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Abstract Integration of the global positioning system

(GPS) with inertial navigation system (INS) has been very

intensively studied and widely applied in recent years.

Conventional GPS/INS integrated systems that receive

pseudorange and Doppler observations can only attain

meter-scale accuracy. An INS has also been integrated with

double-differenced GPS measurements that remove GPS

errors, although this increases system cost. Following the

availability of real-time precise orbit and clock products, a

precise point positioning PPP/INS tightly coupled naviga-

tion system is presented here. Because various types of

measurements such as pseudorange, carrier phase and

Doppler are available, an adaptive federated filter method

is proposed and applied to the PPP/INS integrated system

to improve filter efficiency and adaptivity. Provided that

the federated local filter and the adaptive filter are equiv-

alent in form, an information allocation factor in the fed-

erated filter is constructed based on the adaptive filter

factor. Simulation analyses for different INS grades show

that the tactical grade INS can provide higher initial value

accuracy for PPP. An experiment was performed to vali-

date the new algorithm, and the results indicate that the

INS can improve PPP accuracy, especially under chal-

lenging positioning conditions. PPP solution accuracy in

the east, north and down components can improve by 45,

47 and 24 %, respectively, during partial GPS satellite

blockages. The resolution accuracy of the proposed adap-

tive federated filter is similar to that of a centralized Kal-

man filter. The proposed method can also realize parallel

filter computing and remove the influence of dynamic

model errors.

Keywords PPP � INS � Adaptive � Federated filter �
Tightly coupled navigation

Introduction

Integration of the global positioning system (GPS) with

inertial navigation system (INS) is becoming increasingly

popular because of the variety of high-precision navigation

information that integration allows. This integration pro-

cess has been investigated over recent decades for different

application areas, ranging from military to agriculture

applications. In the GPS/INS integrated system, the GPS

provides accurate position and velocity information over

longer periods, while the INS provides accurate position,

velocity and attitude information in the short term. It is

difficult to use GPS alone for positioning in many envi-

ronments because of the system’s vulnerability to signal

blockage. In contrast, an INS is a self-contained system

without external signal requirements. It is clear that inte-

gration of GPS and INS can deliver enhanced performance

when compared to that of the individual systems (Nassar

and El-Sheimy 2006). Several strategies can be used for

GPS and INS integration. In the loose integration strategy,

the GPS-derived position and velocity are differenced with

the corresponding INS-derived position and velocity. The

integration filter then processes the position and velocity

differences between the systems to estimate the error states

and outputs the corrected solutions. In contrast to the loose

integration strategy, both the raw GPS measurements, such

as the pseudorange, carrier phase and Doppler measure-

ments, and the INS data are processed centrally in a single
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common filter in the tight integration strategy. In the deep/

ultra-tight integration strategy, the GPS updates are used to

calibrate the INS, while the INS is used to assist the GPS

receiver tracking loops during periods of interference or

under degraded signal conditions.

PPP/INS integrated navigation

Recently, precise point positioning (PPP) has been devel-

oped using undifferenced carrier phase and pseudorange

observations to obtain centimeter positions in static mode,

after precise orbit and clock products became available

(Kouba and Héroux 2001). PPP technology offered an

opportunity for integrating undifferenced GPS observation

with an inertial measurement unit (IMU) for precise posi-

tion, velocity and attitude determination. The PPP tech-

nology could obtain the same high-grade position

information as conventional differential GPS, but the PPP

solution was slow to converge, requiring a period of more

than 30 min. Integration of the PPP with the INS in the

tightly coupled configuration would mean that resolution

could be significantly improved after loss of lock (Roesler

and Martell 2009). Inertially aided PPP can provide more

robust positioning accuracy during global navigation

satellite system (GNSS) outages (Shin and Scherzinger

2009). Partial and complete GNSS outages were simulated

in an airborne survey situation to demonstrate the robust-

ness of the system. Inertially aided PPP could navigate

through the partial GPS outages without significant per-

formance degradation. When the outage durations were

\30 s, inertially aided PPP was still able to produce the

decimeter-level accuracy expected of PPP technology. An

integrated undifferenced GPS/microelectromechanical

systems (MEMS) IMU system was developed and obtained

horizontal and vertical position accuracies of 0.3 and

0.4 m, respectively (Du and Gao 2010). With assistance

from the INS, cycle slip detection and repair methods with

the IMU were proposed for the undifferenced GPS/MEMS

INS integrated system. These methods can efficiently

detect and identify cycle slips and subsequently increase

the navigation accuracy of the integrated system (Du and

Gao 2012). A new integrated navigation system was

developed that integrated between-satellites single-differ-

ence (BSSD) PPP with a low-cost MEMS sensor-based

inertial system. Decimeter-scale positioning accuracy

could be achieved with undifferenced and BSSD integrated

systems. However, in general, greater positioning accuracy

was obtained using the BSSD integrated system (Rabbou

and El-Rabbany 2015). A tight integration model of

ambiguity-fixed PPP and INS is established by Liu et al.

(2015). The ambiguity-fixed PPP/INS integration is able to

reach stable centimeter-level positioning, and rapid re-

convergence and re-fixing are achievable after a short

period of GNSS outage for the PPP/INS integration.

Federated filter

The federated Kalman filter, which is based on the prin-

ciple of information sharing as described by Carlson

(1990), uses sensor-dedicated local filters (LFs) and a

master filter (MF) to combine or fuse the local filter output.

Federated filters using multiple systems such as GPS, INS

and other sensors have been discussed in the literature. An

adaptive determination method for the information sharing

factors used in the federated Kalman filtering algorithm

was proposed by Zhang et al. (2002). This approach is

based on generalized eigenvalue decomposition of the

covariance matrix of the estimated errors that are associ-

ated with individual sensors. In order to track weak signals

and provide accurate information in GPS challenging

environment, Lee (2003) proposed a GPS/INS ultra-tightly

coupled system with a federated Kalman filter. Taking

advantage of the parallel calculation strategy of the fed-

erated filter, Yang et al. (2004) used an integrated navi-

gation algorithm based on local geometric adjustment

outputs. This algorithm was able to avoid the correlations

with the local filter. Multisensor optimal and suboptimal

federated Kalman filters with two-layer fusion structures

were proposed to handle problems when the estimation

errors of the local subsystems were correlated (Sun 2004).

The federated technology was also applied with other fil-

ters. In order to handle the information fusion problems in

integrated GPS/INS/CNS (celestial navigation system)

produced by the nonlinear/non-Gaussian error models, the

federated unscented particle filtering (FUPF) algorithm was

developed. Compared with federated unscented Kalman

filtering, the FUPF technology performed more accurately

in the integrated navigation system according to Hu et al.

(2010). A genetic algorithm was applied by Quan and Fang

(2012) to construct the adaptive federated Kalman filter

model and to select the optimized information sharing

factor. This new approach not only greatly enhanced the

accuracy and reliability of the integrated navigation sys-

tem, but also resulted in rapid convergence. In order to

reduce the computational load imposed by the federated

Kalman filter, Liu and Zhu (2012) proposed an expecta-

tion–maximization federated Kalman filtering (EM-FKF)

algorithm for the integrated navigation system. While the

federated filter can improve the computational efficiency

through the information allocation factor, the adaptive

information distribution ability of the federated filter is not

used well.
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Structure

While much research has been conducted with respect to

PPP/INS integrated navigation, the focus of these research

efforts is largely on navigation algorithms and system

architecture. In PPP/INS integrated navigation, the carrier

phase, pseudorange and Doppler measurements are intro-

duced into the observation model, which thus increases the

computational burden of the filter. Unlike previous

research work, an adaptive federated filter is proposed and

used in PPP/INS tightly coupled navigation in this study.

The adaptive federated filter is introduced into the PPP/INS

tightly coupled navigation system to realize parallel filter

computing and to enhance filter adaptivity. The equiva-

lence relationship between the federated filter and the

adaptive filter is verified, which is actually the basic prin-

ciple of the adaptive federated filter. After this introduction

to the proposed system, an overview of the PPP observa-

tion model is given. Next, the PPP/INS tightly coupled

navigation model is described, including the dynamics

model and the observation model. In the following section,

the adaptive federated filter is described. A subsequent

section provides an overview of the PPP/INS tightly cou-

pled navigation system, including the system’s structure

and its data stream. Results are then presented and ana-

lyzed, and we conclude with a summary of the main

conclusions.

Precise point positioning observation model

The traditional PPP observation model, including the

pseudorange, carrier phase and Doppler measurements, can

be written as (Du and Gao 2010):

L ¼ qþ c� ðdt � dtsÞ þ dion þ dtrop þML þ eL ð1Þ

U ¼ qþ c� ðdt � dtsÞ � dion þ dtrop þ kN þMU þ eU

ð2Þ
_U ¼ _qþ c� ðddt � ddtsÞ � _dion þ _dtrop þ e _U ð3Þ

where L, U and _U are the pseudorange, carrier phase and

Doppler measurements, q is the geometric distance as a

function of the receiver and satellite coordinates, _q is the

geometric range rate, c is the speed of light in a vacuum,

dts and dt are the satellite clock error and receiver clock

error, ddts and ddt are the satellite clock error drift and

receiver clock error drift, dion and _dion are the first-order

ionospheric delay and ionospheric delay drift, dtrop and _dtrop
are the tropospheric delay and tropospheric delay drift, ML

and MU are the multipath errors of the pseudorange and

carrier phase measurements, and eL, eU and e _U are a

combination noise of the pseudorange, carrier phase and

Doppler measurements. The tropospheric delay dtrop is

modeled at the zenith and is mapped using a mapping

function to the satellite elevation. The Niell mapping

function is used in this case.

Using real-time precise GPS orbit and clock products

enables the uncertainties in the satellite orbit and clock

corrections to be significantly reduced. Other error sources

can be eliminated by the correction model. The widely

used ionospheric-free combination uses the GPS frequency

dispersion property to mitigate the first-order ionospheric

delay effect. The observation model of the ionospheric-free

combination can be written as (Du and Gao 2010):

Lif ¼
f 21

f 21 � f 22
L1 �

f 22
f 21 � f 22

L2

¼ qþ c� ðdt � dtsÞ þ dtrop þML þ eL ð4Þ

Uif ¼
f 21

f 21 � f 22
U1 �

f 22
f 21 � f 22

U2 ¼ qþ c� ðdt � dtsÞ þ dtrop þ k1Nif þMU þ eU

ð5Þ

_Uif ¼
f 21

f 21 � f 22

_U1 �
f 22

f 21 � f 22
_U2 ¼ _qþ c� ðddt � ddtsÞ þ _dtrop þ e _U

ð6Þ

where the subscript if denotes the ionospheric-free com-

bination observation.

Because the change in tropospheric delay is very slow,

the tropospheric delay drift can be neglected in this case.

The variables estimated here include three positional

parameters, the receiver clock error, the receiver clock

error drift, the zenith tropospheric delay and the iono-

spheric-free carrier ambiguity.

PPP/INS tightly coupled navigation model

In this research, the tightly coupled architecture is imple-

mented in the PPP/INS integrated system. Based on real-time

precise orbit and clock products, theGPS pseudorange, carrier

phase and Doppler measurements and the INS-derived mea-

surements are processed to estimate the state vector, including

position, velocity and attitude. Based on the tightly coupled

architecture, the error state vector is defined and the dynamics

and observation models are constructed.

Dynamics model

The integrated navigation system error dynamics model

used in the Kalman filter is designed based on the INS error

equations. Insignificant terms are neglected in the lin-

earization process (Titterton 2004). The psi-angle error

equations of the INS in the navigation framework are given

as follows (Li et al. 2014):
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d _r ¼ �xen � drþ dv ð7Þ
d _v ¼ �ð2xie þ xenÞ � dv� dw� f þ g ð8Þ

d _w ¼ �ðxie þ xenÞ � dwþ e ð9Þ

where dr, dv and dw are the position, velocity and orien-

tation error vectors, xen is the navigation frame rate with

respect to earth, and xie is the rate of the earth with respect

to the inertial frame. The system error dynamics of GPS/

INS integration is obtained by expanding the accelerometer

bias error vector g and the gyro drift error vector e. Both g

and e are regarded as random walk process vectors, which

are modeled as follows (Titterton 2004):

_g ¼ ug ð10Þ
_e ¼ ue ð11Þ

where ug and ue are white Gaussian noise vectors.

The receiver clock, tropospheric delay and ionospheric-

free carrier ambiguity state dynamic equations can be

written as (Abdel-Salam and Gao 2001):

_dt ¼ ddt þ udt ð12Þ

d _dt ¼ uddt ð13Þ
_dtrop ¼ utrop ð14Þ
_Nif ¼ 0 ð15Þ

where udt, uddt and utrop are the white Gaussian noise

vectors of the receiver clock error, the receiver clock error

drift and the zenith tropospheric delay, respectively.

By combining (7)–(15), the system dynamics model can

be generalized in a matrix and vector form:

_X ¼ FX þ u ð16Þ

where X is the error state vector, F is the system transition

matrix, and u is the process noise vector.

Observation model

The observation model in the PPP/INS tightly coupled

architecture is composed of the pseudorange, carrier phase

andDoppler difference vectors between theGPS observation

and the INS computation value (Zhang and Gao 2008):

Z ¼

LGPSj � LINSj

UGPS
j �UINS

j

_UGPS
j � _UINS

j

..

.

2
66664

3
77775

ð17Þ

where LGPSj , UGPS
j and _UGPS

j are the ionospheric-free

pseudorange, carrier phase and Doppler measurements of

the jth satellite observed by GPS, and LINSj , UINS
j and _UINS

j

are the ionospheric-free pseudorange, carrier phase and

Doppler values of the jth satellite predicted by INS.

The generic observation equation for the Kalman filter

can be written as:

Zk ¼ HkXk þ s ð18Þ

where Hk is the observation matrix (Du and Gao 2012) and

s is the observation noise vector, which is assumed to be

white Gaussian noise.

Adaptive federated filter

The most important element of the PPP/INS integrated

system is a Kalman filter that fuses the measurements from

GPS and the INS to obtain an optimal estimation of the

system states. Based on the dynamics model and the

observation model, the Kalman filter can apply the obser-

vation information to update the system states. Both the

federated filter and the adaptive filters are modified Kalman

filters. The federated filter can realize parallel filter com-

puting through an information allocation factor, while the

adaptive filter can eliminate the effects of the dynamics

model errors using an adaptive factor. A new information

allocation factor is constructed by the method that was used

to compute the adaptive factor. Therefore, the new adaptive

federated filter can both realize parallel filter computing

and eliminate the influence of the dynamics model errors.

Kalman filter

Optimal estimates of the state vector from the Kalman filter

can be attained through a combination of a time update and

an observation update. The time update process of the

Kalman filter is independent and is written as (Yang and

Gao 2006):

�Xk ¼ Fk;k�1X̂k�1 ð19Þ
�Ck ¼ Fk;k�1Ck�1F

T
k;k�1 þ Qk�1 ð20Þ

The observation update equation of the Kalman filter is

expressed as:

X̂k ¼ �Xk þ Gk Zk �Hk
�Xkð Þ ð21Þ

Gk ¼ �CkH
T
k Hk

�CkH
T
k þ Rk

� ��1 ð22Þ

Ck ¼ I � GkHkð Þ �Ck ð23Þ

where �Xk is the a priori state estimation, X̂k is the a pos-

teriori state estimation, Gk is the gain matrix of the Kalman

filter, �Ck is the a priori covariance matrix of the state

vector, Ck�1 is the a posteriori covariance matrix of the

state vector, Rk is the covariance matrix of the
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measurement noise vector, Qk�1 is the covariance matrix of

the process noise and Fk;k�1 is the system transition matrix

from time k - 1 to time k.

In a closed-loop integration scheme, a feedback loop is

used to correct the systematic errors. In this way, the INS

mechanization algorithm performs simple navigation cal-

culations under the assumption of small errors. In this case,

the error states will be reset to zero after each observation

update (Nassar and El-Sheimy 2006). The navigation res-

olution is thus expressed as:

X̂k ¼ �CkH
T
k Hk

�CkH
T
k þ Rk

� ��1
Zk ð24Þ

In a PPP/INS system working in a closed-loop configura-

tion, estimates of the errors from the Kalman filter are

introduced into the INS to correct the accelerometer bias

and gyroscope drift.

Federated filter

The federated filter for the multisensor system is charac-

terized by low computational cost, high precision and good

reliability. In the PPP/INS tightly coupled navigation sys-

tem, three types of independent measurements are input

into the filter, which can be regarded as three sensors being

integrated with the INS. Therefore, the integrated naviga-

tion system filter can be divided into a pseudorange/INS

filter, a carrier phase/INS filter and a Doppler/INS filter.

The federated filter can be applied in the PPP/INS tightly

coupled navigation system to increase its computational

efficiency. In order to reduce the computational complex-

ity, the state equation of the local filter is the same as that

of the global filter.

The dynamics model of the PPP/INS tightly coupled

navigation system is expressed as shown in (16). In gen-

eral, the observation equation of the ith local filter is

expressed in discrete form as follows:

Zik ¼ HikXk þ sik ð25Þ

Suppose that the filter estimation values of the ith local

filter, the master filter and the global filter are X̂ik, X̂mk and

X̂k, respectively. The corresponding weight matrices are

Pik, Pmk and Pk, while the covariance matrices are Cik, Cmk

and Ck.

Because the measurements are independent, the fusion

resolution of the federated filter is (Quan and Fang 2012):

Pk ¼
Xr
i¼1

Pik þ Pmk ð26Þ

X̂k ¼ P�1
k

Xr
i¼1

PikX̂ik þ PmkX̂mk

 !
ð27Þ

where r is the number of local filters.

In the PPP/INS tightly coupled navigation system, the

state vectors of the different local filters are all the same.

Updates of the state vector and the covariance matrix are

processed in the global filter. No information sharing

occurs in the master filter, and as a result, Pmk ¼ 0.

Based on the principle of information conservation, the

weight matrix is distributed to the local filter using the

information allocation factor bi. The allocation principle is

given by:

Pik�1 ¼ biPk�1 ð28Þ

X̂ik�1 ¼ X̂k�1 ð29Þ

Q�1
ik�1 ¼ biQ

�1
k�1 ð30Þ

Xr
i¼1

bi ¼ 1 ð31Þ

The time update process for each local filter is inde-

pendent and can be written as:

�Xik ¼ Fk;k�1X̂ik�1 ð32Þ
�Cik ¼ Fk;k�1Cik�1F

T
k;k�1 þ Qik�1 ð33Þ

The observation update equation of the local filter is

expressed as:

X̂ik ¼ �Xik þ Gik Zik �Hik
�Xikð Þ ð34Þ

Gik ¼ �CikH
T
ik Hik

�CikH
T
ik þ Rik

� ��1 ð35Þ

Cik ¼ I � GikHikð Þ �Cik ð36Þ

The global state estimation value and the weight matrix

are obtained by fusing the local filter estimation value

according to (26) and (27):

Pk ¼
Xr
i¼1

Pik ð37Þ

X̂k ¼ P�1
k

Xr
i¼1

PikX̂ik ð38Þ

The global state estimation X̂k and the weight matrix Pk

will be distributed to each of the local filters by the infor-

mation allocation factor bi in the next filter. Figure 1 shows

the federated filter architecture. In decentralized filtering, the

standard Kalman filter is divided into sensor-dedicated local

filters (numbered 1 to r). Operationally, these local filters

work in parallel, and their solutions are periodically fused via

the global filter, thus yielding a global solution. The com-

putational load can be reduced significantly by adopting this

decentralized technique. The results, however, may be

locally suboptimal, but are globally optimal.
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Adaptive filter

The adaptive factor is introduced in the adaptive filter to

modify the abnormal error in the dynamics model. The

adaptive filter resolution is obtained via the conditional

extremum method. The extremal function can be written as

(Yang and Gao 2006):

X ¼ VT
kR

�1
k Vk þ akV

T
�Xk

�C
�1

k V �Xk
� 2kTk HkX̂k � Zk � Vk

� �

ð39Þ

where V �Xk
and Vk are the errors for the predicted state

vector and the measurement vector, �Ck and Rk are the

covariance matrices of V �Xk
and Vk, ak is the adaptive

factor, and kk is the Lagrange factor.

By calculating the minimum of (39), the adaptive filter

resolution can be obtained as follows:

X̂k ¼ �Xk þ
1

ak
�CkH

T
k

1

ak
Hk

�CkH
T
k þ Rk

� ��1

Zk �Hk
�Xkð Þ

¼ �Xk þ �Gk Zk �Hk
�Xkð Þ

ð40Þ

where �Gk is the gain matrix of the adaptive filter.

Equivalence

The weight matrix of the state estimation value is amended

in the federated local filter, and the covariance matrix is

amended in the adaptive filter. The weight matrix is the

inverse matrix of the covariance matrix. Based on the fact

that Pk ¼ C�1
k , both sides of (28) can be processed by the

inverse matrix calculation:

Cik ¼
1

bi
Ck ð41Þ

The relation between �Cik and �Ck can be obtained by

substituting (41) into the right side of (33):

�Cik ¼ Fk;k�1Cik�1F
T
k;k�1 þ Qik�1

¼ Fk;k�1

1

bi
Ck�1F

T
k;k�1 þ

1

bi
Qk�1

¼ 1

bi
Fk;k�1Ck�1F

T
k;k�1 þ Qk�1

� �
¼ 1

bi
�Ck

ð42Þ

The gain matrix of (35) is therefore expressed as:

Gik ¼
1

bi
�CkH

T
ik Hik

1

bi
�CkH

T
ik þ Rik

� ��1

¼ 1

bi
�CkH

T
ik

1

bi
Hik

�CkH
T
ik þ Rik

� ��1

ð43Þ

If ak ¼ bi, then Gik and �Gk in (40) are equivalent. There-

fore, the federated local filter and the adaptive filter are

equivalent in form.

Adaptive federated filter

In the above demonstration, the federated local filter and

adaptive filter have been shown to be equivalent in form.

We therefore try to calculate the information allocation

factor of the federated filter using the adaptive factor cal-

culation method, which is used to construct the adaptive

federated filter. The proposed method will increase the

adaptive ability of the federated local filter.

The information allocation factor is calculated based on

the predicted residuals (Yang and Gao 2006):

bk ¼
1 DVkj j � con
con

DVkj j DVkj j[ con

(
ð44Þ

where con is a constant, and con = 0.85–1.0.DVk represents

the statistics constructed based on the predicted residuals Vk,

which can be expressed as (Wu and Yang 2010):

DVk ¼
VT
k Vk

trðHk
�C �Xk

HT
k þ RkÞ

ð45Þ

In order to ensure that the information allocation factor

obeys the principle of information conservation, the

information allocation factor in (31) is processed via a

normalization calculation:

b0ik ¼
bikPr
i¼1 bik

ð46Þ

where b0ik is the information allocation factor of the ith

local filter at time k after normalization.

PPP/INS tightly coupled navigation system

Figure 2 shows the PPP/INS tightly coupled navigation

system with the adaptive federated filter. The INS mech-

anization algorithm derives the current position, velocity

Local
filter 1

Local
filter 2

Local
filter r

Global filter

Fusion

Update

1 1ˆ ,k kX P

ˆ ,rk rkX P

2 2ˆ ,k kX P

1ˆ ,k kβX P

2ˆ ,k kβX P

ˆ ,k r kβX P

Local
system 1

Local
system 2

Local
system r

2Z

1Z

rZ

Reference
system

Fig. 1 Federated filter architecture
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and attitude solutions from the measurements of the IMU.

Using the pseudorange and Doppler measurements from

the GPS receiver, the position and velocity information can

also be obtained. After the quality control step, and given

the ephemeris of the GPS satellites, the position and velocity

from the INSmechanization algorithm are used to predict the

pseudorange, carrier phase and Doppler measurement

results. During prediction of the carrier phase, the float

ambiguity value that resolved in the previous epoch is used.

The real-time precise orbit and clock products are used to

compute the precise satellite position and the clock correc-

tion. After correcting the errors in the raw GPS measure-

ments, the corrected pseudorange, carrier phase and Doppler

measurements from the undifferencedGPS are inputwith the

INS-predictedmeasurements into a different local filter. The

filter estimation values and the corresponding weight

matrices from the pseudorange local filter, the carrier phase

local filter and the Doppler local filter are fused and updated

by the global filter to obtain the final position, velocity and

attitude. At the same time, the filter estimation value, the

information allocation factor and the corresponding weight

matrix, which acts as the feedback, are imported into the

local filter and will then be used in the next filter.

In order to test the self-navigation accuracy of the INS

without GPS, a variety of simulations of INS sensors are

performed during complete GPS outages. The simulation

conditions are located at latitude of 37.6� north and

longitude of 108.6� east. The technical parameters for the

sensors are listed in Table 1. The technical parameters of

system 2 are the same as those of the IMU that is used in

the field test below. The technical parameters used in

system 1 have values that are double those of the technical

parameters of system 2, and the technical parameters of

system 3 have values that are one half of those of the

technical parameters of system 2. The measurements of the

gyroscopes and the accelerometers are generated at a fixed

frequency of 100 Hz. A positional comparison of the three

systems during complete GPS outages is shown in Fig. 3.
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Fig. 2 Proposed PPP/INS

tightly coupled navigation

system

Table 1 Technical parameters of the three systems

System Gyroscope Accelerometer

Bias (�/h) Scale factor (ppm) Angle random walk [�/sqrt(h)] Bias

(mg)

Scale factor (ppm) Velocity random walk [mg/sqrt(Hz)]

1 40 3000 0.1 80 8000 10

2 20 1500 0.0667 50 4000 6

3 10 500 0.037 20 2000 3
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Fig. 3 Comparison of the different INS position accuracies during

complete GPS outages
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The results show that in 1 s we obtained INS self-naviga-

tion positioning accuracies of 0.347, 0.217 and 0.087 m

from systems 1, 2 and 3. The navigation accuracy attained

by the INS during that 1 s is much higher than that derived

from the pseudorange. If GPS/INS integration frequency is

higher than or equal to 1 Hz, an INS with the same or

higher accuracy than system 1 can provide a more accurate

initial value for PPP than the single point positioning

provided by the pseudorange, which will thus improve the

final filter resolution accuracy.

Results and discussion

Field tests were then conducted to evaluate the perfor-

mance of the proposed method. The test systems comprised

two Leica GPS receivers and a tactical grade IMU. One of

the Leica receivers was set up as the reference station, and

the other was used as the rover receiver, with its antenna

located above the roof of the test vehicle. We received

1 Hz GPS data and 100 Hz INS data. The total time taken

for the test was approximately 20 min. The GPS observa-

tions were processed using the GPS software GrafNavTM

8.0 in differential GPS (DGPS) mode, and the results were

regarded as position and velocity references. The attitude

reference was generated via the DGPS/INS integrated

system using Inertial Explorer software produced by

NovAtel Inc. The Inertial Explorer software used the

DGPS data to update the INS errors with forward and

backward filters, and this promises much greater accuracy

than the proposed PPP/INS tightly coupled navigation

system. The technical parameters of the IMU are given in

Table 2 and are the same as those of the simulated system 2

above. The reference solution accuracy is summarized in

Table 3. The trajectory of the experiment and the satellite

numbers are shown in Figs. 4 and 5.
Test one

In order to analyze the effects of the INS on the kinematic

PPP, the kinematic PPP scheme without the INS

(scheme 1) and the PPP/INS tightly coupled

scheme (scheme 2) were both applied to process the data.

New initial position is required every epoch as input to the

Kalman filter for kinematic PPP. The initial position is

provided by a single point positioning (SPP) with pseu-

doranges in scheme 1. Because the GPS sampling fre-

quency was 1 Hz, scheme 2 can obtain a more accurate

initial position using the INS resolution. Positional errors

were computed with respect to the reference position to

evaluate the overall performance.

Figure 6 shows the time series of the position errors in

the north, east and down directions for schemes 1 and 2.

These three sets of figures show that the proposed PPP/INS

Fig. 4 Field test trajectory

Table 2 Technical parameters of tactical grade IMU

Parameters Gyroscope Accelerometer

Bias 20 �/h 50 mg

Scale factor 1500 ppm 4000 ppm

Random walk 0.0667 �/sqrt(h) 6 mg/sqrt(Hz)

Table 3 Reference solution accuracy

Parameters Position (m) Velocity (m/s) Attitude (�)

North (roll) 0.01 0.02 0.015

East (pitch) 0.01 0.02 0.015

Down (yaw) 0.02 0.01 0.03
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Fig. 5 Numbers of satellites
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tightly coupled navigation system provides better naviga-

tion results. Table 4 illustrates the root-mean-square

(RMS) errors and the maximum value of the position error.

When compared to scheme 1, the proposed scheme 2

improves the positional accuracy in the north, east and

down directions by 7.7, 7.8 and 2.3 %, respectively. The

velocity in the down direction is near zero for the land

vehicles. Zero setting algorithm is employed after every

filter process, so the difference of position error between

scheme 1 and scheme 2 is very little.

In order to compare the performance of the above

schemes under challenging urban environment conditions,

two simulated partly blocked stretches of GPS satellite

reception were introduced. Only three GPS satellites were

observed between 400 and 500 s and between 900 and

1000 s. Because the number of satellites used is fewer than

four, the single point positioning with the pseudoranges

does not provide the position information, which will lead

to reduced initial position accuracy.

Figure 7 shows the time series of the position errors in

the north, east and down directions for schemes 1 and 2.

The RMS errors and the maximum value of the position

error during the GPS blockage are given in Table 5. When

compared to scheme 1, the position accuracy in the north,

east and down directions is improved by 65, 47 and 24 %,

respectively, in scheme 2. Under the challenging posi-

tioning conditions, INS can provide great benefits to PPP

because it is able to provide initial position with higher

accuracy to PPP resolution.

Test two

In order to test the efficiencies of the proposed navigation

strategy and the filter method shown in Fig. 2, three cal-

culation schemes are used: the conventional GPS/INS

tightly coupled navigation system using pseudorange and

Doppler measurements (scheme 1), the PPP/INS tightly

coupled navigation system with the centralized Kalman

filter (scheme 2), and the PPP/INS tightly coupled navi-

gation system with the adaptive federated filter (scheme 3).

Position comparisons of the three schemes are shown in

Table 6 and Fig. 8. The black line, the blue line and the red line

are the solution differences with respect to the reference value

for schemes 1, 2 and 3, respectively. The two lines from

schemes 2 and3 are shown tobe almost perfect.Thenavigation
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Fig. 6 Position errors in the north (top), east (middle) and down

(bottom) directions for different schemes
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Fig. 7 Position errors in the north (top), east (middle) and down

(bottom) directions for different schemes

Table 4 Comparison of two schemes in terms of position error

Scheme RMS (m) MAX (m)

North East Down North East Down

1 0.091 0.115 0.473 0.380 0.348 1.449

2 0.084 0.106 0.462 0.375 0.350 1.450

Table 5 Comparison of two schemes in terms of position error

Scheme RMS (m) MAX (m)

North East Down North East Down

1 0.174 0.249 0.693 0.305 0.399 1.245

2 0.092 0.133 0.526 0.150 0.310 1.109

Table 6 Comparison of three schemes in terms of position errors

Scheme RMS (m) MAX (m)

North East Down North East Down

1 1.668 0.660 1.553 5.400 1.756 5.321

2 0.083 0.105 0.460 0.375 0.352 1.450

3 0.084 0.106 0.462 0.375 0.350 1.450
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results fromTable 6 show that the accuracies of schemes 2 and

3 are almost of the same quality. The federated Kalman filter

thus has the same level of performance as the centralized

Kalmanfilter. Fromanother perspective, when compared to the

centralizedKalmanfilter, the federatedKalmanfilter has a clear

advantage in terms of computational efficiency because it can

realize parallel filter computing. Because a dynamics model

without abrupt errors is used, scheme 3 does not show any

adaptive advantage. When compared to scheme 1, the posi-

tional accuracies in the north, east and down directions are

improved by 94, 84 and 70 %, respectively, for scheme 3. The

largest position errors that occur the north, east and down

directions are 5.400, 1.756 and 5.321 m, respectively, when

scheme 1 isused. In contrast, the largest correspondingposition

errors that occurwhen scheme 3 is applied are 0.375, 0.350 and

1.451 m, respectively.

Table 7 shows the velocity improvements realized when

using the proposed PPP/INS tightly coupled navigation

system. Figure 9 plots the integrated system velocity errors

in the north, east and down directions. In a similar manner

to the position results, the accuracies of schemes 2 and 3

are again almost of the same quality. The results show that

the velocity of scheme 3 can achieve accuracy levels of

0.161, 0.139 and 0.423 m/s for the north, east and down

coordinate components, respectively. When compared to

scheme 1, the proposed PPP/INS tightly coupled

navigation system improves the velocity errors in the north,

east and down directions by 24, 13 and 34 %, respectively.

The improvements in the velocity errors are much smaller

than the improvements in the position errors, because the

velocity estimation is mainly reliant on the Doppler mea-

surements, which are used in both scheme 1 and scheme 3.

The roll, pitch and yaw errors of schemes 1, 2 and 3 are

shown in Table 8 and Fig. 10. Compared with scheme 1,
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Fig. 8 Position errors in the north (top), east (middle) and down

(bottom) directions for different schemes

Table 7 Comparison of three schemes in terms of velocity errors

Scheme RMS (m/s) MAX (m/s)

North East North East North East

1 0.212 0.159 0.150 1.107 0.975 0.533

2 0.160 0.139 0.099 1.066 0.903 0.462

3 0.161 0.139 0.099 1.066 0.903 0.462

Table 8 Comparison of three schemes in terms of attitude errors

Scheme RMS (�) MAX (�)

Roll Pitch Yaw Roll Pitch Yaw

1 0.111 0.166 1.568 0.545 0.426 6.056

2 0.062 0.121 0.928 0.249 0.306 4.762

3 0.061 0.121 0.930 0.249 0.306 4.765
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Fig. 9 Velocity errors in the north (top), east (middle) and down

(bottom) directions for different schemes
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the proposed PPP/INS tightly coupled navigation system

improves the roll, pitch and yaw errors by 45, 27 and 41 %,

respectively. Figure 11 shows that the PPP/INS tightly

coupled navigation system achieves the required suppres-

sion of the attitude errors in scheme 1.

Test three

In order to analyze the adaptive performance of the adaptive

federated filter, the non-adaptive federated filter (scheme 1)

and the adaptive federated filter (scheme 2) were both

applied in the PPP/INS tightly coupled navigation system.

Over the entire trajectory, there is no natural gross error in

the dynamics model. At the time of 736 s, a simulated gross

error was thus added to the dynamics model.

Figure 11 shows the differences between the solutions

of the different schemes and the reference in the north, east

and down directions. The three sets of figures show that the

proposed PPP/INS tightly coupled navigation system with

the adaptive federated filter provides better overall navi-

gation performance. At the time of 736 s, the position

errors of scheme 1 reach -0.954, -1.885 and -0.734 m in

the north, east and down directions, respectively, while the

position errors of scheme 2 reach -0.197, -0.190 and

-0.032 m, respectively. Compared with scheme 1,

scheme 2 shows position errors at the time of 736 s in the

north, east and down directions that have been reduced by

79, 90 and 96 %, respectively.

Conclusions

We present a PPP/INS tightly coupled navigation system to

improve the measurement accuracy of the position,

velocity and attitude parameters. At the same time, an

adaptive federated filter is also proposed and is applied to

the PPP/INS integrated system. Through a series of simu-

lations, it can be proved that the federated local filter and

the adaptive filter are equivalent in form. Based on that

equivalence, the information allocation factor in the fed-

erated filter is constructed based on the adaptive factor,

which can enable parallel filter computing and improve

filter adaptive abilities.

In the standard PPP algorithm, the initial position for the

Kalman filter is provided by a single point positioning

(SPP) with pseudoranges, while INS resolution can be

regarded as the initial position of the filter for PPP in PPP/

INS tightly coupled system. The results indicate that the

tactical grade INS can provide a more accurate initial

position to the Kalman filter for kinematic PPP than the

SPP algorithm, which will contribute to a better overall

navigation performance. Compared with the standard PPP

solution alone, the proposed PPP/INS tightly coupled

navigation architecture accuracy in terms of the east, north

and down components can be improved by 45, 47 and

24 %, respectively, during partial blockage of the GPS

satellite. Additionally, when compared to a conventional

GPS/INS integrated system with pseudorange and Doppler

measurements, the position, velocity and attitude errors

have all been reduced. The proposed adaptive federated

filter can obtain the same degree of resolution as the cen-

tralized Kalman filter, and it can also realize parallel filter

computing and remove the effects of dynamics model

errors on the navigation accuracy. In our future work, the

potential of INS for improving the PPP ambiguity con-

vergence rate will be investigated.
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