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Abstract The equivalent bandwidth of a Kalman filter

(KF) tracking loop for a Global Navigation Satellite Sys-

tem receiver is widely used to compare the performance of

the KF with that of the traditional phase lock loop (PLL),

but the existing literature does not adequately describe why

they are comparable in terms of the equivalent bandwidth.

The literature does neither address how the factors,

including the line-of-sight (LOS) jerk, the local oscillator

error, and the measurement noise, impact on the perfor-

mance of the KF. Furthermore, there is no the rule-of-

thumb threshold for the KF up to now. We prove that the

steady KF is equivalent to a 3rd-order PLL in the sense of

the minimum covariance in the continuous KF form, which

makes it possible to compare the KF and the PLL loops in

terms of the equivalent bandwidth. The factors that impact

the performance of the KF are further investigated by error

budgeting and suboptimal analysis. The analysis results

show that the oscillator error, the LOS jerk, and the mea-

surement error affect the steady KF error significantly

while the initial state covariance has little effect on the

convergence of the KF. A rule-of-thumb threshold for the

KF, which is determined by the root mean squares of the

loop thermal noise and the dynamic stress noise, is pre-

sented by analyzing the counterpart for the PLL. Four KF

tracking loops are designed upon the proposed rule-of-

thumb analysis, which are further validated by the Monte

Carlo simulations.

Keywords Kalman filter � Wiener filter � Phase lock loop �
GPS � GNSS

Introduction

The traditional carrier phase tracking loops, such as the phase

lock loop (PLL), are designed in the frequency domain for a

Global Navigation Satellite System (GNSS) receiver. The

parameters of the PLL can be determined by the theory of

Wiener filter (WF) (Jaffe and Rechtin 1955). The PLL has

been widely employed in the GNSS receiver (Ward et al.

2006). However, it is a challenge for the PLL to keep lock-in

when a receiver is in a high dynamic environment or the

signals are very weak (Jwo 2001). To keep tracking the

GNSS signals in such situations, a Kalman filter (KF) carrier

phase tracking loop has been proposed. Psiaki (2001a, b)

designed a KF to estimate the attitude of a turntable and a

Kalman smoother to track the received global positioning

system (GPS) signal. Later, the KF was applied to track the

weak GNSS signals (Psiaki and Jung 2002; Ziedan and

Garrison 2003). Meanwhile, the various KFs were imple-

mented in the cascaded vector tracking receivers to track the

high dynamic GNSS signals (Petovello and Lachapelle

2006; Won et al. 2009). For example, the I/Q outputs were

treated as the pre-filtering measurements of white noises

with the nonlinear measurement equations. This imple-

mentation can improve the receiver accuracy. In other

implementations, the discriminator outputs were treated as

the pre-filtering measurements with the linear measurement

equations, but of non-white measurement noises. Under the

assumption of quasi-Gaussian distribution, a robust imple-

mentation can be achieved.

Since both the PLL and the KF can be applied in the

GNSS tracking loops, it is worthwhile to compare the two

& Kedong Wang

wangkd@buaa.edu.cn

1 School of Astronautics, Beihang University, Beijing 100191,

China

2 School of Civil and Environmental Engineering, University

of New South Wales, Sydney, NSW 2052, Australia

123

GPS Solut (2017) 21:551–559

DOI 10.1007/s10291-016-0546-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s10291-016-0546-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10291-016-0546-9&amp;domain=pdf


tracking methods numerically. A steady KF can be

equivalent to a filter in the frequency domain so that the

equivalent noise bandwidth can be obtained, which makes

the KF and the PLL comparable by their noise bandwidths

(O’Driscoll and Lachapelle 2009). Salem et al. (2012)

proposed an experimental method to design an equivalent

PLL for a given extended Kalman filter (EKF). Patapoutian

(1999) deduced the equivalent 2nd-order PLL of a steady

KF. However, the equivalence of the general 3rd-order

PLL to a steady KF has not been investigated yet. More-

over, the factors that affect the performance of the KF also

need to be sorted out.

For the traditional tracking loops, the rule-of-thumb

analysis method that was verified by the Monte Carlo

simulations had been widely applied to design the loops

(Ward et al. 2006; Ward 1997). However, there is no

counterpart in the field of the KF tracking loop in the lit-

erature. Therefore, the rule-of-thumb analysis method for

the KF tracking loop is presented.

We address the problems mentioned above. It proves the

equivalence of the 3rd-order PLL and the steady KF, which

makes the PLL and the KF loops comparable. The factors

impacting the performance of the KF tracking loop are

investigated, which can guide in tuning the KF for better

performance. The rule-of-thumb threshold for the KF

tracking loop is calculated upon the covariance analysis of

the suboptimal KF. The method is verified by the Monte

Carlo simulations.

KF tracking model

The continuous and the discrete models for the KF tracking

loops are presented in this section. Similar models with the

different states can be found in the literature (O’Driscoll

and Petovello 2011). The continuous model is to prove the

equivalence of the steady KF tracking to the traditional

one, and the discrete model is to investigate the impact of

some factors on the KF tracking quantitatively.

Continuous model

The system equations can be modeled as,

_x tð Þ ¼ Fx tð Þ þGw tð Þ ð1Þ

where the state vector x tð Þ ¼ D/ Dx Da½ �T is the

errors of carrier phase, carrier frequency, and carrier fre-

quency rate, respectively; F is the state dynamics matrix,

given by,

F ¼
0 1 0

0 0 1

0 0 0

2
4

3
5 ð2Þ

G is the process noise matrix; and w tð Þ is the process noise.
If the effect of the receiver oscillator and the line-of-

sight (LOS) jerk is taken into account,

w tð Þ ¼ ½wb wd wa �T, where wb, wd, and wa are the zero-

mean white noises with the power spectral density (PSD)

of qb, qd, and qa, respectively. With the known Allan

parameters of the receiver oscillator noise, qb and qd can be

written as (Brown and Hwang 2012),

qb ¼
h0

2

qd ¼ 2p2h�2

ð3Þ

where h0 and h-2 are the Allan parameters. Their typical

values of the temperature-compensated crystal oscillator

(TCXO) and oven-controlled crystal oscillator (OCXO) are

listed in Table 1 (Brown and Hwang 2012).

The value of qa can be determined by the LOS jerk

(Salem 2012). The process noise matrix G is written as,

G ¼ diag xrf xrf xrf

�
c

� �
ð4Þ

where xrf is the nominal frequency of the carrier, for the

GPS L1, xrf ¼ 2p� 1575:42� 106 rad=s; c ¼
2:99792458� 108 m=s is the speed of light in vacuum

space; and diag �½ � denotes the diagonal matrix. The process

noise covariance is,

Q ¼ E GwwTGT
� �

¼ diag x2
rf qb x2

rf qd x2
rf qa

.
c2

h i

ð5Þ

where E xð Þ is the expectation of x. Equations (1)–(5) form

the system model of the KF.

The measurement equation is written as,

z tð Þ ¼ ~/ ¼ Hx tð Þ þ v tð Þ ð6Þ

where ~/ is the output of a Costas phase discriminator,

H ¼ 1 0 0½ �, v(t) is a zero-mean white noise with the

PSD of r/
2T, and T is the coherent integration period. The

measurement noise covariance is,

R ¼ E v2 tð Þ
� �

¼ r2/T

r2/ ¼ 1

2c=n0T
1þ 1

2c=n0T

� � ð7Þ

Table 1 Allan parameters of TCXO and OCXO

Oscillator type h0 (s) h-2 (Hz)

TCXO 2 9 10-19 3 9 10-20

OCXO 2 9 10-25 6 9 10-25
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where

c=n0 ¼ 10
C=N0ð ÞdB�Hz

10

and C/N0 are the carrier-to-noise ratio expressed in Hz and

in dB-Hz, respectively.

Discrete model

The discrete state equations can be obtained from (1) as

follows (Psiaki and Jung 2002),

xkþ1 ¼ Uxk þ Ckwk ð8Þ

where xk is the value of x at k time and

xk ¼ D/k Dxk Dak½ �T; the state transition matrix U is,

U ¼
1 T T2

�
2

0 1 T

0 0 0

2
4

3
5 ð9Þ

and the process noise covariance Qk is,

Qk ¼ CkE wkw
T
k

� �
CT
k

¼ xrf

c

� �2

qa

T5
�
20 T4

�
8 T3

�
6

T4
�
8 T3

�
3 T2

�
2

T3
�
6 T2

�
2 T

2
64

3
75

þ x2
rf qd

T3
�
3 T2

�
2 0

T2
�
2 T 0

0 0 0

2
64

3
75þ x2

rf qb

T 0 0

0 0 0

0 0 0

2
64

3
75

ð10Þ

where wk and Ck are the discrete process noise and its

matrix, respectively.

The measurement equation is,

zk ¼ Hkxk þ vk ð11Þ

where zk is the output of a Costas phase discriminator, vk a

zero-mean white noise with the variance Rk = r/
2 , and

Hk ¼ 1 �T=2 T2
�
6

� �
:

Equivalence of the steady KF tracking
to the traditional tracking

If only the LOS jerk is taken into account and the oscillator

noise is neglected, Q in (5) will be simplified as,

Q ¼ diag 0 0 Q½ � ð12Þ

where Q ¼ x2
rf qa

.
c2. The Riccati equation (Gelb 1974)

for a continuous KF is,

_P ¼ FPþ PFT þQ� PHTHPR�1 ð13Þ

and the gain matrix is,

K ¼ PHTR�1 ð14Þ

The steady covariance and its gain matrix can be derived

from (12) to (14) as below (Jwo 2001).

P1 ¼
2Q1=6R5=6 2Q1=3R2=3 Q1=2R1=2

2Q1=3R2=3 3Q1=2R1=2 2Q2=3R1=3

2Q1=3R2=3 2Q2=3R1=3 2Q5=6R1=6

2
4

3
5 ð15Þ

K1 ¼
2 Q=Rð Þ1=6

2 Q=Rð Þ1=3

Q=Rð Þ1=2

2
64

3
75 ¼

2xn

2x2
n

x3
n

2
4

3
5 ð16Þ

where xn = (Q/QR.R)1/6. The corresponding transfer

function H(s) to the steady KF is,

H sð Þ ¼ 2xns
2 þ 2x2

nsþ x3
n

s3 þ 2xns2 þ 2x2
nsþ x3

n

ð17Þ

Equations (15)–(17) are the same as the model of the tra-

ditional third-order PLL (Jaffe and Rechtin 1955). How-

ever, the PLL is the closed-form quasi-optimal filter

derived from the WF. Hence, the following remarks can be

made:

1. The steady KF is equivalent to the PLL based on the

WF, which makes the KF and the PLL comparable.

2. The KF has a better transient and dynamic perfor-

mance than the PLL although they have the same level

of the steady accuracy.

3. Although it is a trade-off in the KF design between

the improvement of the dynamic range of the tracking

loop and the mitigation of the tracking loop noise, the

time-variant gain matrix of the KF is similar to the

adaptive bandwidth of the traditional tracking loop

(Won et al. 2012). Hence, a well-designed KF will

have a larger dynamic range and higher sensitivity

than a traditional PLL (Tang et al. 2013; Won and

Eissfeller 2013).

4. Both Q and R impact on the state estimation accuracy

according to (15), which is not as reported in Tang

et al. (2014) that Q has no effect on the estimation

accuracy of the carrier phase and the carrier

frequency.

If taking into account both the LOS jerk and the oscil-

lator noise, the steady gain matrix can be similarly derived

as,

K1 ¼ k
1

2
k2 � qb
	 
 ffiffiffiffiffi

qa
p

� 
T
ð18Þ

where k[
ffiffiffiffiffi
qb

p
is a positive real root of the quartic

equation,

GPS Solut (2017) 21:551–559 553

123



k2 � qb
	 
2�8

ffiffiffiffiffi
qa

p
k� 4qd ¼ 0 ð19Þ

and

qa ¼
x2

rf qa

c2r2/T

qd ¼
x2

rf qd

r2/T

qb ¼
x2

rf qb

r2/T

ð20Þ

Equations (18)–(20) are the same as those of the traditional

tracking loop derived from the WF (O’Driscoll and Peto-

vello 2011). Hence, the aforementioned remarks on the KF

and the traditional PLL still hold.

Factors impacting the KF tracking

In order to numerically evaluate the effect of the factors on

the performance of the KF tracking loop, a covariance

analysis can be made on the discrete KF model by simu-

lations. Both error budgeting and suboptimal analysis are

conducted herein. Figure 1 depicts the flowchart of the

analyses.

In Fig. 1, the superscripts ‘?’ and ‘-’ denote the values

after and before the measurement updating. The superscript

‘*’ denotes the designed KF parameters. As long as the

values of C/N0, qb, qd, and qa are determined, R�
k and Q�

k

can be calculated by (7), (10), and (11) accordingly. Then,

the KF for the tracking loop can be designed. K�
k , which is

used to calculate the covariance matrix M in the following

analysis, is the gain matrix of the designed KF. If the

values of Rk, Qk, and P�
0 are different from those of R�

k ,

Q�
k , and P��

0 , both Pk and Mk are suboptimal in Fig. 1. For

example, the KF for the carrier tracking loop is designed to

meet the requirement of the lowest value of C/N0 but the

received signals in applications are not always so weak that

the KF is suboptimal. It should be noted that M is linear

with R, Q, and M�
0 when K�

k is determined. Hence, the

impact of the factors (such as Q) and their components

(such as qa) on the performance of the KF can be inves-

tigated independently (Farrell 2008).

In the following analysis, the first diagonal element of

Mþ
k is assumed as the variance of D/k, rD/

2 . Both the

transient and the steady values of rD/ will be studied in the

Fig. 1 Flowchart of

performance analysis in

simulations
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error budgeting analysis, while only the steady value of

rD/ will be studied in the suboptimal analysis.

Error budgeting analysis

Figure 2 depicts the transient process of rD/ with the

factors. The simulation conditions are given that

P��
0 = diag[(2p)2 (2p 9 1000)2 0], T = 0.02 s, C/

N0 = 35 dB-Hz, the parameters in Table 1 are used,

qa = (0.2)2m2/s5, and the total simulation time is 1 s. In the

figure, P��
0 contributes the most to rD/ at first, but its

contribution decays so quickly that its effect can be

neglected after several iterations. The contributions of the

other four factors, qb, qd, qa, and Rk, to rD/ keep increasing

with the number of iterations, but they become stable after

0.5 s. Since the OCXO parameters are used in Fig. 2 (top),

the impact of qb and qd on rD/ is less than that of qa and Rk

on rD/, but the contribution of qb and qd to rD/ increases

significantly in Fig. 2 (bottom) since the TCXO parameters

are used. Hence, it is helpful to reduce the steady value of

rD/ by improving the accuracy of the local oscillator and

reducing the LOS jerk and the measurement noise.

In the following, the effect of the LOS jerk and C/N0 on

the steady value of rD/ will be explored further by

simulations. Since the effect of P��
0 on the steady value of

rD/ can be neglected, it is assumed that P��
0 ¼ 03�3 in the

simulations. The value of C/N0 will be 25 dB-Hz or 45 dB-

Hz and that of qa will be (0.001 g/s)2/Hz or (30 g/s)2/Hz.

The OCXO parameters are used herein. The other simu-

lation conditions are the same as above. Figure 3 depicts

the steady value of rD/ and the contributions of the factors.

The abscissa shows the test cases 1–4 in the simulations.

The simulation conditions corresponding to the four cases

are listed in Table 2. This table lists the percentages of the

errors due to the factors in the steady value of rD/
2 . It is

similar to the above simulations that the effect of OCXO on

the steady value of rD/ is very limited while both the LOS

jerk and Rk play the important role in the steady value of

rD/. As expected, the steady value of rD/ is the largest

when the value of C/N0 is small and that of qa is large; on

the contrary, the steady value of rD/ is the smallest when

the value of C/N0 is large and that of qa is small. In the

former three cases, Rk contributes more to the steady value

of rD/ than qa. However, in the fourth case, qa contributes

more to the steady value of rD/ than Rk on the contrary.

Hence, it is more efficient to reduce the steady value of rD/
by reducing the value of Rk in the former three cases, while

it is more efficient by reducing the value of qa in the fourth

case.

Suboptimal analysis

As mentioned above, the designed KF will be suboptimal if

the actual values of its parameters in applications are not

the same as their designed. Herein, the performance of the

designed KF is compared with that of the optimal KF. The

total carrier phase error rD/ with C/N0 is depicted in Fig. 4.

rD/ with the LOS jerk is depicted in Fig. 5, where the

results of the designed KF and the optimal KF are shown in

the lines with circles and with asterisks, respectively. In the

optimal KF, the actual values of Qk and Rk are used. As

Fig. 2 Impact of the factors on the transient process of rD/ with

OCXO (top) and TCXO (bottom). The solid line, the dash line, the

plus sign line, the dot line, and the point line indicate the errors

derived by the oscillator noise PSDs qb and qd, the LOS jerk PSD qa,

the measurement noise variance R, and P0, respectively

Fig. 3 Steady value of rD/ and the contributions of the factors. The

dark blue, the dark cyan, and the yellow parts represent the errors

derived by qb ? qd, qa, and R, respectively
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shown in Figs. 4 and 5, in addition to the design point

where the designed KF has the same performance as the

optimal KF (because the designed KF is optimal at this

point), on the other points the designed KF has a poorer

performance. The optimal KF is slightly more sensitive

than the designed KF in Fig. 4. In Fig. 5, the designed KF

loses its lock of the signals when the LOS jerk is greater

than 27 g/s, while the optimal KF can still keep in lock of

the signals even with a LOS jerk more than 100 g/s. Hence,

it aims to estimate Qk and Rk in real time as accurate as

possible for the KF-based tracking loop.

Rule-of-thumb analysis method for the tracking
loops

The rule-of-thumb analysis method is an indispensable tool

for the traditional tracking loop design. A similar rule-of-

thumb analysis method is proposed for the KF-based

tracking loop design. Two methods are presented

hereinafter.

Rule-of-thumb PLL analysis method

The 3-sigma rule-of-thumb threshold for a PLL tracking

loop with a Costas discriminator to keep lock-in is (Ward

et al. 2006),

3rPLL ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2PLLt þ r2mi þ r2A

q
þ he � 45	 ð21Þ

where rPLLt is the PLL thermal noise, rmi is the vibration-

induced oscillator jitter, rA is the Allan variance-induced

oscillator jitter, and he is the dynamic stress error. If the

oscillator-related noises are neglected, Eq. (21) can be

simplified as

rPLL ¼ rPLLt þ he=3� 15	 ð22Þ

In (22), the PLL thermal noise and the oscillator-related

noises are treated as random noises while the dynamic

stress error is assumed as a bias. Hence, the root mean

square (RMS) of the noise is added with the bias in (22).

However, if the dynamic stress error is a random noise

rather than a bias (Ward 1998), Eq. (22) should be modi-

fied accordingly, which is the case encountered in the KF.

Rule-of-thumb KF tracking analysis method

In theKF, the dynamic stress error ismodeled as awhite noise.

As mentioned above, the dynamic stress error should also be

taken into account of the RMS threshold since the thermal

noise and the oscillator-related noises are random too. Hence,

the 1-sigma rule-of-thumb threshold for the KF is,

rD/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2D/KFt

þ r2D/Et

q
� 15	 ð23Þ

where rD/KFt
and rD/Et

represent the KF thermal noise and

the dynamic stress noise, respectively. The oscillator-re-

lated noises are neglected in (23).

Fig. 4 Carrier phase uncertainty rD/ versus C/N0 with the jerk of

10 g/s. The asterisk and the circle curves depict the performances of

the optimal filter with the actual C/N0 and the designed filter with

C=N0 ¼ 30 dB - Hz, respectively

Fig. 5 Carrier phase uncertainty rD/ versus jerk

(C=N0 ¼ 35 dB - Hz). The asterisk and the circle curves depict the

optimal filter with the actual jerk and the designed filter with the jerk

of 10 g/s, respectively

Table 2 Percentages of the

errors due to the factors in rD/
2 Test cases Factors qb, qd (%) qa (%) Rk (%)

C/N0 (dB-Hz) qa ((g/s)
2/Hz)

1 25 1 9 10-6 \1 4 95

2 25 900 \1 25 74

3 45 1 9 10-6 2 15 83

4 45 900 \1 84 15
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Simulations

In order to validate the proposed rule-of-thumb analysis

method for the KF, four KF-based tracking loops are

designed with the conditions listed in Table 3 in the sim-

ulations. Filters 1 and 4 are suitable for tracking weak

GNSS signals and high dynamic GNSS signals, respec-

tively. The performances of Filters 2 and 3 are in the

middle between Filters 1 and 4.

Figure 6 depicts the estimated phase jitter of the four

filters according to the proposed rule-of-thumb analysis

with C/N0 in the range from 15 to 35 dB-Hz. The level line

is the threshold for the four filters according to (23). In the

figure, the loss-of-lock thresholds for the four filters are

15.8, 19.0, 22.6, and 26.6 dB-Hz, respectively.

In order to assess the proposed method, the following

Monte Carlo simulations are performed. As an example,

the trajectory with the maximum jerk of 10 g/s for Filter 4

is shown in Fig. 7, where the range of C/N0 is from 15 to

30 dB-Hz. The trajectories for Filters 1, 2, and 3 are similar

but of the maximum jerks of 0.01, 0.1, and 1 g/s, respec-

tively. The code loop is a first-order DLL with the band-

width of 0.8 Hz for all the four tracking loops. The DLL is

aided by the KF-based carrier tracking loop. The cos (2d/)
carrier phase lock detector (Van Dierendonck 1996) is

used, and its output is smoothed by a low-pass filter. The

simulation is run 100 times for each value of C/N0 to

acquire the probability of tracking. The probability

threshold for the filters is set as 50 %. The simulation with

100 runs can acquire the confidence of 90 % statistically

(Brown and Hwang 2012), which can make the simulation

result comparable to the benchmark of the traditional

loops, e.g., Ward (1997, 1998).

Figure 8 depicts the probability of tracking for the four

designed filters. The level line is the probability threshold

of tracking 50 %. As shown in the figure, the filters can

always track the GNSS signals with a high C/N0. However,

the filters completely lose their lock of the signals with a

very low C/N0. The rule-of-thumb thresholds in Fig. 6 and

the Monte Carlo simulations in Fig. 8 are summarized in

Table 4, which shows that the proposed rule-of-thumb

analysis for the KF is valid. The rule-of-thumb thresholds

are coincided with the simulation thresholds for Filters 2, 3,

and 4, but the two thresholds for Filter 1 have a difference

as large as 2.1 dB-Hz. The reason is that such weak GNSS

signals lead to a very noisy phase lock detector that cannot

detect the tracking status successfully (Jin et al. 2013).

Fig. 6 Carrier phase uncertainty rD/ versus C/N0. The level line is

the threshold of 15�. The curves depict the performances of the filters

using the rule-of-thumb KF tracking analysis method

Fig. 7 Dynamic trajectory with the maximum jerk of 10 g/s for Filter

4 Monte Carlo simulations

Fig. 8 Probability of tracking by the Monte Carlo simulations. The

level line is the probability of 50 %

Table 3 Parameters for the four designed KF tracking loops

Filters The LOS jerk (g/s) C/N0 (dB-Hz)

Filter 1 0.01 20

Filter 2 0.1 25

Filter 3 1 30

Filter 4 10 35
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Conclusions

Both the continuous and the discrete models are presented

to investigate the impact of the LOS jerk, the oscillator

error, and the measurement error on the performance of the

KF-based tracking loop. The derivation of the continuous

model proves that the steady KF is equivalent to the PLL,

which makes the PLL and the KF comparable. The simu-

lation results show that the oscillator error, the LOS jerk,

and the measurement error affect the steady tracking error

significantly while the impact of P�
0 on the value of rD/

attenuates quickly. If an accurate oscillator, such as an

OCXO, is used, the effect of the oscillator error on the

steady value of rD/ is very limited. It is necessary to

reduce the measurement noise and/or the receiver dynam-

ics to improve the KF accuracy, which is similar to the

requirements of the traditional tracking loop. However, the

KF outperforms the equivalent PLL since its time-variant

gain matrix is adaptive. The rule-of-thumb analysis method

for a KF tracking loop is proposed further. The dynamic

stress error and the thermal noise are taken into account of

the total carrier phase error in the rule-of-thumb threshold

for the KF. The Monte Carlo simulations have validated

the rule-of-thumb analysis method.
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