMS. Therefore, it is rea-

sonable that the performance of the prediction algorithm is

highly correlated with the geometric distribution of RIMS.

To analyze this phenomenon quantitatively, two indicators

that describe the geometric distribution of RIMS are

defined. The first is the number of RIMS per unit area,

denoted Nwrs, which is defined as:

Nwrs ¼
Narea

S0
¼ Narea

Sarea=Stotal
ð21Þ

where Narea is the number of RIMS in the given area, Sarea is

the proportion of the given area, Stotal is the proportion of

Europe, and S0 is the normalized proportion of the given area.

The second indicator is the average distance of the total

station pairs, which is an assembly consisting of any two

stations, in the given area, and denoted Dpairs, which is

defined as:
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Fig. 20 Difference between the actual and predicted availabilities

with the improved algorithm. Region I is shown by the red box

(longitude -10� to 16�, latitude 37�–58�); Region II is shown by the

purple box (longitude -18� to 25�, latitude 33�–65�); Region III is

shown by the black box (longitude -23� to 32�, latitude 30�–68�)
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Dpairs ¼
PN

i¼1 di

N
ð22Þ

where di is the distance of the ith station pair, and N is the

total number of possible station pairs.

The performance of the improved algorithm in different

regions is shown in Table 5. It is evident that if Nwrs is large

andDpairs is small, the geometric distribution of RIMS tends

to be good, making the prediction more precise (Yun 2015).

Conclusions

The aim of this research was to investigate a simplified

method for predicting SBAS availability, given the intense

computation and poor timeliness of the traditional algo-

rithms specified in DO-229D. Our contribution is as fol-

lows. First, the relationship between UDREI and number of

visible RIMS and between GIVEI and number of visible

IPPs was established through statistical analysis of EGNOS

data. Second, considering the effect of geometry, the

relationship was optimized for application with different

geometries. Given the relationship, a simplified calculation

of PL was demonstrated.

Finally, experiments were performed to evaluate the

effectiveness of the proposed method. Using the proposed

method, in Region II, where Nwrs is 45.78 and Dpairs is

1.62 9 106, the consistency between the predicted and

actual availabilities reached 95.16%. With improvement of

the geometric distribution of RIMS in the given area, the

performance of the prediction becomes even better. In

particular, when the application range of the prediction

algorithm is limited to Region I, where Nwrs is 75.00 and

Dpairs is 1.29 9 106, indicating a uniform distribution of

RIMS, the consistency reached 100%. Moreover, the pre-

diction method proposed in this work could be extended

easily to other SBAS systems. This research may provide

BeiDou satellite-based augmentation systems with theo-

retical and technical guidance, particularly in the layout of

its ground stations and design of ionospheric grid.

It must be acknowledged that the performance of the

prediction algorithm over the entire European region is not

that satisfactory (75.17%). The lack of RIMS at the edges of

the region is the main reason for this problem, i.e., the

scarcity of a priori information results in inaccuracy of the

prediction algorithm. In terms of the presented

methodology, we only considered the mean of the integrity

parameters to make the predictions, ignoring the impact of

variance, which might cause a difference between the pre-

diction and the actual performance. Quantitative analysis of

the effect of variance should be addressed with respect to

the integrity of the prediction, which was not the focus here.

Furthermore, the inverse-distance weighting regarding the

prediction of GIVEI may be optimized by a Kalman Filter

to adapt to different SBASs. Then PL at each epoch, which

is not public, needs to be provided. Finally, we set the

elevation mask angle to 5� to determine whether a satellite

was visible, which might be impractical. This will be con-

sidered in future work as long as access to real geographic

information on the EGNOS RIMS is available. However, it

might be considered worth sacrificing some degree of

accuracy in exchange for improved predictability.
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