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Abstract Carrier phase observations are required for

high-accuracy positioning with Global Navigation Satellite

Systems. This requires that the correct number of whole

carrier cycles in each observation (integer ambiguity) is

determined. The existing methods have been shown to

perform differently depending on the observables. Subse-

quently, the ratio test used for ambiguity validation was

developed further including combining it with the integer

aperture concept. The key challenges in using the ratio test

are the existence of biases in float solutions and stochastic

dependence between the two elements of the ratio. The

current methods either make assumptions of independence

and nonexistence of biases or use simulations together with

the bias-free assumption. We propose a new method taking

into account both challenges which result in an unknown

distribution of the ratio test statistic. A doubly non-central

F distribution (DNCF) is proposed for the determination of

threshold. The cumulative distribution function (CDF) of

DNCF over-bounds the CDF of ratio test statistic distri-

bution in case there is a bias in the float solution and a

correlation between the two elements of the ratio. The

Precise Point Positioning (PPP) method with products from

CNES and measurement data from 10 NOAA stations are

used to verify the proposed method. The test results show

that the proposed method improves the performance of

ambiguity resolution achieving a lower rate of wrong fixing

than current state of the art.

Keywords GNSS positioning � Precise point positioning �
Integer ambiguity validation

Introduction

Carrier phase measurements are required for high-accuracy

positioning with Global Navigation Satellite Systems

(GNSS) such as GPS. Different observables can be derived

from the measurements to support different positioning

concepts including the conventional approach for dynamic

positioning referred to as Real Time Kinematic (RTK) and

the more recent Precise Point Positioning (PPP). In order to

exploit the excellent accuracy potential of carrier phase

measurements, the correct whole number of carrier cycles

(integer ambiguity) must be determined to facilitate the

integrity of positioning solutions (Feng et al. 2009). A

three-stage process is usually invoked to determine the

correct integer ambiguities. The first involves the compu-

tation of the float ambiguities. The second stage employs a

search method to find the candidate integer ambiguities.

The third stage tests all or selected sets of candidates and

determines whether any should be accepted. The well-

known Least-squares AMBiguity Decorrelation Adjust-

ment (LAMBDA) method addresses the first and second

stages including a transformation to reduce the search

space (Teunissen 1995), while the third stage, referred to as

ambiguity validation, continues to attract significant

research effort. A number of approaches have been

developed for ambiguity validation. These approaches

usually involve the construction of test statistics, charac-

terization of their distribution, and determination of
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thresholds. Examples of these tests include ratio, F-ratio

(Verhagen 2004), W-ratio (Wang et al. 2000), and other

tests constructed from residuals and/or their differences. It

has been shown that none of these tests are based on a

sound theoretical basis (Verhagen 2004) and that there is

no single method that can be used in all situations.

Specifically, the conventional ratio test uses the ratio

between the residuals of the second best and best ambiguity

candidates as the test statistic and adopts a fixed threshold.

Because the use of a fixed threshold does not capture the

major factors that impact the level of confidence (or suc-

cess rate) associated with the resolved ambiguities,

research has explored the use of ratio-based methods

without the direct use of a fixed threshold. One example is

the combination of the simulation approach with the inte-

ger aperture (IA) method (Verhagen 2004; Teunissen and

Verhagen 2004, 2009a, 2009b). This requires the simula-

tion of a large number of normally distributed independent

samples of float ambiguities. However, the bias-free float

ambiguity solution may not be achieved in practice. Fur-

thermore, the need for significant computational resources

for the online simulation of large samples ([100,000)

(Teunissen and Verhagen 2004) and computation of the

success/fail rates precludes the use of IA in real time.

Moreover, this method does not link the simulation effort

to the feasibility of acquiring integer ambiguities. For

example, if it is unlikely to determine the integer ambiguity

due to weak conditions, there is no need to waste resources

to perform the simulation. For the ratio test with fixed fail

rate, look-up tables can be created off-line to reduce

computational resources required in real time (Verhagen

and Teunissen 2013). The weaknesses of using fixed

threshold were addressed in Feng et al. (2012), in which a

new distribution doubly noncentral F distribution (DNCF)

is used for real-time applications based on the assumption

that the two elements in the ratio are independent.

To address the key challenges in using the ratio test, the

existence of biases in float solutions and stochastic

dependence between the two elements of the ratio, we

propose a new over-bounding theory to determine the

threshold for the ratio test. The next section summarizes

the mixed integer least-squares method for ambiguity res-

olution and the formation of ratio test. The justification of

using the DNCF for the determination of the threshold for

ratio test is addressed. This is followed with the details of

test data, algorithm and results, and conclusions.

Ambiguity resolution and ratio test

Carrier phase ambiguity resolution is the key to high-pre-

cision positioning with GNSS. Reliable ambiguity resolu-

tion is a function of several factors, the main ones being the

types of measurements, formation of observable, residual

error of observables, geometry and algorithmic formula-

tion. To resolve ambiguity reliably, the observations must

be pre-processed to mitigate errors. Due to the integer

nature of ambiguities, the model used for GNSS position-

ing is an equation with mixed integer and real unknowns. A

mixed integer least-squares (MILS) method is normally

used to estimate ambiguities and positioning errors.

Mixed integer least-squares (MILS) for ambiguity

resolution

The general MILS can be expressed as:

min y� Ax� Bzk k22 ð1Þ

where x 2 Rk is a vector of real unknowns, z 2 Zn, is a

vector of integer unknowns, A 2 Rm�k (known), B 2 Rm�n

(known), y 2 Rm is a vector of the observation (known),

and kk2 denotes the Euclidean norm.

Typically, MILS is translated to integer least-squares

(ILS) and a real least-squares (RLS) by orthogonal

transformations.
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Expression (1) can therefore be rewritten as:

min y� Ax� Bzk k22 ¼ min �QT
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where A ¼ QA
�QA

� �
RA 0½ �T , QA

�QA

� �
is orthogo-

nal and RA is non-singular upper triangular.

The first part of (3) is an ILS. As long as the z in the

first part is solved, the second part becomes a RLS

which can be solved easily. The resolution of ILS is not

straightforward. It normally involves two steps: (1) treat

ILS as RLS to get float (real) solutions; (2) search all

possible integers around the float solutions to find the

integer. In the second step, a transformation maybe

needed to reduce the search space for integer solutions.

The well-known Least-squares AMBiguity Decorrelation

Adjustment (LAMBDA) is a typical MILS method in

GNSS positioning.

Ratio test for ambiguity validation

In order to validate whether the integer solution is correct,

a validation process using the information from LAMBDA

is needed. The available information includes measure-

ments and ambiguity residuals. A number of tests can be

constructed such as ratio test, F-ratio and W-ratio with the

ratio test being the most popular. There are also variations

80 GPS Solut (2017) 21:79–87

123



of the ratio test such as ratio test integer aperture estimator.

The basic ratio test is based on the ambiguity residuals:

e
^

i ¼ â� a
^

i ð4Þ

where the real (float) ambiguity vector is denoted as â, the

estimate of integer values is denoted as a
^

i, and the order of

a candidate ambiguity is denoted as i. If the float ambi-

guities follow a normal distribution, the ambiguity resid-

uals follow a normal distribution subject to certain

conditions (Verhagen and Teunissen 2006). For each

ambiguity vector searched, an ambiguity residual vector is

produced from which the sum of the squared errors (SSE),

denoted as R, is generated. Searching through the specified

space, a number of SSEs, denoted as Ri, are calculated as:

Ri ¼ e
^T

i
G�1

â e
^

i ¼ ðâ� a
^

iÞTG�1
â ðâ� a

^

iÞ ð5Þ

where Gâ is ambiguity variance matrix. If the value of the

variance factor (r) is known and the probability density

function (PDF) of â is sufficiently peaked (Verhagen and

Teunissen 2006), then

Xi ¼
Ri

r2
� v2ðn; diÞ ð6Þ

where, di is the non-central parameter (NCP) of the Chi-

square distribution. If Ri is sorted in ascending order, i.e.,

Ri\Riþ1 for any i 2 1; nÞ½ , the ratio test is therefore,

defined as:

T ¼ R2

R1

[ k ð7Þ

where, k is the threshold. If T[ k, the best ambiguity

vector is accepted.

The use of tests based on the best and second best

ambiguity vector enables all cases to be covered, as they

represent the smallest values, i.e., R2=R1\Ri=R1 for any

i[ 2. The problem in using this test lies in the choice of

the critical value k. This is because of the difficulty in

defining the distribution of the ratio of two non-central Chi

square distributions. Three simplified methods have been

used in the past. The first assumes that the SSE of the

residuals from the best ambiguity vector is bias free and R2

and R1 are independent. Therefore, the denominator in

expression (7) (R1) follows the Chi-square distribution

(d1 ¼ 0). This results in R2

R1
following an F distribution.

However, the denominator is not necessarily bias free. In

addition, R2 and R1 are highly correlated because the same

float solution vector is used for both. Therefore, using the F

distribution to describe the ratio is incorrect. The second

method uses a constant value for k derived empirically. For

example, the values of 1.5 and 3 have been used by Wei

and Schwarz (1995) and Leick (2015), respectively. The

third method approximates the threshold k by using the

ratio of non-central parameters of the F distribution

expressed as (Euler and Schaffrin 1991)

k ¼ k2ðc; b2Þ
k1ðc; b1Þ

ð8Þ

where c is the false alarm rate when the float solution is

correct but rejected, bi is the probability of incorrectly

accepting the float solution while the ith set of ambiguities

is true, ki is the non-central parameter of an F distribution.

The relationship between c, bi and ki is given by

bi ¼
ZFcðn;m�n�p;0Þ

0

Fðxjn;m� n� p; kiÞdx ð9Þ

The third threshold determination method is not

theoretically justifiable because the potential variations

of the F distribution sample are ignored by only taking

into account the non-central parameter of the F distri-

bution. In addition, the calculation of the non-central

parameter is complicated. In summary, all the simplified

methods used are not theoretically justifiable. The

simulation approach is adopted in the Ratio Test Integer

Aperture (RTIA) method (Verhagen 2004; Teunissen

and Verhagen 2009a). The IA method defines a region

of acceptable ambiguities. Note that the conventional

ratio test has been shown theoretically to be the IA

because its reciprocal reflects the rate of success/fail of

ambiguity resolution (Teunissen and Verhagen 2004,

2009b). However, instead of using the fixed threshold

(as in the conventional ratio test), simulation is used to

determine the success/fail rate for each reciprocal of the

conventional ratio at the current epoch. This requires

the simulation of a large number of normally distributed

independent samples ([100,000) (Teunissen and Ver-

hagen 2004) of float ambiguities. The main steps for

validation are:

• to generate N samples of zero mean normally dis-

tributed float ambiguities

• to determine the ILS solutions (best and second best

candidates) and ratio for each simulated sample

• to count and calculate fail rate

• to decide whether the best candidate should be

accepted.

In order to reduce the computation load for the ratio test

with fixed fail rate, look-up tables can be created offline

(Verhagen and Teunissen 2013). The key assumption in the

RTIA method is that float ambiguities follow a normal

distribution which is widely accepted. Any biases in the

float ambiguities should be corrected because the ratio test

is not designed to test for the presence of biases (Verhagen

and Teunissen 2013). It is suggested that standard
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hypothesis testing should always be applied before pro-

ceeding with ambiguity resolution to test for inconsisten-

cies in the data and/or model, in order to prevent certain

biases propagating into the ambiguity solution. Whether

biases can be detected and corrected depends on the nature

and size of the biases. Therefore, it is not possible to

guarantee that the float ambiguities are bias-free. Hence,

the potential existence of residual biases should be taken

into account in ambiguity validation. In addition, the cor-

relation between the two elements of the ratio should be

considered also.

Distribution of ratio test

The distribution of the ratio test is the key to the deter-

mination of threshold which should also reflect the confi-

dence level of the decision whether the best ambiguity

vector is acceptable. From (4), it can be seen that all the

ambiguity residual vectors (e
^

i) are based on the same float

ambiguity vector (â). It has been proved in theory that the

probability density function (PDF) of each ambiguity

residual vector has the same probability distribution as the

float ambiguities but translated over a
^

i if the float ambi-

guity vector (â) follows a normal distribution (Verhagen

and Teunissen 2006). Therefore, all the SSEs of the

ambiguity residuals (Ri) are highly correlated. Conse-

quently, the numerator and denominator of the ratio test

statistic are highly correlated. Therefore, it is difficult to

analytically derive the distribution of the ratio test on

which the threshold determination can be based.

With the same test statistic as that is used in conven-

tional ratio testing (expression 4), the method by Euler and

Schaffrin (1991) (expression 8) was developed further by

Feng et al. (2012) taking into account the potential for a

bias in the float solution resulting in a bias in both the

numerator and denominator of the ratio test. In order to

determine the confidence level of the ratio test, the distri-

bution of ðR2=R1Þ is required. Thus (7) can be rewritten as:

T ¼ R2

R1

¼ R2=ðnr2Þ
R1=ðnr2Þ

¼ X2

X1

ð10Þ

As can be seen from (10), although the variance factor

(r) is not known, it is cancelled by the ratio operation. On

the right side both the numerator and denominator follow a

non-central v2 distribution. Therefore, if R1 and R2 are

assumed to be independent, ðR2=R1Þ has a doubly non-

central F distribution (DNCF) (Bulgren 1971).

As discussed above, the assumption of independence is

not true. However, the threshold determined from the

assumption of independence can over-bound the actual

dependent case. From (4), it can be seen that the ambiguity

residual consists of two parts: constant (integer) and

uncertainty, if the float ambiguity follows a normal distri-

bution, which is an assumption for most of the other

methods. Looking into (4) further, the uncertain part of the

ambiguity residual vectors are the same for e
^

1 and e
^

2. The

differences are in the integer part which is considered a

translation over different constant values (a
^

i). Therefore,

the values of e
^

1 and e
^

2 will increase or decrease simulta-

neously due to a change in the common uncertain part. This

feature propagates to the SSE of the ambiguity residual

(Ri). Therefore, expression (10) can be rewritten as:

T ¼ X2

X1

¼ cþ u

d þ u
ð11Þ

where c and d are the constant part, while u is the uncer-

tainty part which is from the common float candidates. It

can be seen from (11) that X1 and X2 increase or decrease at

the same time when u changes. However, any change in

T also depends on the value of c and d. Therefore, the

distribution of ratio test T (10) is less spread than in the

case where R1 and R2 are independent. To demonstrate the

impact of the correlation between R1 and R2 on the ratio

test, two simulation cases were run. In the first case, 1

million normally distributed ambiguity vectors (u in

expression 11) were generated to simulate the float ambi-

guity vectors. Two constant vectors (c and d in expres-

sion 10) were then added to the normally distributed

vectors. The corresponding SSEs were calculated to sim-

ulate R1 and R2. The discrete probability of the ratio test

distribution based on a resolution of 0.1 is shown in Fig. 1.

In the second case, 2 sets of 1 million normally distributed

vectors for each size (e.g., 6) were generated. The constant

vectors used in the first case were added to the two sets of

the normally distributed vectors, respectively. The corre-

sponding SSEs were then calculated to simulate R1 and R2.
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N=6

N=12

N=8

0.3

0.25

0.2

0.15

0.1

0.05

0.50
0

1 0.5 2.5 3.52 3 4

Fig. 1 Distribution of correlated ratio
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In the second case, R1 and R2 are independent. The discrete

probability of independent ratio based on a resolution of

0.1 (X axis) is shown in Fig. 2.

Figures 1 and 2 show that the distributions of correlated

ratios are captured within a relatively narrow band,

whereas the distributions of independent ratios have a

wider spread for the same number of ambiguities (N). The

corresponding cumulative distribution functions (CDF) of

the two cases are shown in Figs. 3 and 4.

Comparing Figs. 3 and 4, the CDF in Fig. 4 over-

bounds that in Fig. 3 for each N when CDFs larger than 0.6

are considered. For instance, if a threshold of 3 is used, the

CDF in Fig. 4 is 0.72 (N = 4), while the CDF in Fig. 3 is

0.95 (N = 4). This means that the confidence level is

higher for the actual ratio test than determined from the

assumed independent case. Therefore, the threshold deter-

mined from the doubly non-central F distribution is a

conservative solution for use with the ratio test. The level

of conservativeness depends on the level of correlation

between R1 and R2, i.e., the higher the correlation, the more

conservative the threshold. In other words, although the

ratio ðR2=R1Þ does not strictly follow the DNCF distribu-

tion, a conservative threshold can be determined from it:

T � Fðn; n; d2; d1Þ ð12Þ

where n is the number of ambiguity residuals forming R1

(the same for R2); d1 and d2 are the non-central parameters

which can be determined using the traditional failure

detection scheme with a probability of false alarm (PFA)

and a probability of missed detection (PMD) (Feng et al.

2006). Similar to expression (8), the probability of false

alarm is the chance that the float solution is correct but

rejected. The probability of missed detection is the chance

of incorrectly accepting a float solution, while the integer

ambiguities are true. The PMD corresponding to each non-

central parameter is

PMDi ¼
Zv2PFA

ðn;0Þ

0

v2ðxjn; diÞdx ði ¼ 1; 2Þ ð13Þ

Similar to expression (8), there are two probabilities of

missed detection (PMD1 and PMD2) for the best and second

best SSE, Riði ¼ 1; 2Þ. The non-central parameters d1 and

d2 can then be derived from the above expression.

Realization of ratio test using doubly non-central F

distribution

The analytical method for the solution of the confidence

level pc is not straightforward, requiring the application of

numerical methods using series representation. The CDF of

the DNCF distribution can be written as (Bulgren 1971),
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Fig. 2 Distribution of independent ratio
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pc ¼
ZR2

R1

0

Fðxjn2; n1; d2;d1Þdx

¼
X1
i¼0

X1
j¼0

CiDjIðu; n2
2
þ i;

n1

2
þ jÞ ð14Þ

where Ci ¼ ðd2=2Þie�d2=2=Cðiþ 1Þ and Dj ¼
ðd1=2Þie�d1=2=Cðjþ 1Þ are the probabilities of Poisson

distribution, Cð Þ is Gamma function, Iðu; a; bÞ ¼R u

0
ta�1ð1� tÞb�1

dt=Bða; bÞ is the CDF of Beta distribution

with u ¼ n2x=ðn2xþ n1Þ and x� 0, and Bða; bÞ ¼R 1

0
ta�1ð1� tÞb�1

dt is the Beta function with a[ 0 and

b[ 0. For a practical implementation of the algorithm, the

two infinite series are truncated when the higher orders are

not needed to reach a specified accuracy.

For a given confidence level (pc), the threshold T can be

determined by

pc ¼
ZT

0

Fðxjn2; n1; d2;d1Þdx

¼
X1
i¼0

X1
j¼0

CiDjIðu; n2
2
þ i;

n1

2
þ jÞ ð15Þ

Following the execution of LAMBDA-type algorithms,

the method here takes the outputs of carrier phase ambi-

guity resolution (R1, R2 and n) together with pre-defined

PFA and PMD to generate in online computations the

confidence levels for the candidate ambiguities at each

epoch. Given a threshold, the confidence levels can be used

to accept or reject the best set of candidate ambiguities.

Some users may be more concerned with the confidence

level satisfying the requirements rather than the confidence

level itself. In this case, in order to reduce the processing

resources consumed by online computations, it is possible

to carry out offline calculations for the threshold of (R2/R1)

to reflect the required confidence levels. Therefore, a look-

up table could be calculated off-line taking into account all

possible cases including a selected range of confidence

levels and degrees of freedom. This is especially useful for

embedded systems where computational power is low.

Results

In order to test the performance of the algorithm proposed,

it is important that the true ambiguity is known. However,

the true ambiguities may not be known in practice. How-

ever, the position errors at points of known position can

give an indication of correctly resolving ambiguities. It is

crucial that the test scheme minimizes the impact of vari-

ous errors including ephemeris, tropospheric and iono-

spheric delays, cycle slips and multipath. A Precise Point

Positioning (PPP) algorithm is implemented to demonstrate

the proposed method.

Test data and algorithm

The PPP algorithms need products generated from a network

of receivers and raw measurements from a receiver used for

positioning. There are a number of organizations that provide

products containing satellite position, clock, and ionospheric

error corrections. For example, high-quality products are

provided by the International GNSS service (IGS). The IGS

combines products provided by the different service providers

including the Centre National d’Etudes Spatiales (CNES) and

Center for Orbit Determination in Europe (CODE). Conven-

tionally, the rawdata froma receiver at an IGS station are used

because the true position of the station is known, enabling

error analysis and performance characterization. However,

the selected station should not be used to generate the prod-

ucts. Therefore, the CNES products were selected for this test,

and the raw data used were from reference stations in the

network of the National Oceanic and Atmospheric Adminis-

tration (NOAA).Data from10NOAAstationswere used. The

features of these stations are given in Table 1. The data of 96

one-hour time periods for each station were used.

Table 1 Information of stations

used for providing raw

measurement

Station code Location Receiver Antenna

BDOS Barbados LEICA GRX1200GGPRO ASH700936E_C

BJCO Benin TRIMBLE NETR5 TRM59800.00

CHIN Florida, the USA TRIMBLE NETR5 TRM55971.00

ICT5 Kansas, the USA LEICA GRX1200GGPRO LEIAX1202GG

ISER Iraq TRIMBLE NETR5 TRM57971.00

ISNA Iraq TRIMBLE NETR5 TRM57971.00

MIQE Michigan, the USA LEICA GRX1200 ? GNSS LEIAT504GG

SCWT South Carolina, the USA TRIMBLE NETR9 TRM55971.00

SUAF Alaska, the USA LEICA GRX1200GGPRO LEIAX1202GG

MTDT Montana, the USA TRIMBLE NETR5 TRM57971.00
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The PPP algorithm requires that errors are corrected as

much as possible before position calculation is carried out.

The satellite position and clock related errors are corrected

by using products from CNES. The ionospheric effect is

mitigated by using the ionospheric-free combination. The

tropospheric errors are corrected by employing existing

models and mapping function. The site-displacement

effects are corrected using site-displacement models to

estimate correction terms and adding these to position

estimates. The antenna offsets and variations are corrected

using corrections in the Antenna Exchange Format. The

satellite antenna phase wind-up corrections are calculated

based on the phase center coordinates of the receiver and

satellite antennae. The receiver clock error is cancelled by

using between-satellite difference (BSD) GPS observa-

tions. The key factor that affects conventional PPP is the

fractional cycle biases (FCB) or uncalibrated phase delay

(UPD). The PPP algorithm used here forms narrow lane

observations to minimize the impact of UPD (Jokinen et al.

2013). The positioning algorithm uses an extended Kalman

filter (EKF) and was implemented in C??. The data for

tests were from monitoring stations; therefore, zero posi-

tion process noise was used in the EKF.

Test results

For comparison purposes, three different ratio test based

ambiguity validation methods were tested.

• Integer least-squares using constant threshold (CT) for

ratio test. The threshold used was 3.0.

• Integer least-squares using fixed fail rate with simula-

tion (FFS) for ratio test. This is based on the method

presented in (Verhagen and Teunissen 2013). The

allowed fail rate in the tests was 0.1 %.

• Integer least-squares using doubly non-central F distri-

bution (DNCF) based threshold determination for ratio

test. The confidence level with DNCF was 99.9 % in

the test.

Table 2 shows the results. Among the 960 intended test

periods, only 907 datasets were available due to data gaps.

The statistics include the number of datasets where ambi-

guities were fixed, average epochs for ambiguity fixing,

and three-dimensional position errors after ambiguities

were validated in five bins. The errors of position estimates

were analyzed by comparing them to the known ITRF 2008

coordinates of the stations provided by NOAA. The accu-

racy of the reference coordinates are at the millimeter level.

In this test with real data, the true ambiguities were not

known. However, the position errors can give an indication

of which method is better. It is difficult to justify that

integer ambiguities have been fixed correctly if a solution

has a 3D error bigger than 20 cm. Although the DNCF has

the highest percentage of ambiguities not being fixed, it has

the highest percentage of position errors smaller than 5 cm

as shown in Fig. 5.

There is no significant difference in the percentage of

position errors smaller than 10.7 cm between the CT and

DNCF methods. However, the DNCF has the lowest per-

centage of 3D position errors larger than 10.7 (wavelength

of narrow lane), 15 and 20 cm as shown in Fig. 6.

If the wrong ambiguity fixing is assessed in terms of the

impact in the positioning domain, e.g., 10, 15 or 20 cm,

then the DNCF has a significantly lower wrong ambiguity

fixing rate than the other two methods. Comparing Figs. 5,

Table 2 Comparison of three validation methods

Method Number of testing

periods

Number of data

available

Number of

resolved

Average

epochs

3D error

0–5 cm

3D error

5–10.7 cm

3D error

10.7–15 cm

3D error

15–20 cm

3D error

[20 cm

CT 960 907 870

(95.92 %)

1331.6s 494

(54.47 %)

182

(20.07 %)

50

(5.51 %)

41

(4.52 %)

103

(11.35 %)

FFS 960 907 880

(97.02 %)

1306.9s 491

(54.13 %)

167

(18.41 %)

37

(4.08 %)

44

(4.85 %)

141

(15.55 %)

DNCF 960 907 788

(86.88 %)

1563.0s 503

(55.46 %)

170

(18.74 %)

39

(4.30 %)

32

(3.53 %)

44

(4.85 %)

Pe
rc

en
ta

ge
 (×

10
0%

)

3D position errors (cm)
<5 <10.7

0

0.1
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Fig. 5 Percentage of relative small 3D position errors
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6 and Table 2, the lower ambiguity fixing rate of the DNCF

method has no impact on the percentage of 3D position

errors being less than 5 and 10.7 cm. However, it has

significantly reduced the percentage of 3D position errors

lager than 10.7, 15 and 20 cm.

Conclusions

Carrier phase ambiguity validation has been an open

problem for many years. The popular ratio test and its

variations including combination of simulation with the

integer aperture (RTIA) method have not resolved the two

critical issues, the existence of bias in float ambiguity

estimates and the correlation of the two elements of the

ratio test statistic. These two issues have been addressed in

this research by using doubly non-central F distribution

(DNCF) to determine the threshold for conventional ratio

test statistic. The threshold determined over-bounds the

actual threshold needed for the ratio test in terms of con-

fidence levels. This approach is therefore a more objective

method compared to the existing approaches.

The test results with Precise Point Positioning (PPP)

algorithm using real data show that the proposed DNCF

ambiguity validation method has a better performance than

other methods in terms of percentage of 3D position errors

being less than 5 and 10.7 cm. In theory, the over-bounding

based on the independence of the two elements and the

potential of bias in the denominator of the ratio test statistic

may be overly conservative especially when there is no

bias in the float ambiguity estimates. However, the results

with PPP show that the rejection rate is higher than other

methods while it is significantly better than the other

methods in terms of wrong ambiguity fixing. A possible

explanation is that the residual errors in the products used

by PPP result in relatively large residual errors in obser-

vations. Further studies will be carried out on the

application of this method to conventional Real Time

Kinematic (RTK) positioning.
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Juan JM, Sanz J, Aragón-Àngel A, Ramos-Bosch P, Jofre M

(2012) Integrity monitoring for carrier phase ambiguities.

J Navig 65:41–58. doi:10.1017/S037346331100052X

Jokinen A, Feng S, Schuster W, Ochieng W, Hide C, Moore T, Hill C

(2013) GLONASS aided GPS ambiguity fixed precise point

positioning. J Navig 66(03):399–416

Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying,

3rd edn. Wiley, New York

Teunissen PJG (1995) The least-squares ambiguity decorrelation

adjustment: a method for fast GPS ambiguity estimation. J Geod

70:65–82

Teunissen PJG and Verhagen S (2004) On the foundation of the

popular ratio test for GNSS ambiguity resolution. In: Proceed-

ings of ION GNSS. The Institute of Navigation, Long Beach,

CA, 21–24 Sept, pp 2529–2540

Teunissen PJG, Verhagen S (2009a) GNSS carrier phase ambiguity

resolution: challenges and open problems. Springer Berlin

Heidelb Obs our Chang Earth 133(4):785–792

Teunissen PJG, Verhagen S (2009b) The GNSS ambiguity ratio-test

revisited: a better way of using it. Surv Rev 41(312):138–151

Verhagen S (2004) Integer ambiguity validation: An open problem?

GPS Solut 8(1):36–43

Verhagen S, Teunissen P (2006) On the probability density function

of the GNSS ambiguity residuals. GPS Solut 10(1):21–28

Verhagen S, Teunissen P (2013) The ratio test for future GNSS

ambiguity resolution. GPS Solut 17(4):535–548

Wang J, Stewart MP, Tsakiri M (2000) A comparative study of the

integer ambiguity validation procedures. Earth Planets Space

52:813–817

0

0.05

0.1

0.15

0.2

0.25

0.3
CT FFS DNCF

Pe
rc

en
ta

ge
 ( ×

10
0%

)

3D position errors (cm)
>10.7 >15 >20

Fig. 6 Percentage of relative big 3D position errors

86 GPS Solut (2017) 21:79–87

123

http://www.insight-gnss.org
http://dx.doi.org/10.1007/s10291-008-0093-0
http://dx.doi.org/10.1017/S037346331100052X


Wei M and Schwarz KP (1995) Fast ambiguity resolution using an

integer nonlinear programming method. In: Proceedings of ION

GPS. The Institute of Navigation, Palm Springs CA, 12–15 Sept

Dr. Shaojun Feng is a Research
Fellow at the Centre for Trans-

port Studies (CTS) within the

Department of Civil and Envi-

ronmental Engineering at

Imperial College London. He

leads the navigation research

team within the Imperial Col-

lege Engineering Geomatic

Group (ICEGG). He is a Fellow

of Royal Institute of Navigation

(FRIN) and Institution of Engi-

neering and Technology (FIET),

and Member of the US Institute

of Navigation.

Dr. Altti Jokinen is a Geomat-

ics Designer at NovAtel Inc. He

has over eight years of experi-

ence on GNSS and its applica-

tions. He received his PhD

degree from Imperial College

London in 2015. His PhD stud-

ies were focusing to Precise

Point Positioning (PPP) and his

main research aims were

reducing PPP solution conver-

gence time and improving

accuracy and integrity.

GPS Solut (2017) 21:79–87 87

123


	Integer ambiguity validation in high accuracy GNSS positioning
	Abstract
	Introduction
	Ambiguity resolution and ratio test
	Mixed integer least-squares (MILS) for ambiguity resolution
	Ratio test for ambiguity validation
	Distribution of ratio test
	Realization of ratio test using doubly non-central F distribution

	Results
	Test data and algorithm
	Test results

	Conclusions
	Acknowledgments
	References




