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Abstract Due to the limited frequency stability and poor

accuracy of typical quartz oscillators built-in GNSS

receivers, an additional receiver clock error has to be

estimated in addition to the coordinates. This leads to

several drawbacks especially in kinematic applications: At

least four satellites in view are needed for navigation, high

correlations between the clock estimates and the up-coor-

dinates. This situation can be improved distinctly when

connecting atomic clocks to GNSS receivers and modeling

their behavior in a physically meaningful way (receiver

clock modeling). Recent developments in miniaturizing

atomic clocks result in so-called chip-scale atomic clocks

and open up the possibility of using stable atomic clocks in

GNSS navigation. We present two different methods of

receiver clock modeling, namely in an extended Kalman

filter and a sequential least-squares adjustment for code-

based GNSS navigation using three different miniaturized

atomic clocks. Using the data of several kinematic test

drives, the benefits of clock modeling for GPS navigation

solutions are assessed: decrease in the noise of the up-

coordinates by up to 69 % to 20 cm level, decrease in

minimal detectable biases by 16 %, and elimination of

spikes and subsequently decrease in large position errors

(35 %). Hence, a more robust position is obtained. Addi-

tionally, artificial partial satellite outages are generated to

demonstrate position solutions with only three satellites in

view.

Keywords GNSS � Receiver clock modeling � Allan
deviation � Clock coasting

Introduction

GNSS positioning and navigation are based on one-way

range measurements. More precisely, only pseudoranges

are observed since the timescales of the satellites and the

receiver are not synchronized. Usually, the timescales are

linked to a third timescale, i.e., GNSS system time, by

introducing so-called clock errors. To account for the

satellite time and frequency offset, summarized as satellite

clock error, appropriate corrections are provided via the

navigation message in real time, or by orbit and clock

products of the International GNSS Service (IGS, Dow

et al. 2009) in post-processing. Due to the generally poor

accuracy and limited long-term ([1 s) frequency stability

of a GNSS receiver internal quartz oscillator, the so-called

receiver clock error has to be estimated on an epoch-wise

basis. Consequently, at least four satellites in view are

required every epoch to solve the equation system com-

prising four unknowns, i.e., three receiver coordinates and

one receiver clock error. The corresponding positioning

geometry is the hyperbolic mode (Kleusberg 2003). This is

the typical situation in single point positioning (SPP).

However, some drawbacks are immanent: (1) The up-

coordinate is determined two to three times worse than the

horizontal coordinates, (2) high correlations of up to 99 %

between the up-coordinate and clock error persist, and (3)

Disclaimer: The authors do not attempt to recommend any of the

instruments under test. It is also to be noted that the performance of

the equipment presented depends on the particular environment and

the individual instruments in use. Other instruments of the same type

or the same manufacturer may show different behavior. The reader is,

however, encouraged to test his own equipment to identify the system

performance with respect to a particular application.

& Thomas Krawinkel

krawinkel@ife.uni-hannover.de

1 Institut für Erdmessung, Leibniz Universität Hannover,

Schneiderberg 50, 30167 Hannover, Germany

123

GPS Solut (2016) 20:687–701

DOI 10.1007/s10291-015-0480-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s10291-015-0480-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10291-015-0480-2&amp;domain=pdf


at least four satellites are necessary for positioning (Bed-

narz and Misra 2006); especially in case of kinematic

positioning, the overall situation can be significantly

improved if more stable receiver clocks are available and

the information about their frequency stability can be

introduced into the estimation process (Sturza 1983;

Weinbach 2013). The basic requirement for this receiver

clock modeling (RCM) approach is a clock noise smaller

than the receiver noise over the modeling interval (Wein-

bach and Schön 2011).

Recent developments of low-priced, low power con-

suming, and stable miniaturized atomic clocks (MACs),

especially chip-scale atomic clocks (CSACs), offer the

required stability and accuracy and thus open up the pos-

sibility of using atomic clocks in real kinematic GNSS

applications without severe restrictions regarding power

supply and environmental influences on the clocks. When

connecting one of these atomic clocks to a GNSS receiver,

replacing or steering the internal oscillator accordingly,

and modeling its behavior in a physically meaningful way

instead of epoch-wise estimation, the navigation perfor-

mance can be improved distinctly. The reason for these

improvements is not the higher redundancy (one observa-

tion less would be needed in an ideal case of perfect syn-

chronization) when exploiting the frequency stability. In

fact, the hyperbolic geometry of GNSS positioning based

on pseudorange observations gets somehow closer to tri-

lateration based on true range measurements which has a

better performance (van Diggelen 2009).

First, we present and discuss the performance evaluation

of three different MACs. Subsequently, the basic idea and

different concepts of receiver clock modeling in code-

based GNSS navigation using a Kalman filter and a

sequential least-squares approach, respectively, are

described. The theoretical developments are then validated

by means of a real kinematic experiment. The results are

discussed quantifying the improvement of the GNSS

performance.

Clock characterizations

Basically, a clock is an oscillator with a given nominal

frequency mnom coupled with a frequency counter generat-

ing a sinusoidal signal. According to Schön (2013), the

deviation of the current frequency m from mnom with respect

to a reference timescale t can be described as

m tð Þ ¼ mnom þ Dmþ D � t � t0ð Þ þ y tð Þ ð1Þ

where Dm and D are the frequency offset and drift,

respectively, y(t) denotes random frequency fluctuations,

and t0 is an arbitrary starting point in time. Hence, in the

time domain, the resulting clock error, i.e., the difference

between nominal time t and time T(t) read on the clock at t,

reads

T tð Þ � t ¼ T t0ð Þ � t þ Dm
mnom

t � t0ð Þ

þ D

2mnom
t � t0ð Þ2þ r

t

t0

yð�tÞd�t
ð2Þ

which can be simplified to

dt ¼ b0 þ b1 t � t0ð Þ þ b2 t � t0ð Þ2þx t; t0ð Þ ð3Þ

with a time offset b0, frequency offset b1, and frequency

drift b2, and random noise x(t,t0). Thus, the main part of a

clock model can be described by a quadratic polynomial.

The more interesting characteristics of a clock are con-

tained in the underlying noise processes. Due to the fact

that these processes are non-stationary—meaning their

stochastic behavior changes over time—we cannot

describe them by means of classical variances. A proper

and widely used tool for clock characterization is the time-

dependent Allan variance r2y (Allan 1987). This measure

then enables the determination of a modeling or predicting

interval sp, respectively, over which receiver clock mod-

eling is physically meaningful, i.e., clock noise is smaller

than GNSS receiver noise:

T t0 þ sp
� �

� t0 þ sp
� �

� b0 þ b1sp þ b2s
2
p þ spry sp

� �

ð4Þ

and sp � ry sp
� �

\rrx. The noise rrx of a typical commercial

receiver can be assessed to approximately 1 % of the chip

or wavelength of the signal in use, e.g., 3 m, 0.3 m, or

2 mm for C/A-code, P-code, or L1 carrier phase observa-

tions, respectively.

Devices under test

Three different MACs, each delivering 10-MHz output

signals, were selected for our test purposes, namely:

Microsemi QuantumTM SA.45 s CSAC—the first gener-

ation was developed by Microsemi, Inc. (former: Sym-

metricom, Inc.) and QuantumTM and released to the market

in 2011. It weighs about 35 g, is smaller than 17 cm3, and

has a power consumption of less than 120 mW (Microsemi

2015).

Jackson Labs LN CSAC—a derivative of the Microsemi

CSAC. In this device, the CSAC module is complemented

by a very low phase-noise OCXO (oven controlled crystal

oscillator) post-filter generating an additional output signal

with higher short-term frequency stability (Jackson Labs

2015).

Stanford Research Systems PRS10—this legacy rubid-

ium frequency standard delivers the highest (short-term)

frequency stability of the devices under test. However, it
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has a bigger housing (600 g, 393 cm3) and a much higher

requirements regarding input voltage and power con-

sumption (Stanford Research Systems 2015).

Frequency stabilities

Since GNSS receivers almost exclusively can be fed by

frequency signals of typically 5 and/or 10 MHz, and not

timing signals, one prerequisite for receiver clock mod-

eling is the knowledge about the frequency stability, i.e.,

Allan variances, of the device at hand. One source to

gather this information is manufacturer’s data which,

however, are mostly only given for few averaging times.

In addition, these values are not instrument specific but

valid for a whole product series. For that reason, and in

order to validate manufacturer’s data, individual charac-

terizations of our MACs are necessary. The results sub-

stantiating this necessity are shown in Krawinkel and

Schön (2014a). Individual clock characterizations can

even be carried out in a production environment, although

this would be restricted to short-term stability. In order to

ensure a certain statistical confidence, the comparison time

with another frequency standard has to be at least 7–8

times longer than the averaging time of the Allan variance

to be calculated.

The stability of a frequency standard can be deter-

mined by comparing it to another frequency standard of at

least one magnitude higher stability. In this case, the three

MACs were compared to an active hydrogen maser (H-

maser) VREMYA-CH VCH-1003A at Physikalisch-Tech-

nische Bundesanstalt, Germany’s official metrology

institute. The MACs’ and H-maser’s 10-MHz signals

were compared by means of a multi-channel phase

comparator (TimeTech GmbH) with selectable sampling

intervals of 1 and 100 s, carried out for several hours and

for about a week, respectively, to allow for an optimal

determination of the short- and long-term stabilities of the

test devices.

The frequency stability analysis consists of two parts:

(1) raw data time series analyses and (2) the computation of

Allan deviations. The raw data analysis gives insight into

the principle offset and drift behavior of the output signals

of the device (Krawinkel and Schön 2014a). Subsequently,

these time and frequency offsets and drifts are then

removed from the raw data so that the (fractional) fre-

quency data are not biased by systematic effects anymore

and its stochastic behavior can be explored. The most

prevalent parameter of frequency stability is the Allan

variance or Allan deviation (ADEV), respectively. Hence,

for each MAC, we compute the overlapping ADEV

because of its increased statistical confidence compared to

the standard ADEV (Riley 2008):

r2y sð Þ ¼ 1

2m2 M � 2mþ 1ð Þ �
XM�2mþ1

j¼1

Xjþm�1

i¼j

yiþm � yi

 !2

ð5Þ

where yi is the ith of M fractional frequency values aver-

aged over the sampling interval s with averaging factor m.

The resulting ADEV curves are shown in the top panel

of Fig. 1 for averaging times from one second to approx-

imately 1 day. For comparison reasons, the manufacturer’s

values are depicted in the bottom panel of Fig. 1. Note that

manufacturer’s data are standard and not overlapping

ADEV values. However, this does not degrade compar-

isons between them because using overlapping samples

only reduces the ADEV’s variability but not the overall

shape of the resulting ADEV curves (Riley 2008). Since

Fig. 1 Allan deviations of investigated atomic clocks. Values

determined for our devices (top) and values from manufacturer’s

data (bottom). (Microsemi 2015; Jackson Labs 2015; Stanford

Research Systems 2015)
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these figures are displayed as log–log plots, the dominating

noise processes at different averaging intervals s can be

determined by means of the slopes. In our case, four dif-

ferent noise types are present and listed in Table 1.

Based on the top panel of Fig. 1, we find that the

Jackson Labs CSAC exhibits white noise frequency mod-

ulation (WFM) up to approximately 1 h and then transi-

tions into flicker noise frequency modulation (FFM). The

tested device performed about 1.5 times worse than man-

ufacturer’s data indicate. As expected, the OCXO post-

filtered signal shows a higher short-term stability than the

raw CSAC signal. The steering of the OCXO signal to the

CSAC module can also be seen in terms of long-term

frequency stability after roughly half an hour.

The Microsemi CSAC shows similar noise types like the

Jackson Labs device, although WFM is about half a mag-

nitude ry ¼ 5 � 10�11
� �

smaller. Subsequently, the flicker

floor begins after approximately 3 h. Beyond that, the

performance is more than five times better than specified

by the manufacturer (Fig. 1).

Our third atomic frequency standard, the SRS PRS10,

shows fluent passages of four different noise types. Starting

with white noise phase modulation (WPM) for a short

period of time of about 15–20 s and then transitioning into

WFM, followed by FFM around s ¼ 2 h and ending with

random walk frequency modulation (RFM). Due to the fact

that only a few manufacturer values are available, it can

only be stated that our calculated values agree well with the

short-term stability shown in the bottom panel of Fig. 1.

For further information on the clock characterizations, we

refer to Krawinkel and Schön (2014a).

Concepts of receiver clock modeling

In order to apply the knowledge gained about the frequency

stabilities of the device, appropriate models for GNSS data

analysis have to be established. One prerequisite is that the

clock noise has to be well below the GNSS receiver noise,

i.e., the integrated random frequency fluctuations of the

MACs cannot be resolved by the GNSS observations in

use. We assume typical values for code and ionospheric-

free carrier phase observations from modern geodetic

GNSS receivers of 1 m and 5 mm, respectively. Since

these observations are phase-based measures, we can

model the dominating underlying noise process as WPM

over time. The corresponding graphs are depicted in the top

panel of Fig. 1 as dashed lines. The intersection points

between the dashed GPS observation noise lines and the

ADEV curves define maximal time intervals for physically

meaningful receiver clock modeling in our case study.

Depending on the MAC in use, receiver clock modeling

(RCM) is applicable over time intervals of at least 10 min

and up to 1 h in C/A-code-based applications, e.g., SPP.

Due to the much lower noise of GNSS carrier phase

observations, using the latter is reserved for precise point

positioning (PPP, Zumberge et al. 1997) applications.

We compute two different solutions: (1) modeling the

process noise in an extended Kalman filter (EKF) and (2)

applying a clock polynomial in a sequential least-squares

adjustment (SLSA). Note that the MACs in use exhibit

only small time and frequency drifts compared to quartz

oscillators of a typical commercial GNSS receiver. Thus,

MACs do not reset their output signal which would cause

so-called millisecond jumps in the clock error estimates,

and the following clock models do not have to account for

such jumps.

Kalman filtering

Using an EKF in kinematic GNSS data analysis is pretty

common because of its naturally real-time applicability.

The EKF’s initial system state contains a priori values for

geocentric Cartesian coordinates X0, Y0, Z0, and two clock

errors, i.e., time offset Dt0 and frequency offset Df0,
resulting in a five-state vector:

�x0 ¼ X0 Y0 Z0 dt0 df0½ �T ð6Þ

The corresponding initial state variance–covariance

matrix (VCM) reads

C�
x;0 ¼

CX0;Y0;Z0 0

0 Cdt0;df0

� �
ð7Þ

This system state is updated epoch-wise by GNSS

pseudorange observations as a function of the unknown

parameters

�l tð Þ ¼ h �x tð Þ; tð Þ ð8Þ

yielding the observation equation of a typical code-based

single-frequency navigation solution

�lik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi � XAð Þ2þ Yi � YAð Þ2þ Zi � ZAð Þ2

q

þ Ti
A þ IiA þ c � dtA � dti

� � ð9Þ

where Xi, Yi, and Zi denote the geocentric coordinates of

satellite i at epoch k, Ti
A and IiA represent the tropospheric

Table 1 Clock noise types and their Allan deviation slopes in a log–

log plot and power spectral density coefficient indices a

Noise type ADEV slope a

White noise phase modulation (WPM) -1 2

White noise frequency modulation (WFM) -1/2 0

Flicker noise frequency modulation (FFM) 0 -1

Random walk frequency modulation (RFM) 1/2 -2
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and ionospheric signal delays, respectively, dtA and dti

denote the receiver and satellite clock errors, respectively,

and c is the speed of light.

Because of the nonlinear relation between observations

and receiver coordinates in (9), we use the OMC (ob-

served-minus-computed) vector between the GNSS obser-

vations lk and its computed/modeled counterpart �lk:

Dlk ¼ lk � �lk ð10Þ

After linearization of (9) in the latest system state of the

receiver coordinates, least-squares estimation of the filter-

ing step reads

Dbxþk ¼ Dbxþk þ Kk DlkAkDbxþk
� �

ð11Þ

Cþ
x;k ¼ I � KkAkð ÞC�

x;k ð12Þ

with the Kalman gain matrix

Kk ¼ C�
x;kAk Cl;k þ AkC

�
x;kA

T
k

� ��1

ð13Þ

the design matrix

Ak ¼
oh

ox

				
x tkð Þ¼�x tkð Þ

ð14Þ

and the elevation-dependent (E) observations’ VCM

Cl;k � sin2 Eð Þ ð15Þ

The following prediction step, i.e., the time propagation

of the updated system state, is based on an appropriately

chosen dynamics model which in our case is defined as a

random walk process for the coordinates and integrated

random walk for the clock:

Dx�kþ1 ¼ UkDx
þ
k ð16Þ

C�
x;kþ1 ¼ UkC

þ
x;kU

T
k þ Cx;k ð17Þ

where the state transition matrix reads

Uk ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 Dtk
0 0 0 0 1

2

66664

3

77775
ð18Þ

and the process noise is

Cx;k ¼
Cx;crd 0

0 Cx;clk

� �
ð19Þ

The latter consists of the sub-matrices Cx;crd for the

coordinates process noise chosen as 25 m2/s2 per compo-

nent and Cx;clk for the clock process noise, respectively.

Herein, receiver clock modeling is applied according to

van Dierendonck et al. (1985):

Cx;clk ¼
q11 q12
q21 q22

� �
ð20Þ

with

q11 ¼
h0

2
Dt þ 2h�1Dt

2 þ 2

3
p2h�2Dt

3

q12 ¼ q21 ¼ h�1Dt þ p2h�2Dt
2

q22 ¼
h0

2Dt
þ 4h�1 þ

8

3
p2h�2Dt

ð21Þ

and

h0 ¼ r2y sð Þ � 2s

h�1 ¼
r2y sð Þ
2 ln 2

ð22Þ

h�2 ¼ r2y sð Þ � 3

2p2s

where Dt is the filter update interval using the ha coeffi-

cients listed in Table 2. The conversion formulae (22) are

taken from Barnes et al. (1971).

Sequential least-squares adjustment

A different but also common approach in kinematic GNSS

data analysis is the use of a sequential least-squares

adjustment which is, basically, similar to the Kalman filter.

The main difference is the lack of an explicit dynamic

model; i.e., estimation results are only based on GNSS

observation Eq. (9). Since RCM is carried out by means of

the process noise in the EKF approach, we have to apply a

different method in SLSA. Herein, with respect to (4), the

deviation of the receiver clock from GNSS system time is

defined as polynomial

dtA;k ¼
Xn

i¼0

bi;mDt
i
m ð23Þ

where bi,m are coefficients for time offset (i = 0), frequency

offset (i = 1), and frequency drift (i = 2), respectively, of the

mth polynomial piece, and Dt denotes its (current) temporal

length. Typically, at least a linear polynomial is used to

account for time and frequency offset. For some clocks, an

additional quadratic term is reasonable.

Table 2 PSD coefficients derived from Allan deviations

Oscillator type h2 h0 h-1 h-2

Jackson Labs CSAC – 3.6E-20 6.5E-24 –

Jackson Labs OCXO – – 4.2E-24 1.5E-26

SRS PRS10 3.5E-28 1.4E-22 2.3E-26 3.3E-31

Microsemi CSAC – 7.2E-21 2.6E-25 –
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The maximal time intervals over which RCM is

physically meaningful give a limit to the maximal number

of measurement epochs contributing to one polynomial,

leading to piece-wise modeling of the receiver clock

error. Therefore, the parameter vector to be estimated

reads

xk ¼ Xk Yk Zk b½ �T ð24Þ

with vector b denoting the clock parameters from (23).

Depending on the chosen polynomial degree, this

approach requires five observations from two epochs (lin-

ear) or six observations from three epochs (quadratic),

respectively, to solve for the unknowns. This drawback can

be avoided by imposing constraints on the clock parame-

ters, or incorporating Doppler observations. Nevertheless,

this approach requires a couple of epochs as run-in time

after initialization because the clock parameters are upda-

ted and not estimated anew like the coordinates every

consecutive epoch.

In conformity with (10, 14, 15), the general least-squares

parameter estimation reads

Dbx ¼ ATPA
� ��1

ATPDl ¼ N�1ATPDl ð25Þ

with the observation weighting matrix P ¼ C�1
l and the

normal equation system Nk.

In a SLSA, Eq. (25) is updated by every consecutive

epoch leading to a recursive estimation scheme:

Dl ¼ Dl
Dlk


 �
ð26Þ

P ¼ P 0

0 Pk


 �
ð27Þ

Due to the different estimation schemes for coordinates

and clock parameters, we have to set up two sub-matrices

for the design matrix A:

A ¼ Acrd Aclk½ � ð28Þ

with

Acrd ¼
Acrd 0

0 Acrd;k

� �
ð29Þ

Aclk;m ¼ Aclk

Aclk;k

� �
ð30Þ

Note that (30) is only valid for one clock modeling

segment. Each new segment extends the clock related part

of (28):

Aclk ¼
Aclk;m 0

0 Aclk;mþ1

� �
ð31Þ

Consequently, this part of the design matrix has a block

diagonal structure.

Application in GNSS navigation

In order to test and validate our receiver clock modeling

approaches, we carried out a real kinematic experiment in

the vicinity of Hannover, Germany, on an eight-shaped cart

road in an approximately 500 9 800 m2 area with only a

few natural obstructions in form of an alley (Fig. 2). The

basic measurement configuration consisted of five JAVAD

Delta TRE-G3T(H) receivers running an identical firmware

version (3.4.14) and connected to one NovAtel 703GGG

antenna via an active signal splitter (Fig. 3). Four of these

receivers were fed by the 10-MHz signals of our three

MACs. For comparison reasons, the fifth receiver was run

by its internal oscillator.

Each test drive with our motor vehicle lasted approxi-

mately 8–10 min. We recorded GPS and GLONASS data

with a sampling interval of 1 s. That is also true for the

local reference station, temporally installed in the middle

of the test area. This station consisted of a Leica

AX1202GG antenna mounted on a tripod and a Leica

GRX1200 ? GNSS receiver. Hence, we are able to gener-

ate reference solutions for the vehicle trajectories in dif-

ferential mode with baselines less than some hundred

meters. For that reason, first, a 2-h PPP solution for the

reference station with the Bernese GNSS Software 5.2

(Dach et al. 2007) was computed, yielding a position

accuracy of a few centimeters. These coordinates are then

held fixed for the relative positioning with NovAtel

Fig. 2 Test track of about 500 9 800 m. The yellow ellipse marks an

alley with signal obstructions
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Waypoint GrafNav 8.40 based on L1 phase observations

only. The resulting reference trajectories of the five mobile

receivers are combined to a weighted mean solution

exhibiting coordinate accuracies well below 20 cm.

The RCM algorithms presented are implemented in our

IfE GNSS MATLAB Toolbox. In order to compute a typical

real-time navigation solution (SPP) based on GPS C/A-

code observations only, the broadcast ephemeris was used.

Tropospheric and ionospheric signal delays are corrected

by models of Saastamoinen and Klobuchar, respectively.

At first, we exemplarily present the results with and

without receiver clock modeling for one test drive in terms

of improvements in the coordinate precision and reliability.

In the following, we will investigate exemplarily one out of

six test drives. Similar behavior can be found for the other

trajectories.

Precision and accuracy

One of the most important GNSS performance parameters

is the precision and accuracy of the coordinate solution. At

first, we discuss the results computed from the sequential

least-squares approach. Figure 4 shows topocentric coor-

dinate differences with respect to the reference trajectory

and clock error time series of the receiver driven by its

internal quartz oscillator, without RCM. This is typical for

almost all end users. The noise of the coordinates is in the

range of 20–25 cm in the horizontal components and ca.

50 cm in the up-component, respectively. The (linearly

detrended) receiver clock error exhibits values between

roughly -100 and 200 ns which is typical for a quartz

oscillator. Furthermore, certain coordinate offsets are vis-

ible due to remaining systematic effects, e.g., ionospheric

delay and orbit errors. This could be attributed thanks to

repeated analysis runs with different correction models,

e.g., precise IGS final orbits or by forming the ionospheric-

free linear combination. Hence, the assessment of the

accuracy is difficult since its main contribution depends on

the applied correction models and it is less influenced by

RCM.

Without applying RCM, the four receivers connected to

the MACs show similar behavior in the coordinate domain.

However, the clock residuals become very small compared

to those of the internal oscillator (cf. Figs. 5, 7) and amount

to only a couple of nanoseconds. Some spikes are visible

roughly between minutes 5 and 7 when driving through the

alley where the observation geometry suddenly changes

due to obstructions (Fig. 2). The resulting jump in the up-

coordinate directly translates into the clock residuals. This

clearly indicates the high correlations between these two

parameters. Furthermore, the Jackson Labs CSAC’s clock

residuals also show a significant quadratic term indicating a

frequency drift even over the short period of time of

approximately 8 min (Fig. 6).

This situation changes dramatically when applying

RCM. Although, as expected, no changes in the time series

of the north and east coordinates occur, a strong decrease in

the up-coordinate residuals is clearly visible. The noise

level is in the range of ca. 20–30 cm. Due to the applied

polynomial clock model, the clock residuals are also

reduced. Thanks to the increasing number of epochs/ob-

servations contributing to the estimation of the clock

parameters, these residuals get smoother over time.

Spikes in the up-coordinate time series due to sudden

signal obstructions (minutes 5–7) are almost eliminated

thanks to RCM. Subsequently, the accuracy can be

improved by up to 15 % and the solution is more robust

against sudden changes in the satellite geometry caused by

obstructions for example.

At this point, we can also see that the linear clock

polynomial is sufficient in case of the SRS PRS10 and

Microsemi CSAC devices (Fig. 5). However, this is not

true for the Jackson Labs device, especially the raw CSAC

signal depicted in Fig. 7e–h. Due to the clock’s non-

modeled frequency drift, the up-coordinates start drifting

away after approximately 3 min. The OCXO signal also

causes such an effect due to its steering to the CSAC sig-

nal, but it is much smaller (cf. Fig. 7a–d). Consequently,

when applying a quadratic clock polynomial, the drifts of

the up-coordinates disappear as depicted in Fig. 8. Due to

the fact that even an atomic clock shows a significant

frequency drift over such a relatively short period of time,

it is inevitable to apply a quadratic clock polynomial—to

avoid the depicted coordinate deviations—if one has no a

priori knowledge of the frequency drift behavior of the

clock in use.

Fig. 3 Measurement

configuration of the kinematic

experiment. Five identical

JAVAD delta receivers are

connected to a Leica

AX1202GG antenna; each

receiver uses a different clock
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Thenumerical results are summarized inTable 3 listing the

standard deviations of the topocentric coordinate time series

with and without receiver clock modeling. When applying

RCM, there are no improvements in the horizontal compo-

nents, but the scatter of the up-coordinates is decreased in the

range of 48 (Microsemi CSAC) to 69 % (SRS PRS10).

Our second RCM approach based on an existing EKF

clock model (11–22) shows comparable results, exem-

plarily shown for the Microsemi and SRS devices in Fig. 6.

Compared to the sequential least-squares approach, the

spikes in the up-coordinate and clock residual time series

around minute six are not smoothed so strongly (Krawinkel

and Schön 2014b).

Reliability and integrity

In addition to precision, reliability is a very important

performance parameter in GNSS navigation and position-

ing, especially in safety–critical applications. In general,

we distinguish between internal and external reliability,

which are both measures for the robustness of the param-

eter estimation against gross errors in the observations.

Thereby, good positioning reliability enhances outlier

detection in GNSS data analysis.

Strictly speaking, internal reliability is calculated in form

of minimal detectable biases (MDBs) of the GNSS obser-

vations. It gives lower bounds for how small gross obser-

vation errors can become to still be detectable, given a certain

probability of error and test quality. Subsequently, external

reliability describes the influence of these MDBs on the

coordinates (Baarda 1968; Salzmann 1993).

In an EKF, MDB measures are computed based on the

VCM of the innovation vector:

Cdk ¼ Cl;k þ AkCx�
k
AT
k ð32Þ

Analogously, in least-squares estimation only, Eq. (32)

is replaced by the VCM of the observation residuals

Cvk ¼ Cl;k � AkCbxkA
T
k ð33Þ

Depending on the non-centrality parameter k calculated

from a carefully chosen probability of error and test quality

(here 80 and 1 %, respectively), the MDB vector at epoch

k, considering one undetected gross error in the observation

to satellite i, reads

rlk ¼ 0 . . . 0 rlik 0 . . . 0
� 
T ð34Þ

with

rlik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

C�1
d;k

� �

ii

vuut ð35Þ

in an EKF, or

rlik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

C�1
v;k

� �

ii

vuut ð36Þ

in a SLSA, respectively.

Fig. 4 Topocentric coordinate

deviations with respect to

reference trajectory and clock

errors. The receiver is driven by

its internal oscillator. No

receiver clock modeling is

applied in a sequential least-

squares adjustment. Note the

different y-axis scales
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Subsequently, the impact of the MDBs on the parameters

can be calculated, yielding measures of external reliability:

rxik ¼ Kkrlik ¼ Cx;k aik
� �T

pikrlik ð37Þ

Figure 9 shows the MDBs for the receiver connected to

the Microsemi CSAC with and without receiver clock

modeling during our exemplary test drive. Herein, the

maximal improvement of 16.5 % is found for satellite G15.

Its mean MDB is decreased from 15.6 to 13.0 m. Note that

the MDB improvements depend not only on the individual

satellite positions but also on the whole geometry. Satellite

G10 is interrupted twice when passing through the alley

yielding in jumps in the MDB time series (Fig. 9) which

are also reduced.

Fig. 5 Topocentric coordinate

deviations relative to the

reference trajectory and clock

errors for a receiver connected

to the SRS PRS10 (a–d) and the

Microsemi CSAC (e–h). The
results without receiver clock

modeling are depicted in blue

and green. The results when

applying a linear polynomial for

clock modeling in a sequential

least-squares adjustment are

shown in red
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The values of external reliability for the coordinate

parameters are depicted in Fig. 10 ordered with respect

to their relative frequency. They are converted to

topocentric values because we only expect improve-

ments in external reliability of the up-coordinate. The

changes in the horizontal components are negligibly

small when applying RCM. However, no vertical val-

ues greater than 4 m remain (w/o RCM: 35 %[ 4 m),

and the number of values smaller than 2 m increases

from 59 to 89 %. Thus, the vulnerability of the posi-

tioning solution with respect to outliers is significantly

reduced.

Fig. 6 Topocentric coordinate

deviations with respect to

reference trajectory and clock

errors for a receiver connected

to the SRS PRS10 (a–d) and the

Microsemi CSAC (e–h). The
results without receiver clock

modeling are depicted in blue

and green. The results for clock

modeling in an extended

Kalman filter are shown in red
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Clock coasting

GNSS positioning requires at least four satellites in view.

This can become a severe restriction in harsh environ-

ments, e.g., urban canyons. Applying an oscillator of high

accuracy as well as known and predictable frequency

stability enables positioning using only three satellites,

thereby enhancing continuity and availability. This

approach is called clock coasting (Knable and Kalafus

1984; Sturza 1983).

In order to show the performance of clock coasting

obtained with our devices, we proceed as follows. In case

Fig. 7 Topocentric coordinate

deviations with respect to

reference trajectory and clock

errors for a receiver connected

to the Jackson Labs’ OCXO (a–
d) and CSAC (e–h) signal,
respectively. The results without

receiver clock modeling are

depicted in blue and green. The

results when applying a linear

polynomial for clock modeling

in a sequential least-squares

adjustment are shown in red
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of less than four satellites in view, the observations Eq. (9)

are additionally corrected by a receiver clock term based

on the latest clock coefficients. This is possible thanks to

the stability of the clocks. In order to show the positive

effects of our method, we generate partial satellite outages

so that only three observations remain. The latter are

chosen in such a way that typical situations in an urban

canyon are simulated, i.e., only satellites with high eleva-

tion angles remain. The skyplot in Fig. 11 shows the

satellite visibilities during our test drive. We generate two

outages: (1) from minute one to two with only satellites

G08, G26, G28 visible: In this case, only a few epochs have

Fig. 8 Topocentric coordinate

deviations with respect to

reference trajectory and clock

errors for a receiver connected

to the Jackson Labs’ OCXO (a–
d) and CSAC (e–h) signal,
respectively. The results without

receiver clock modeling are

depicted in blue and green. The

results when applying a

quadratic polynomial for clock

modeling in a sequential least-

squares adjustment are shown in

red
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contribute to the determination of the clock coefficients;

and (2) from minute five to seven with only satellites G09,

G26, G28 in view: Here, the estimated clock coefficients

should be more stable due to the increased number of

epochs contributing to their determination.

The resulting coordinate and clock time series are

depicted in Fig. 12. When coasting through periods with

only three satellites available, the horizontal coordinates

become approximately two to three times noisier (1–2 m).

Due to the poor observation geometry, an additional offset

Fig. 9 Internal reliability of C/A-code observations in terms of

minimal detectable bias (MDB) from receiver connected to the

Microsemi CSAC. Values obtained without receiver clock modeling

(top), and improved values when clock modeling is applied (bottom)

Fig. 10 Relative frequency of external reliability of horizontal and

vertical coordinate components from a receiver connected to the

Microsemi CSAC, without (top) and with receiver clock modeling

(bottom)

Fig. 11 Skyplot of satellite visibilities during the test drive; only the

satellites color-coded in red are used for clock coasting

Table 3 Standard deviations (SDs) of topocentric coordinate time

series from sequential least-squares solution with respect to reference

solution

SDs (m) JL

OCXO

JL

CSAC

SRS

PRS10

Microsemi

CSAC

w/o RCM

North 0.26 0.24 0.27 0.26

East 0.19 0.19 0.19 0.18

Up 0.53 0.50 0.56 0.60

w/RCM

North 0.26 0.24 0.27 0.26

East 0.19 0.19 0.19 0.18

Up 0.25 0.21 0.17 0.31

Up improvement (%)

53 58 69 48
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of about 1 m is induced in the north component during the

first partial outage. Meanwhile, the noise of the up-coor-

dinates is only slightly increased in both of those periods,

although a significant drift is visible during the first one.

Most likely, this is because the coefficients used for clock

coasting are only based on 60 epochs until that time.

During the second partial outage, this drifting behavior

vanishes independently of the satellite geometry. Finally,

the time series of the clock residuals show similar behavior

compared to the bottom panel of Fig. 5. Due to the fact that

the clock time series in Fig. 12 are linearly detrended and a

linear clock polynomial is applied, the corresponding

residuals during the coasting periods equal zero.

Conclusions

Clocks are the core of any GNSS; however, the benefits

from their frequency stability in precise GNSS navigation

still seem to be often neglected. We propose two real-time

applicable algorithms for receiver clock modeling in code-

based GNSS navigation when using miniaturized and

stable atomic clocks: (a) in an extended Kalman filter using

spectral density coefficients derived from the clocks’

individual Allan deviations to model the process noise

accordingly, and (b) in a sequential least-squares adjust-

ment applying a linear or quadratic clock polynomial,

respectively, whose coefficients are updated and not esti-

mated anew each consecutive epoch. As a prerequisite, an

individual characterization of the frequency stabilities of

three miniaturized atomic clocks was carried out with

respect to the phase of an active hydrogen maser showing

an overall good agreement with manufacturer’s data.

A real kinematic experiment was carried out and typical

code-based GPS navigation solutions are computed. We

showed that the precision of the up-coordinate’s time series

was improved by 48–69 %, depending on the clock in use.

Furthermore, internal and external reliability are signifi-

cantly increased as well as the impact of spikes due to

obstructions is almost eliminated making the estimation

process and the resulting coordinates more robust against

blunder in GNSS observations. More precisely, the mini-

mal detectable biases (internal reliability) are improved by

up to 16 %, and the number of epochs in which the values

of the external reliability of the up-coordinates are smaller

than 2 m is increased from 59 to 89 %.

Finally, it was shown that our algorithm is capable of

coasting through periods of partial satellite outages with

only three satellites remaining in view. This enables GNSS

positioning in harsh environments with poor satellite cov-

erage, e.g., caused by high shadowing effects, multipath, or

even outlier rejection, when only three observations are

available, and thus increases availability and continuity.
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