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Abstract Triple-frequency global navigation satellite

systems allow the introduction of additional linear obser-

vation combinations. We define two geometry-free phase

combinations and one geometry-free pseudorange minus

phase linear combination to detect and correct cycle slip in

real time. At first, the optimal BDS (BeiDou System) tri-

ple-frequency geometry-free phase combinations are

selected for cycle slip detection. Then, a detailed analysis

of the cycle slip detection is performed by examining

whether some special cycle slip groups cannot be discov-

ered by the selected combinations. Since there still remain

some cycle slip groups undetectable by the two geometry-

free phase combinations, we add a pseudorange minus

phase linear combination which is linearly independent

with these two phase combinations, to be sure that all the

cycle slips can be detected. After that, an effective decor-

relation search based on LAMBDA and least squares

minimum principle is applied to calculate and determine

the cycle slips. The method has been tested on triple-fre-

quency undifferenced BDS data coming from a benign

observation environment. Results show that the proposed

method is able to detect and repair all the small cycle slips

in the three carriers.

Keywords Triple frequency � Cycle slip � Geometry-free

phase combination � Pseudorange minus phase linear

combination � Cycle slip detection

Introduction

A cycle slip generally occurs due to the failure of phase

tracking of the GNSS receiver under conditions of signal

interruption, low signal-to-noise ratio or high receiver

dynamics. There are many methods to detect and repair

cycle slips in traditional applications of double-differenced

(DD) navigation and positioning, such as phase differenc-

ing over time, Doppler integration, phase–phase iono-

spheric residuals and phase–code comparisons (Xu 2007).

All these methods have limitations: The phase–phase

ionospheric residual method is insensitive to special cycle

slips and unable to check on which frequency the cycle

slips occur; phase–code comparison methods do not suc-

ceed in detecting some of the small cycle slips. However,

since precise point positioning (PPP) has become increas-

ingly popular during the past decade (Zumberge et al.

1997; Kouba and Héroux 2001; Ge et al. 2008; Geng and

Bock 2014), cycle slip fixing should be attempted for a

single receiver. Considering the requirement of real-time

navigation services, a method that can effectively detect

and repair single-receiver undifferenced (UD) cycle slip in

real time is desired. The TurboEdit approach may have

been the first one developed for UD cycle slip detection

(Blewitt 1990), and Bayesian detection is also applied to

UD cases (Lacy et al. 2008). However, the TurboEdit

method and Bayesian detection require several minutes of

continuous phase data before and after a cycle slip in order

to satisfy the criteria for phase connection; thus, it is not

suitable for real-time PPP (Zhang and Li 2012). The
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integration method of GPS and INS data is also used for

UD cycle slip detection (Lee et al. 2003), but the cost of an

INS system significantly constrains its feasibility in many

applications. Liu (2011) and Cai et al. (2013) specially

study the UD cycle slip detection and correction under high

ionospheric activity condition but without considering the

triple frequency. Dai et al. (2009) studied a method for

instantaneous triple-frequency GPS cycle slip detection

and correction and used the classical LAMBDA technique

to calculate the cycle. However, since only two combina-

tions were used to detect cycle slips, there still remain

some cycle slips undetectable. Teunissen and de Bakker

(2013) researched multi-frequency GNSS models for sin-

gle-receiver multi-frequency outliers, slips and ionospheric

disturbances and derived uniformly most powerful invari-

ant test statistics for spikes and slips. Their detection

capabilities are described by means of minimal detectable

biases (MDBs). More recent studies on triple-frequency

carrier phase cycle slip detection can be found in Wu et al.

(2010), Xu and Kou (2011) and de Lacy et al. (2011).

We present a cycle slip detection and determination

method for UD, triple-frequency GNSS data applicable to

real-time processing.We combine themethods of geometry-

free phase and geometry-free pseudorange minus phase

linear combinations to process the triple-frequency cycle

slips. At first, we select geometry-free phase combinations

that are characterized by lower noise and low ionospheric

impact. Then, we use two geometry-free phase combinations

to detect the cycle slip simultaneously in order to decrease

the number of insensitive cycle slip groups. For detecting and

fixing any cycle slip, a geometry-free pseudorange minus

phase linear combination is added and a search algorithm is

used to search cycle slip candidates. Finally, the least squares

minimum principle is used to validate the correctness of the

cycle slip detection and correction.

In the following, we will present first the implementa-

tion of cycle slip detection and correction. Then, BDS

triple-frequency data with simulated cycle slips are used to

test the performance of the new algorithm.

Cycle slip detection using triple-frequency
geometry-free phase combinations

The carrier phase and code observations at epoch t0 can be

expressed as:

Piðt0Þ ¼ qðt0Þ þ trðt0Þ � tsðt0Þ þ bsr;iðt0Þ þ Tðt0Þ þ biI
0ðt0Þ

þ epiðt0Þ ð1Þ

kiuiðt0Þ ¼ qðt0Þ þ trðt0Þ � tsðt0Þ þ Br
r;iðt0Þ þ Tðt0Þ

þ kiðNiðt0Þ � giIðt0ÞÞ þ euiðt0Þ ð2Þ

with

gi ¼ ki=k
2
1 ð3Þ

bi ¼ f 21 =f
2
i ð4Þ

where k, u and P refer to carrier phase wavelength, carrier

phase observation and code observation, respectively. The

symbols q, tr, ts and T denote the topocentric satellite

distance, receiver clock error, satellite clock error and

troposphere delay, respectively, and bsr;i and Br
r;i denote the

code and phase hardware delays, respectively. The iono-

spheric delay on the B1 signal scaled to cycles and meters

is denoted by I and I0, respectively, N is the integer

ambiguity, gi and bi are amplification factors, and eu and ep
denote the respective phase and code noise, respectively.

The subscript i (i = 1, 2, 3) denotes the signal, and f is the

signal frequency.

Based on the triple-frequency data combination theory

(Cocard et al. 2008; Li et al. 2014), assuming that

the scalars a, b and c satisfy the condition

aþ bþ c ¼ 0, the triple-frequency geometry-free carrier

phase combination observation equation at epoch t0 can be

expressed as:

ak1u1ðt0Þ þ bk2u2ðt0Þ þ ck3u3ðt0Þ ¼ �gIðt0Þ þ ak1N1ðt0Þ
þ bk2N2ðt0Þ þ ck3N3ðt0Þ þ Bðt0Þ þ eðt0Þ ð5Þ

with

g ¼ ak1 þ bk2f1=f2 þ ck3f1=f3 ð6Þ
Bðt0Þ ¼ absr;1ðt0Þ þ bbsr;2ðt0Þ þ rbsr;3ðt0Þ ð7Þ

eðt0Þ ¼ ak1e1ðt0Þ þ bk2e2ðt0Þ þ rk3e3ðt0Þ ð8Þ

where g denotes amplification factor of the combination,

B is the hardware delays of the combination observation

and e is the combination error.

The condition aþ bþ c ¼ 0 cancels the geometry term

and the other non-dispersive terms, such as the tropo-

spheric delay, satellite orbit bias and clock bias, as well as

receiver clock bias. The combination observation is only

affected by the ionospheric delay residuals, equipment

delays and noises.

Assuming that a cycle slip group (DN1, DN2, DN3),

where DNi denotes a cycle slip value on the ui signal,

occurs at next epoch t1, we have:

ak1u1ðt1Þþbk2u2ðt1Þþ ck3u3ðt1Þ¼�gIðt1Þþak1ðN1ðt1Þ
þDN1Þþbk2ðN2ðt1ÞþDN2Þþ ck3ðN3ðt1ÞþDN3Þ
þBðt1Þþ eðt1Þ ð9Þ

Differencing (5) and (9), the between-epoch observation

equation is obtained as:
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ak1Du1þbk2Du2þ ck3Du3 ¼�gDIþak1DN1

þbk2DN2þ ck3DN3þDBþDe ð10Þ

where the operator D represents differencing between

epochs.
Since the equipment delays usually vary slowly with

time, the equipment delays of the above observation

combination are small enough to be omitted compared with

the observation noise. Because (10) is only affected by the

ionospheric delay �gDI and noise D�, this combination can

be used to detect cycle slip in kinematic applications using

UD phase observations. If we further assume that �1 ¼
�2 ¼ �3 and that DI is constant when the ionosphere is

quiet, the combined ionospheric error and combined noise

depend on the scalars a, b and c. A good detection com-

bination should reduce the ionospheric error and noise as

much as possible; hence, the scalars should be selected

such that ak1 þ bk2f1=f2 þ ck3f1=f3 ! 0 and ðak1Þ2 þ
ðbk2Þ2þ ðck3Þ2 ! 0. When the ionosphere is quiet, the

change in ionospheric delay between a satellite and a

receiver is mainly a function of the satellite elevation

angles, which changes slowly (Banville and Langley 2013).

In this case, the DI can be ignored.

Assuming that the carrier phase signals have the same

standard deviation r, the standard deviation rða;b;cÞ of (10)
is obtained as:

rða;b;cÞ ¼
ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ak1ð Þ2þ bk2ð Þ2þ ck3ð Þ2
q

r ð11Þ

where
ffiffiffi

2
p

results from differencing the epochs. Since

rða;b;cÞ is generally supposed to be a normally distributed

error, we can use the following inequality to judge whether

a cycle slip arises at the current epoch:

ak1D/1 þ bk2D/2 þ ck3D/3j j � jrða;b;cÞ ð12Þ

where j is a coefficient. Usually, we can take j ¼ 3

(99.7 % confidence level) or 4 (99.9 % confidence level) as

the threshold coefficient of cycle slip. If the condition (12)

is satisfied, one concludes that a certain cycle slip group

has occurred. If the condition of (12) is not satisfied, we

cannot simply draw a conclusion that the carrier phase data

are free of cycle slips. There are certain special cycle slip

groups which cannot be readily detected using (12), similar

to the case of the dual-frequency ionospheric residual

method. We also define cycle slip groups whose slips are

insensitive to (12), similarly as those in Dai et al. (2009).

Selection of optimal geometry-free phase
combinations

According to the above discussion, an ideal geometry-free

phase detection combination should satisfy these conditions:

aþ bþ c ¼ 0

minððak1Þ2 þ ðbk2Þ2 þ ðck3Þ2Þ
minðak1 þ bk2f1=f2 þ ck3f1=f3Þ

ð13Þ

It should also be emphasized that the larger the scalars a,
b and c, the larger the value jrða;b;cÞ. If jrða;b;cÞ is too large

for some combinations, certainly the small cycle slips

cannot be detected by such combinations. Therefore, the

scalar values are searched within the range of -4 to 4 in

order to reduce the noise. We assume the r ¼ 0:01 cycle

and j ¼ 4. The optimal BDS geometry-free phase combi-

nations constructed and selected are given in Table 1. The

frequency values of three carrier signals of BDS are: B1

1561.098 MHz, B2 1207.14 MHz and B3 1268.52 MHz.

The number of the insensitive cycle slip groups of every

combination is counted within the range of 0–10 cycles and

shown as the fifth column ‘\4rða;b;cÞ’ in Table 1.

Table 1 shows that the noises of all the combinations are

less than 0.02 cycles, which is much smaller than 1 cycle.

Therefore, the smallest cycle slip of size 1 can be detected

by a respective combination given in the table. The com-

binations 1, 2 and 3 are the dual-frequency ionospheric

residual combinations. Their noises are smaller than those

other triple-frequency combinations, but they can only

detect the cycle slip on two signals. Since they cannot

detect the cycle slip that occurs only on the third signal, the

number of the insensitive cycle slip groups of the combi-

nations 1, 2 and 3 is larger than the number of other

combinations. In this case, the inequality abc 6¼ 0 should

be enforced to get a triple-frequency cycle slip detection

combination in order to reduce the number of the insensi-

tive cycle slip groups. Combination 4, which is the least

insensitive cycle slip group, is the best one. Since the noise

of combinations 5 and 6 is larger than other combinations,

while the ionospheric delays are smaller than other com-

binations, these can be used for cycle slip detection in

ionospheric active cases. We can find that each combina-

tion in the table has some insensitive cycle slip groups, but

different combinations have different insensitive cycle slip

Table 1 BDS optimal triple-frequency geometry-free phase

combinations

No. a; b; c½ � g rða;b;cÞ \4rða;b;cÞ

1 [0, 1, -1] 0.0303 0.0048 21

2 [1, 0, -1] -0.0988 0.0043 21

3 [1,-1, 0] -0.1291 0.0044 21

4 [1, 1, -2] -0.0685 0.0080 13

5 [1, 2, -3] -0.0381 0.0125 16

6 [1, 3, -4] -0.0078 0.0172 15

7 [1, -2, 1] -0.1595 0.0082 17

8 [2, 1, -3] -0.1673 0.0119 15
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groups. Therefore, two combinations are adopted to detect

cycle slip simultaneously in order to reduce the insensitive

cycle slip groups.Any two combinations in Table 1 are

selected to yield the joint combinations, which are given in

Table 2. The numbers of the most insensitive cycle slip

groups of the combinations within the range (0,0,0) to

(10,10,10) and (0,0,0) to (100,100,100) are also counted

and analyzed under the condition (6), respectively.

Table 2 shows that all the smaller cycle slips within the

range (0,0,0) to (10,10,10) cycles can be detected by most of

the joint combinations, but there are still several insensitive

cycle slip groups undetectable within the range (0,0,0) to

(100,100,100) cycles. Since there are larger noises in the

combinations [1, 3, -4], [1, 2, -3] and [2, 1, -3], these

contain more insensitive cycle slip groups. However, the

joint combinations highlighted in bold have only one

insensitive cycle slip group within the range (0,0,0) to

(100,100,100) cycles, so it is possible to say that nearly all

cycle slips can be detected. Since any three of the triple-

frequency geometry-free phase combinations are linear

dependent, there always remain some insensitive cycle slip

groups no matter how many geometry-free phase combina-

tions are used to detect the cycle slip. To solve this problem, a

triple-frequency geometry-free combination which is lin-

early independent with geometry-free phase combinations

must be found. According to the above analysis, a pseudor-

ange minus phase linear combination is chosen to detect the

cycle slip, which is similar to the HMW (Hatch 1983; Mel-

bourne 1985; Wübbena 1985) combination of TurboEdit

approach. Moreover, most of the insensitive cycle slip

groups are generally large enough to be easily detected by the

phase–code comparison method and other methods.

Cycle slip detection using pseudorange minus
phase linear combination

The triple-frequency code and phase combination obser-

vation equations can be expressed as:

Plmn ¼ lP1 þ mP2 þ nP3

¼ qþ blmnI
0 þ T þ ðcs � crÞ þ blmn þ elmn ð14Þ

kijkuijk ¼ kijkðiu1 þ ju2 þ ku3Þ
¼ qþ T þ ðcs � crÞ þ kijkðNijk � gijkIÞ þ Bijk þ eijk

ð15Þ

with

blmn ¼ lbsr;1 þ mbsr;2 þ nbsr;3 ð16Þ

elmn ¼ lep1 þ mep2 þ nep3 ð17Þ

Blmn ¼ iBs
r;1 þ jBs

r;2 þ kBs
r;3 ð18Þ

eijk ¼ ieu1 þ jeu2 þ keu3 ð19Þ

where m, n and l are the code combination scalars

(l;m; n 2 R, lþ nþ m ¼ 1); i, j and k are the phase com-

bination scalars (i; j; k 2 N).

Differencing (14) and (15), the observation equation of

the pseudorange minus phase linear combination is

obtained as:

Nijk ¼ uijk �
Plmn

kijk
þ fI þ e0 ð20Þ

where Nijk is the combination integer ambiguity, f is the

amplification factors and e0 is the noise. Differencing (20)

over the epoch, we have:

Table 2 Joint combinations for

cycle slip detection and number

of insensitive groups

Joint combinations \10 \100 Joint combinations \10 \100

[1, -2, 1][0, 1, -1] 0 3 [1, 2, -3][1, 1, -2] 0 8

[1, -1, 0][0, 1, -1] 0 1 [1, 3, -4][0, 1, -1] 1 7

[1,-1, 0][1, -2, 1] 0 2 [1, 3, -4][1, -2, 1] 0 2

[1, 0, -1][0, 1, -1] 0 2 [1, 3, -4][1, -1, 0] 0 1

[1, 0, -1][1, -2, 1] 0 2 [1, 3,-4][1,0,-1] 0 2

[1, 0, -1][1, -1, 0] 0 2 [1, 3,-4][1, 1, -2] 0 6

[1, 1, -2][0, 1, -1] 0 2 [1, 3, -4][1, 2, -3] 0 26

[1, 1, -2][1, -2, 1] 0 1 [2, 1, -3][0,1,-1] 0 2

[1, 1, -2][1, -1, 0] 0 1 [2, 1, -3][1, -2, 1] 0 1

[1, 1,-2][1, 0, -1] 0 4 [2, 1, -3][1, -1, 0] 0 1

[1, 2,-3][0, 1, -1] 1 4 [2, 1, -3][1, 0, -1] 0 6

[1, 2,-3][1, -2, 1] 0 2 [2, 1, -3][1, 1, -2] 1 10

[1, 2, -3][1, -1, 0] 0 1 [2, 1, -3][1, 2, -3] 0 4

[1, 2, -3][1, 0, -1] 0 2 [2, 1, -3][1, 3, -4] 0 4
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DNijk ¼ Nijkðt1Þ � Nijkðt0Þ ¼ D/ijk �
DPlmn

kijk
þ fDI þ D�0 ð21Þ

Since the equipment delays usually vary slowly with

time, the presumed stability of the equipment delay means

they will cancel in the time difference. If the wavelength

kijk is long enough, Eq. (20) can be used to detect the cycle

slip. Assuming that rp is the code noise and that

rp1 ¼ rp2 ¼ rp3 ¼ rp, the noise rDNijk
of (21) can be

obtained as follows:

rDNijk
¼

ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ði2 þ j2 þ k2Þr2/ þ ðl2 þ m2 þ n2Þr2p=k2ijk
q

ð22Þ

where
ffiffiffi

2
p

results fromdifferencing the epochs.We also define

4rDNijk
to justify the occurrence of the cycle slips. The smaller

the noise rDNijk
, the higher the detection sensitivity. To mini-

mizerDNijk
, the factor l2 þ m2 þ n2 should be decreased,while

kijk should be increased. In addition, when selecting the scalars

i, j and k, the pseudorange minus phase linear combination

must be linearly independentwith the other two geometry-free

phase combinations. Therefore, all cycle slips can be detected

by using the three combinations. Some optimal combinations

are also selected and given in Table 3. Assuming that the code

noise is 0.3 m, and because of the relation

l2 þ m2 þ n2 � 3lmn, sincemþ nþ l ¼ 1 as given in (14), so

we set m ¼ n ¼ l ¼ 1=3 to minimize the code noise.

Table 3 shows that all the three-frequency pseudorange

minus phase linear combinations have an extra-wide lane

and all of their noises are smaller than 0.2 cycle, which can

be used to detect the small cycle slip.

A new cycle slip correction method

After the cycle slip detection, the size of the cycle slips

should be calculated. First, the combination observation L0

can be computed as follows:

L0
3�1 ¼ B3�6L6�1 ð23Þ

with

B ¼

a1k1 b1k2 c1k3 0 0 0

a2k1 b2k2 c2k3 0 0 0

i j k
�1

lkijk

�1

mkijk

�1

nkijk

2

6

6

4

3

7

7

5

ð24Þ

L ¼ ½ lu1
lu2

lu3
lp1 lp2 lp3 �T ð25Þ

where lui
and lpi denote the raw code and carrier mea-

surements, respectively, (a1, b1, c1) and (a2, b2, c2) are the
scalars of two geometry-free phase combinations and (i, j,

k) and (�1
lkijk

; �1
mkijk

; �1
nkijk

) are the phase combination scalars and

code combination scalars of pseudorange minus phase

linear combination, respectively.

The linear equations for cycle slip determination are

constructed as:

AX ¼ L0 ð26Þ

with

A ¼
a1k1 b1k2 c1k3
a2k1 b2k2 c2k3
i j k

2

4

3

5 ð27Þ

X ¼ ½DN1 DN2 DN3 �T ð28Þ

The 3 9 3 covariance matrix Q of L0 can be expressed

as

Q ¼ BQ0B
T ð29Þ

with

Q0 ¼ diagðqu1
; qu2

; qu3
; qp1 ; qp2 ; qp3Þ ð30Þ

where qui
and qpi refer to the variance of phase and code

observation, respectively. The least squares estimate for X̂

is

X̂ ¼(ATPA)�1ATPL0 P ¼ Q�1 ð31Þ

Since A is a non-singular matrix of dimension 3 9 3,

this estimate can be written as

X̂ ¼ A
�1

3�3L
0
3�1 ð32Þ

Equation (32) shows that the covariance matrix Q does

not contribute to the adjustment result since the system is

not overdetermined, and therefore, the correlation of the

detection combinations does not contribute either. We can

directly round the float cycle slip of (32), but the cycle slip

value may not be correct because of the influence of the

observation error. The larger the condition number of A,

which will lead to the near colinearity of the three detection

combinations, the larger the influence of observation error

on the solution. So search methods like LAMBDA are used

Table 3 BDS pseudorange minus phase linear combinations

No. ½i; j; k� kijk f rDNijk

1 [7, -8, -1] 146.526 23.821 0.151

2 [5, 3, -9] 29.305 11.388 0.152

3 [-8, 3, 7] 24.421 -23.460 0.157

4 [-1, -5,6] 20.932 0.362 0.112

5 [1, 4, -5] 6.371 -0.321 0.099

6 [0, -1, 1] 4.884 0.040 0.054

7 [-1, -6, 7] 3.960 0.402 0.145

8 [2, 8, -10] 3.185 -0.643 0.199

9 [1, 3, -4] 2.765 -0.281 0.114

10 [-1, -7, 8] 2.187 0.442 0.188
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to find the correct cycle slip group (Teunissen 1995). The

search space can be defined by the following equation

ðX̂� XÞQXðX̂ � XÞT � v2 ð33Þ

with

QX ¼ ðATQ�1AÞ�1 ð34Þ

where v2 defines the size of search space. We set v2 ¼ 5

empirically.

In order to improve the search efficiency, LAMBDA

uses the integer Gaussian decorrelation transformation,

N0 ¼ ZX QN̂0 ¼ ZQXZ
T ð35Þ

where Z is the transformation matrix with detðZÞ ¼ 1 and

QN̂0 is covariance matrix after transformation. The opti-

mization of LAMBDA search satisfies the following

condition

ðN̂� N0ÞTQ�1
N 0 ðN̂� N0Þ ¼ min ð36Þ

Equation (36) means that the integer vector X of cycle slips

has the minimum distance to the float solution vector X̂.

Equation (36) does not guarantee the correct ambiguities

have been found. But the correct cycle slip correction X

must satisfy the following condition

VTPV ¼ min ð37Þ

where V ¼ AX � L0. If the cycle slip correction X is not

correct, then V will be much larger and VTPV 6¼ min.

Therefore, Eq. (37) can be used to select the correct cycle

slip correction. The cycle slip X can be obtained from

X ¼ Z�1N0.

Data test and analysis

Static triple-frequency data of BDS observations of May 5,

2011, are used as an example. The data sampling interval is

15 s. The satellite elevation cutoff angle is set to 15� to

make the reduce multipath. In order to test the validity of

the method, simulated artificial cycle slips are added. The

two triple-frequency geometry-free phase joint combina-

tions [1,1,-2] and [1,-2,1] (which has the least insensitive

cycle slip groups in Table 2) and the wide lane pseudor-

ange minus phase linear combination [1,3,-4] (whose

ionospheric delays is smallest in Table 1) are selected

randomly to detect and repair the cycle slips in this

experiment, which are called combinations 1, 2 and 3

below. Threshold coefficient of cycle slip detection is set as

4. The cycle slip search is used to be sure that the cycle slip

can be repaired correctly.

Figure 1 shows that the fluctuation range of the geom-

etry-free phase combinations [1,1,-2] and [1,-2,1] after

differencing is ±0.02 cycles, which are smaller than that of

the pseudorange minus phase linear combination [1,3,-4]

(±0.2 cycles). So we conclude that the small cycle slip

detection capability of phase combination is better than that

of the pseudorange minus phase linear combination.

As done in Dai et al. (2009), the small cycle slips from

(0,0,1) to (2,2,2) with an interval of 15 epochs are added in

turn to the phase data, and the added cycle slips are given

in Table 4. The results of the cycle slip detection and

correction are shown in Fig. 2 and listed in Table 4. The

red line means the threshold of cycle slip detection in

Fig. 2.

Figure 2 shows that most of the cycle slips can be

detected simultaneously by three detection combinations;

for example, the differencing value of three cycle slip

detection combinations has all exceeded the threshold of

cycle slip detection (shown as the red dotted line) when the

cycle slip [0,0,1] occurs. However, there still remain some

insensitive cycle slip groups undetectable by one or two

detection combinations; for example, the insensitive cycle

slip groups (0,1,2) and (0,2,1) cannot be detected by

detection combination 2 and 1, respectively, and the cycle

slip groups [1,1,1] and [2,2,2] cannot be detected by both

detection combinations 1 and 2. But if only the cycle slip

can be detected by one detection combination, the cycle

slip can be corrected. The example shows that the cycle

slip groups [1,1,1] and [2,2,2] cannot be detected by

detection combinations 1 and 2, but detection combination

3 can detect the cycle slip, so cycle slip groups 1 and 2 can

be detected and corrected. The results show that the algo-

rithm derived can detect and correct not only the small

cycle slips in Table 4 but also the insensitive ones. Table 4

shows that there are eight cycle slips not validated correctly

by the principle ðN̂� N0ÞTQ�1
N0 ðN̂� N0Þ ¼ min, but all of

the cycle slips can be validated by the least squares

Fig. 1 Differencing value of the cycle slip detection combinations

when no cycle slip occurs
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minimum principle VTPV, which is outlined in (37). From

this, we can find that the new cycle slip correction method

validated by the condition VTPV ¼ min can get a more

accurate correction result than the other method validated

by the principle ðN̂� N0ÞTQ�1
N0 ðN̂� N0Þ ¼ min.

Conclusions

The proposed algorithm is derived for a single receiver

without differencing observations between satellites. Since

the GNSS geometry-free phase combination is only

affected by the phase noise and the ionospheric delay, it

can be used to detect the small cycle slip while there still

remain some undetectable special insensitive cycle slip

groups. However, if two proper geometry-free phase

combinations are simultaneously used to detect cycle slips,

nearly all of the cycle slip groups are detectable except for

the most insensitive ones. When the three-frequency

pseudorange minus phase linear combination is added,

which is linearly independent from the other phase com-

binations, one can be sure that all of the cycle slip groups

are detected. During calculation and processing of the

cycle slip, the decorrelation search based on the LAMBDA

algorithm can significantly reduce the search space and

improve the calculation efficiency, and the correct cycle

slip candidates can be identified by the least square

adjustment principle. The major limitations that the data

Table 4 Comparing the cycle

slip correction results by the

condition ðN̂� N0ÞTQ�1
N 0

ðN̂� N0Þ ¼ min and

VTPV ¼ min

Cycle slips ðL0ÞT Search results ðN̂� N0ÞTQ�1
N 0 ðN̂� N0Þ VTPV

[0, 0, 1] [-0.4566, 0.2242, -3.8573] [0, 0, 1] 4.86 0.125

[0, 0, 2] [-0.9469, 0.4704, -8.0132] [0, 0, 2]

[0, 0, 3]

23.41

22.73

0.009

105.229

[0, 1, 0] [0.2523, -0.4987, 3.0189] [0, 1, 0]

[0, 1, 1]

103.06

80.25

0.013

107.968

[0, 1, 1] [-0.2328, -0.2549, -1.080] [0, 1, 1] 14.55 0.034

[0, 1, 2] [-0.6969, -0.0221, -5.010] [0, 1, 2] 22.47 0.004

[0, 2, 0] [0.4968, -0.9902, 5.9753] [0, 2, 0]

[0, 2, 1]

157.83

125.49

0.015

106.500

[0, 2, 1] [0.0237, -0.7554, 1.9904] [0, 2, 1] 5.32 0.002

[0, 2, 2] [-0.4492, -0.5213, -2.004] [0, 2, 2] 0.50 0.001

[1, 0, 0] [0.1984, 0.1831, 1.0772] [1,0,-1]

[1, 0, 0]

44.19

51.19

103.803

0.038

[1, 0, 1] [-0.2857, 0.4305, -3.0453] [1, 0, 1] 4.53 0.013

[1, 0, 2] [-0.7558, 0.6648, -7.0120] [1, 0, 2] 18.87 0.005

[1, 1, 0] [0.4407, -0.3088, 4.0162] [1, 1, 0] 7.92 0.011

[1, 1, 1] [-0.0347, -0.0671-0.0278] [1, 1, 1]

[1, 1, 2]

27.38

26.42

0.004

105.102

[1, 1, 2] [-0.5043, 0.1661, -3.9890] [1, 1, 2] 1.83 0.002

[1, 2, 0] [0.6801, -0.7994, 6.9275] [1, 2, 0] 11.39 0.043

[1, 2, 1] [0.2206, -0.5681, 3.0397] [1, 2, 1] 0.15 0.010

[1, 2, 2] [-0.2611, -0.3306, -1.034] [1, 2, 2] 19.10 0.025

[2, 0, 0] [0.3823, 0.3770, 1.9976] [2, 0, 0]

[2, 0, 1]

17.70

17.48

0.049

104.796

[2, 0, 1] [-0.1006, 0.6167, -2.0744] [2, 0, 1] 10.22 0.153

[2, 0, 2] [-0.5646, 0.8527, -6.0125] [2, 0, 2] 3.54 0.032

[2, 1, 0] [0.6362, -0.1234, 5.0574] [2, 1, 0] 10.81 0.056

[2, 1, 1] [0.1578, 0.1153, 1.0058] [2, 1, 1] 0.46 0.065

[2, 1, 2] [-0.3184, 0.3593, -3.0473] [2, 1, 2]

[2, 1, 3]

38.67

31.19

0.028

103.445

[2, 2, 0] [0.8736, -0.6084, 7.9497] [2, 2, 0] 7.70 0.033

[2, 2, 1] [0.4105, -0.3749, 4.0225] [2, 2, 1] 0.26 0.003

[2, 2, 2] [-0.0665, -0.1360, -0.033] [2, 2, 2]

[2, 2, 3]

156.96

122.76

0.009

105.295
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should be obtained in low multipath condition and the

minor changes in the ionospheric delay between two

adjacent epochs must still be addressed. In some extreme

cases, the detection approach may lead to false results,

which need to be further analyzed and studied.
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