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Abstract Soil moisture is a geophysical key observable

for predicting floods and droughts, modeling weather and

climate and optimizing agricultural management. Currently

available in situ observations are limited to small sampling

volumes and restricted number of sites, whereas measure-

ments from satellites lack spatial resolution. Global navi-

gation satellite system (GNSS) receivers can be used to

estimate soil moisture time series at an intermediate scale

of about 1000 m2. In this study, GNSS signal-to-noise ratio

(SNR) data at the station Sutherland, South Africa, are used

to estimate soil moisture variations during 2008–2014. The

results capture the wetting and drying cycles in response to

rainfall. The GNSS Volumetric Water Content (VWC) is

highly correlated (r2 = 0.8) with in situ observations by

time-domain reflectometry sensors and is accurate to

0.05 m3/m3. The soil moisture estimates derived from the

SNR of the L1 and L2P signals compared to the L2C show

small differences with a RMSE of 0.03 m3/m3. A reduction

in the SNR sampling rate from 1 to 30 s has very little

impact on the accuracy of the soil moisture estimates

(RMSE of the VWC difference 1–30 s is 0.01 m3/m3). The

results show that the existing data of the global tracking

network with continuous observations of the L1 and L2P

signals with a 30-s sampling rate over the last two decades

can provide valuable complementary soil moisture obser-

vations worldwide.
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Introduction

Soil moisture is a fundamental component in the hydro-

logical cycle. The moisture in the uppermost soil layer

directly influences evaporation and thus the water and heat

fluxes between the soil and the atmosphere. Soil moisture

can have a relevant feedback with air temperature and

precipitation dynamics (Seneviratne et al. 2010). Hence,

observations of soil moisture are very valuable for weather

forecast and climate studies (Drusch 2007) and are also

important for irrigation management and flood prediction

(Brocca et al. 2010; Wanders et al. 2014). Furthermore, soil

moisture plays an important role in contaminant and

nutrient transport and influences the emission of green-

house gases (Schaufler et al. 2010).

However, obtaining soil moisture data at the field scale

is a challenge since continuous observations are generally

point measurements with small sampling volumes and the

strong heterogeneity of the subsurface introduces large

uncertainties in averaging techniques (Perry and Niemann

2008). Observations from remote sensing satellites, e.g.,

the soil moisture and ocean salinity (SMOS) mission or the

planned soil moisture active passive (SMAP) mission, on

the other hand, have the disadvantage of large footprints

with a resolution of 10 or 50 km for SMAP and SMOS,

respectively (Wang and Qu 2009; Entekhabi et al. 2008;

Dorigo et al. 2014).

The use of data from the global navigation satellite

systems (GNSS) for remote sensing based on utilizing earth

reflected signals was proposed in a pioneering work by

Martin-Neira (1993). The dual-frequency GNSS signals are

in the L-Band with wavelengths of, e.g., 19.05 and

24.45 cm for the GPS system. Several studies have shown

that, with specially designed GNSS antenna and receiver

systems, it is possible to estimate near-surface soil moisture
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(Zavorotny et al. 2003; Masters et al. 2002; Katzberg et al.

2005; Egido et al. 2014). These measurements used custom

designed systems based on two GNSS antennas: one

tracking the direct signals from the satellites and the other

oriented toward the ground to track the reflected signal.

The reflected signal is also referred to as multipath.

Rodriguez-Alvarez et al. (2009) and Alonso-Arroyo

et al. (2014) used custom designed single antennas to

derive soil moisture signals applying the interference pat-

tern technique (IPT). The IPT is based on the coherent

addition of the reflected and the direct signal in a single

GNSS antenna. Larson et al. (2008) showed that it is

possible to estimate soil moisture with measurements from

a standard single ground-based dual-frequency geodetic

GNSS receiver, which was set up for geodynamic appli-

cations. They demonstrated that these geodetic-type GNSS

instruments, which are optimized to track the direct signals

from the satellites, could successfully be used to measure

the reflected signals too.

The soil moisture retrieval algorithm proposed by Lar-

son et al. (2008) is based on the analysis of power varia-

tions of the GNSS signals. The direct signal from the

GNSS satellite and the signal reflected by the land surface

are simultaneously received at the antenna, and their power

is added with consideration of their phase difference. Due

to the motion of the GNSS satellites, the simultaneous

reception of the direct and coherently reflected signals

causes an interference pattern in the signal power. This

interference pattern depends on the height difference

between the GNSS antenna and the reflection point

(Nievinski and Larson 2014). If the soil is wet, the GNSS

signal is reflected from a layer just below the land surface

while for dry soil, the signal penetrates deeper into the soil

and is reflected within a surface layer of up to 7 cm depth

(Larson et al. 2010).

The power of the GNSS signal is a standard observable

and recorded as signal-to-noise ratio (SNR) additionally to

the phase and code observations in standard receiver

independent exchange format (RINEX) observation files

(Gurtner and Estey 2007). This SNR is the ratio of the

GNSS signal power to the measurement noise given in a

logarithmic decibel (dB) or decibel-Hertz (dB-Hz) scale. In

operational applications, the SNR is used to check the

signal quality and characteristics of electromagnetic noise

in the close environment of the GNSS station. The SNR

mainly depends on the power of the signal transmitted by

the GNSS satellite, the antenna gain pattern and the

tracking algorithm in the receiver (Larson et al. 2010).

Additionally, for low elevation angles, the SNR is also

dependent on the power of the reflected signal (Fig. 3).

More recent GNSS satellites, i.e., the Block IIR-M and IIF

GPS satellites, transmit the new civilian signal L2C

(Fontana et al. 2001). For the utilized antenna and receiver,

this modernized L2C signal has a 20 dB-Hz higher SNR

compared to L2P. Additionally, it is more precise than the

L1 signal. Larson et al. (2010) exclusively analyzed SNR

data from the L2C signal for soil moisture estimation.

However, the L2C signal has been available only since

September 2005 when the first Block IIR-M GPS satellite

was launched, and only for receivers capable of tracking

this signal. Currently, there are seven satellites (PRN 5, 7,

12, 15, 17, 29, 31) transmitting the L2C signal but 24

satellites transmitting L2P only. Thus, the number of

observations in a given time and the length of the time

series increases significantly if the L2P signal can be used

as well.

We present soil moisture estimates based on GNSS

interferometric reflectometry for the longest time series

published to date. We validate soil moisture estimates

derived from L1, L2P and L2C SNR data with in situ time-

domain reflectometry (TDR) measurements. Furthermore,

we investigate whether data from older GNSS satellites,

i.e., the Block IIA and IIR GPS satellites, which are

transmitting the L1 and L2P signal only, can give reason-

able soil moisture estimates for these earlier time periods.

Another important issue is the influence of the sampling

rate on the soil moisture estimates. Previous studies using

SNR for soil moisture estimation are mainly based on

GNSS data with a 1 Hz sampling rate (Larson et al. 2008,

2010). However, for a large part of GNSS stations, the

archived data are only stored with much lower sampling

rate, e.g., 10 or 30 s, to reduce the data volume. For sta-

tions of the International GNSS Service (IGS), the high-

rate 1 Hz GNSS data are only archived for a period of

1 year. We investigate whether historical GNSS observa-

tions with a 30-s sampling rate, which extend for several

stations back into the early 1990s, could provide a valuable

data source for long-term soil moisture estimation.

Site description

The study site is situated at the South African Astronomic

Observatory (SAAO) where a gravimetric observatory and

a hydro-meteorological monitoring network was set up by

GFZ. We have chosen the GNSS station Sutherland

(SUTM) in South Africa for our case study because inde-

pendent soil moisture measurements taken from TDR

sensors are available close to the GNSS station for vali-

dation (at *30 m distance). Both datasets, GNSS and

TDR, cover the time from December 2008 to September

2014. This provides the unique possibility to validate a

GNSS-derived soil moisture time series of nearly 6 years.

The station SUTM is located in the Northern Cape Pro-

vince of South Africa in the Karoo drylands at 32.38�S,
20.81�E and at elevation of 1797 m. The mean annual
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rainfall is about 350 mm. Due to its high altitude, tem-

peratures may fall below the freezing point in winter. The

subsurface consists of dolerite, covered by a soil layer of

10–40 cm depth. The vegetation is dominated by low

shrubs of 20–40 cm height, which cover the ground on

average to about 25 %. The bare soil surface in between

shrubs is composed of a mixture of fine material and

stones. In the surroundings of about 10 m of the GNSS

antenna, no shrubs exist and the ground is partly covered

by herbs no taller than 3 cm. The station environment is

very appropriate to receive reflected GNSS signal from the

ground because it is clear of obstruction from mountains,

buildings and trees and has a high percentage of bare soil.

Additionally, the ground is flat, except for the terrain to the

east and south of the GNSS antenna location, where

boulders up to a height of about 1.5 m cover the under-

ground gravimetric observatory building (Fig. 1).

GNSS data

The GNSS station SUTM is part of the global tracking

network of the IGS. It was originally installed to observe

plate tectonics and is currently equipped with a geodetic

Javad antenna of the type JAV RINGANT G3T (Javad

External GPS L1/L2/L5 choke ring antenna) and a receiver

of the type JAVAD TRE G3TH DELTA (Javad 216

channels GPS L1/L2/L2C/L5). Before its upgrade on May

7, 2013, the station was equipped with an AOAD/M T

antenna (Allen Osborne Associates, Dorne/Margolin ele-

ment with choke rings, TurboRogue) and a AOA

BENCHMARK ACT receiver (Allen Osborne Associates

Benchmark with ACT technology, 12 channels). The SNR

is recorded with a precision of 0.1 and 0.25 dB for the

AOA BENCHMARK ACT receiver and JAVAD TRE

G3TH DELTA receiver, respectively.

The footprint size of reflected GNSS signals on a flat

and horizontal ground can be described by the first Fresnel

zone as an ellipse with a semimajor axis a and semiminor

axis b:

a ¼ b

sin e
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kh
sin e

þ k
2 sin e

� �2
s

ð1Þ

where k represents the GNSS wavelength, h is the height of

the antenna phase center above the reflecting surface, and

e is the satellite elevation angle (Larson and Nievinski

2012). Figure 2 shows the first Fresnel zone for the satellite

tracks of SUTM used in the analysis. For a satellite at an

elevation angle of 30�, the ellipse of the Fresnel zone has

the dimension of a = 20 m and b = 2 m. The satellite

tracks were selected according to the quality of the

reflected signal, which is described in more detail in ‘‘Data

analysis’’ section. The major axis of the ellipse is aligned in

the direction of the satellite–antenna vector. When the

satellite is approaching the horizon on a descending orbit,

the ellipse becomes larger and moves away from the

antenna. For the GNSS station SUTM with its antenna

installed on a pillar of 2 m height, the reflections start at a

distance of 70 m from the GNSS antenna and approach

until 2 m for a satellite pass from 5� to 30� elevation. The
satellite needs about 1 h for this passage.

Fig. 1 Antenna of the GNSS station SUTM, Sutherland, South

Africa. A cluster of 42 TDR sensors was installed 20–40 m northeast

of the GNSS pillar (white boxes in the background are the logger and

multiplexer boxes of the TDR system, black arrows mark the border

of the cluster). In the east and south the top surface consists of

boulders from construction material, visible on the right side of the

photo (photo provided by Chantal Fourier)

Fig. 2 Areas indicating the coverage of ground tracks of the reflected

signals. The Fresnel zones are shown for satellite elevation angles of

5�, 10�, 15� and 30�. The higher the satellite rises, the smaller the

ellipsis is and the closer it moves toward the antenna. The numbers at

the top left are the PRN numbers of the GPS satellites used in this

analysis
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TDR and climate data, dye tracer experiments

In situ soil moisture monitoring at SUTM is carried out

with a cluster of 42 TDR sensors (Campbell Scientific TDR

system CS610 with 15 cm rod length and CS645 with

7.5 cm rod length) placed at different soil depths. The TDR

cluster is situated 20–40 m northeast of the GNSS station

and covers an area of 20 by 20 m (Fig. 1). For this study,

we selected 17 TDR near-surface sensors. Nine of these

sensors with a rod length of 15 cm were installed vertically

from the soil surface, thus providing an average soil

moisture value for the top 15 cm of the soil. The other

eight TDR sensors are installed horizontally in soil profiles

at depths of 10 and 20 cm (four sensors in each depth). The

remaining 25 sensors were not considered as they are

installed at depths below 20 cm and thus not representative

for the near-surface soil moisture sensed by GNSS. Cal-

culation of volumetric water content from the apparent

dielectric constant of the soil as measured by the TDR

probes is based on the default equation from Topp et al.

(1980). A site-specific calibration of the TDR sensors has

not been performed. The sensors provide data with 15 min

temporal resolution, averaged to daily means for this study

similarly to the GNSS-derived soil moisture data. A cli-

mate station at the location of the TDR cluster provides

time series of air temperature, relative humidity, radiation,

wind speed and precipitation. Precipitation is measured by

a Hellmann-type rain gauge with a tipping bucket.

Additionally, dye tracer experiments were performed on

experimental soil plots at a distance of about 30–40 m from

the GNSS station. Using a standard hand-held (herbicide)

sprayer, a plot of about 1.2 9 1.2 m was uniformly

sprayed with 25 l of died water with a concentration of

Brilliant Blue of 4 g/l. The application period was 2 h,

leading to precipitation input of about 17 mm (l/m2) at an

average intensity of 8.7 mm/h. The water completely

infiltrated into the soil without generation of surface runoff.

On the next day, several vertical soil profiles were exca-

vated and photographed, with blue dye patterns visualizing

the water flow paths in the soil.

Data analysis

We analyzed data of the GNSS station SUTM for the

period from January 1, 2008, to September 1, 2014. The

data of each satellite were analyzed separately. As shown

exemplarily for the pass of satellite number two on January

2, 2013, the SNR increases when the satellite is rising and

decreases for the descending satellite (Fig. 3 top panel).

The SNR variations mainly represent the signal strength of

the direct signal. Its signature strongly depends on the

antenna gain pattern. The strongest signal can be received

when the satellite is in the zenith direction. The reflected

signal is only received for satellites with low elevation

angles mainly between 5� and 30�. The power of the

reflected signal is much smaller than the direct signal. The

superposition of reflected and direct signal shows up as

interference pattern.

Our signal analysis generally follows the procedure

proposed by Larson et al. (2010). We fit a second-order

polynomial to the SNR. By subtracting this polynomial

from the SNR data, we isolate the interference pattern. This

pattern represents the reflected signal and is therefore

referred to as multipath component. We analyze the SNR

of the multipath component for satellites with elevation

angles ranging between 5� and 30�. For the reason of lin-

earity, we convert the amplitude of the SNR, which is

Fig. 3 Signal-to-noise ratio (SNR) of the SUTM measurements for

the GPS satellite PRN 2 on January 1, 2013, top panel shows the SNR

of the complete signal (direct and reflected), middle panel represents

the SNR of the reflected signal converted to volts/volts for reasons of

linearity, bottom panel shows the Lomb–Scargle periodogram of the

SNR from the reflected signal as shown in the middle panel
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given in logarithmic dB-Hz units, into volts using the

conversion: SNR volts
volts

� �

¼ 10
SNR dBHzð Þ

20 . The SNR of the mul-

tipath component shows a periodic signature, which is a

function of the satellite elevation angle e (Fig. 3 middle

panel). When sin e is used as independent variable, the

frequency f of the multipath pattern is constant assuming a

locally planar and horizontal surface (Larson et al. 2008).

The frequency f ¼ 4ph
k of the multipath modulation also

depends on the reflector height h, which is the vertical

distance between the ground reflecting planar surface and

the electrical phase center of the antenna. It also depends

on the wavelength k of the GNSS carrier. The SNR of the

multipath pattern can be described in terms of amplitude A

and phase offset U by:

SNR ¼ A cos
4ph
k

sin eþ U

� �

ð2Þ

In contrast to Larson et al. (2010), we do not restrict our

analysis to satellites transmitting the L2C signal. In a first

step, we included all satellites in the analysis. We parti-

tioned the SNR in tracks per satellite number and azimuth

quadrant. We also separated the SNR for satellites rising

and setting on the same quadrant. For each satellite trace,

we estimated the dominant frequency of the sinusoidal by

applying the Lomb–Scargle periodogram method (Press

and Rybicki 1989). This method allows calculating the

spectral power for irregularly spaced time series. Figure 3,

bottom panel, shows the Lomb–Scargle periodogram with

the frequency converted into GNSS antenna height. We

calculated a median reflector height separately for each

track (combination of satellite PRN and azimuth). The

median reflector height was then taken as a constant in the

subsequent sinusoid fit. For some tracks the reflector height

was systematically unstable. In these cases we excluded the

combination of satellite PRN and azimuth for the entire

time series, since presumably the ground does not conform

well to the assumption of planar horizontal surface for

these tracks. For estimation of soil moisture, the antenna

height above the reflecting surface needs to be constant

over time, both physically in the field (i.e., no moving

platform) and later constrained to a constant value in data

processing. The change in the antenna model did not affect

the reflector height estimation. Hence, we fixed the

reflector height to a constant value for the entire analysis

period. Very few days with apparent antenna height,

changes due to snow cover were excluded from the anal-

ysis. Snow was detected based on photos of the station

surroundings. Tracks in east and south directions of the

GNSS antenna were excluded from further processing due

to the rocky boulders in this area. For a rough surface, the

strength of the coherent part of the reflected signal

decreases, while the diffuse scattering increases

(Beckmann and Spizzichino 1987). For the interferometric

technique, the coherent reflection component must be

strong enough: only if the power of the dominant frequency

is four times larger than the background noise and the

satellite track contains more than 2000 data points (equal to

roughly 30 min of observation) the track is included in the

further processing.

In a next step we fitted a sinusoidal to the multipath

interference and estimated amplitude and phase offset for

the dominant frequency in a least-square adjustment. The

derived phase offsets vary with time and are related to

changes in the penetration depth of the reflected GNSS

signal into the ground (Larson et al. 2008). This penetration

depth strongly depends on the dielectric constant of the

soil, which is related to the near-surface soil moisture

(Nolan and Fatland, 2003; Larson et al. 2010).

Chew et al. (2013) modeled the GNSS signal penetration

depth by using an electro-dynamic single-scattering for-

ward model. The model was validated using field mea-

surements of soil moisture at depths between 2.5 and

20 cm. The authors derived a linear relationship between

SNR phase U and soil moisture with a slope of 65.1�/(cm3/

cm3). This means that a change of 1� in the phase corre-

sponds to a change in volumetric water content of

0.015 m3/m3. The slope of this linear relationship varies by

less than 0.003 m3/m3 for different soil types with diverse

constituents of clay, sand and loam; thus, the relation is

almost independent of the soil type. We used the above-

mentioned regression function to convert the phase values

of each single track into the corresponding soil moisture

variations assuming the applicability of the regression

function regardless of the antenna model. The equation

used here to convert the phase changes D/ into GNSS-

derived Volumetric Water Content VWCGPS (m3/m3) is:

VWCGPS ¼ D/
65:1

þ 0:05 ð3Þ

The phase changes D/ = / - /0 are the difference in the

phase / with respect to a reference phase /0. Here, we

used the minimum phase value as reference. The calibra-

tion of absolute soil moisture values is based on the

assumption that the minimum soil moisture seen in the

GNSS-derived time series corresponds to 0.05 m3/m3

(Larson, personal communication). Finally, we calculated a

common mean of all satellite tracks that pass at different

times during the day. The final soil moisture estimate

represents a spatial and temporal average of all observa-

tions analyzed during one day (Figs. 4, 5). As the TDR

observations were not used in the calibration process, they

provide an independent option for validation.

The data of the station SUTM have a sampling rate of

1 s. However, the resolution of available data for many

IGS stations in the archives, especially for the years of GPS
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in the 1990s, is in general 30 s. The satellite needs about

1 h to pass from 5� to 30� elevation. Thus, for the time

period of the satellite overpass, the number of observations

is with 120 records very low for the 30-s data set compared

to 3600 records in the 1-s data set. In order to estimate the

impact of a lower sampling rate on the soil moisture esti-

mates, we decreased the sampling resolution of the SUTM

data to 5, 10 and 30 s. We analyzed all three datasets in the

same way as described for the 1-s data set.

Validation

TDR measurements from December 2008 until September

2014 were used for validation. The validation study is

based on data from L2P and L2C as these signals penetrate

deeper into the soil than the L1 signal (Nolan and Fatland

2003). The more precise L2C signal was recorded only

after May 7, 2013, when the GNSS receiver was upgraded.

The soil moisture variations for the GNSS station SUTM

were calculated as mean over the satellite tracks (PRN 2, 8,

14, 17, 23, 29). The standard deviation of the soil moisture

from a single satellite track compared to the common mean

is typically 0.06 m3/m3 VWC.

The temporal variations of the GNSS-derived soil

moisture correspond very well to the TDR observations,

both on daily and seasonal scales (Figs. 4, 5). For 2013, the

soil moisture is low in the first 3 months of the year and

higher after day 90 when a strong precipitation event

occurred (Fig. 4). Small differences can be seen in the

sensitivity of the two methods for small precipitation

events. For example, the rainfall that occurred on day 123

(May 3) of 2013 causes a 0.04 m3/m3 increase in the VWC

observed by GNSS. However, it does not affect the soil

moisture recorded by the TDR sensors. The GNSS method

is sensitive to the upper 0–5 cm, depending on the soil

moisture content (Larson et al. 2008). In contrast, the

vertical TDR probes record an integral value for a depth

from 0 to 15 cm. This shows the high sensitivity of the

GNSS method to small rain events, which are not detected

by the TDR probes. It also indicates that the water from

small precipitation events hardly infiltrates. The small

precipitation event is also not visible in the observations of

the horizontally installed TDR sensors at 10 cm depths.

Even larger rainfall events can be expected to infiltrate into

the top layer only, as illustrated by the dye tracer experi-

ments (Fig. 6). For the artificial rainfall volume of 17 mm

(exceeded by only 5 % of all natural daily rainfall volumes

in the study period), average infiltration depth was about

5 cm, with very few individual flow paths to depths of

15–20 cm. After the precipitation events, soil moisture

from GNSS signals decreases faster than the soil moisture

from TDR. This is also related to the deeper integration

depth of the TDR measurements. The GNSS observations,

in contrast, are sensitive to the uppermost soil layer only

which dries out more quickly due to evaporation.

The 6-year period of this study illustrates the strong

seasonal soil moisture dynamics in Sutherland, based on

both GNSS and TDR data (Fig. 5). The near-surface soil

tends to wet up by about 0.2 m3/m3 during the winter

season and stays in a wet state for several weeks or months.

Exceptions are the comparatively dry years 2010 and 2014

where this wet state is not reached and rainfall events tend

to cause single short soil moisture peaks with subsequent

drying to a low soil moisture status. Throughout the entire

study period, intense rainfall events in particular during the

summer season may result in pronounced but short-term

soil moisture peaks (Fig. 5).

The GNSS-derived Volumetric Water Content

(VWCGNSS) and the soil moisture from the TDR sensors

(VWCTDR) are highly correlated with a correlation coeffi-

cient of 0.8 (Table 1). The regression analysis shows that

VWCGNSS is on average drier than VWCTDR by 0.10 m3/

m3 for the vertically placed TDR sensors extending over

the top 15 cm (TDRv15) and by 0.03 m3/m3 for the hori-

zontally installed TDR sensors at 10 cm depths (TDRh10)

(Fig. 7). From the soil moisture difference between 10 and

20 cm depth, it can be seen that soil moisture tends to be

higher at greater depth during most of the time (Fig. 8).

However, the relationship is reversed during individual

short periods in the course of rainfall events where quick

infiltration reaches the 10 cm sensor only, or where longer

infiltration times to the deeper sensor lead to a delayed

response at 20 cm.

Fig. 4 Comparison of daily soil moisture from GNSS data (average

of L2P and L2C) and TDR sensors, with daily precipitation amounts

on the right y-axis. TDRv15 represents the average of nine vertically

installed sensors giving integrated values over the top 15 cm of the

soil. TDRhz10 shows the average of four horizontally placed sensors

at a soil depth of 10 cm
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For the GNSS observations, the penetration depth

depends on the soil moisture content. The drier the soil, the

deeper the signal penetrates into the soil. For dry periods,

e.g., during the days 60–90 in 2013, the VWCGNSS corre-

sponds very well to VWCTDR from the sensors at 10 cm

depths (Fig. 4). This confirms that the tuning of the time

series to a minimum soil moisture value of 0.05 m3/m3 (see

section ‘‘Data Analysis’’) seems to be a reasonable

approximation for the Sutherland site. For the validation of

VWCGNSS, the TDR sensors at 10 cm depth can be con-

sidered as the most suitable ones as they are closest to the

surface of all available sensors and less influenced by

deeper soil moisture in comparison with the TDRv15

sensors. The accuracy of the VWCGNSS derived from the

comparison with the TDRh10 sensors is 0.05–0.06 m3/m3

(RMSE in Table 1).

The residuals VWCGNSS–VWCTDR show a dependency

on the soil moisture content (Fig. 5 bottom panel, Fig. 9).

The residuals (VWCGNSS–VWCTDRv15) as well as the

residuals (VWCGNSS–VWCTDRhz10) correlate with the

GNSS soil moisture content by r2 = 0.57 ± 0.03 and by

r2 = 0.70 ± 0.06, respectively. VWCGNSS and

VWCTDRhz10 agree better for dryer than for wetter condi-

tions (Fig. 5 bottom panel). One reason for the dependency

Fig. 5 Comparison of soil

moisture from GNSS data

(average of L2P and L2C) and

TDR sensors. Top panel shows

average values of nine TDR

sensors integrating over a depth

from 0 to 15 cm. Middle panel

shows average values of four

TDR sensors at the depth of

10 cm, and daily precipitation.

The GNSS soil moisture

estimates are continuous in time

and also provide information on

soil moisture dynamics when

the TDR system has data gaps,

e.g., end of 2011 and 2013.

Bottom panel shows the

difference in soil moisture

between TDR and GNSS: daily

values and monthly moving

mean
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of the residuals with soil moisture could be the uncertainty

of the calibration factor, which relates the phase observa-

tions to the soil moisture content. The different regression

coefficients of 2.15 and 1.81 for the AOAD/M T and Javad

antenna indicate that the calibration coefficient may vary

with the antenna type. Here, however, we used one cali-

bration factor for the entire time period. Another reason for

larger residuals in weather conditions could be that the

penetration depth of the GNSS signal depends on the soil

moisture content. With a larger penetration depth during

dryer conditions, the measured soil moisture with the

TDRhz10 sensors at a depth of 10 cm can be expected to

be more representative for the GPS-based soil moisture

than for weather conditions where the GNSS signal pene-

trates into the uppermost centimeters only, causing larger

residuals.

Effect of antenna change

The replacement of the antenna at station SUTM on May 7,

2013, caused an offset in the GNSS soil moisture time

series at the day of the antenna change by 0.19 and

0.08 m3/m3 for the soil moisture estimated from L1 and

L2P, respectively. One possible reason for the observed

offset could be related to different phase centers of the new

and old antenna. A change in the phase center could cause

a change in the observation geometry, similar to the

antenna being at a different height. Small changes in

reflector height, if unaccounted for, will be absorbed by the

phase-shift parameter since frequency and phase are cor-

related parameters. As the time series of the estimated

reflector heights for all satellites used show no change

before and after the day of the antenna change, we fixed the

reflector height in the subsequent phase-shift estimation for

the whole processing period. Another possible reason for

the observed offset in the GNSS soil moisture time series

could be a change in the antenna gain pattern.

After the antenna change, the absolute soil moisture

values were tuned again to the assumption of a minimum

soil moisture of 0.05 m3/m3. For short time periods of less

than 1 year, the data may not cover the dry season and the

assumption made above might not be valid anymore.

Another possibility is the correction of the offsets by

assuming that the soil moisture during the day of the

antenna change did not change significantly, which is only

justified if there is no rainfall on this day. For Sutherland,

no precipitation was recorded during the day of antenna

change. The difference between the recalibrated time ser-

ies and the time series corrected by the offset estimated

from subsequent days is less than 0.01 m3/m3 for L1 and

L2. The good agreement between both methods is related

to optimal conditions: no rain plus data coverage of dry

seasons both before and after the antenna change. In the

case that less data are available which do not cover the dry

season or if the year is exceptionally wet, the calibration

might be biased. For a rainy day during antenna change the

offset correction might also cause a bias in the soil

moisture.

In addition to the additive bias we checked for a mul-

tiplicative bias. The comparison of the VWCGNSS with

VWCTDRv15 shows a larger regression slope of

0.78 ± 0.01 for the AOAD/M T antenna compared to a

slope of 0.72 ± 0.01 for the JAVAD antenna. Also the

regression analysis with VWCTDRhz10 reveals with

0.78 ± 0.02 a larger slope for the AOAD/M T antenna

Fig. 6 Infiltration pattern at a site located about 30 m north of the

GNSS station. Flow paths are visualized with the dye trace ‘‘Brilliant

Blue’’. Soil depth at this site is approximately 20 cm, excavated

bedrock can be seen in the lower part of the photograph

Table 1 Comparison of the soil

moisture estimates from GNSS

and TDR

Correlation

r2
Regression

slope

Regression intercept

(m3/m3)

RMSE (GNSS-TDR)

(m3/m3)

TDRv15 AOAD/M T 0.82 ± 0.02 0.78 ± 0.01 0.10 ± 0.002 0.07

TDRhz10 AOAD/M T 0.78 ± 0.02 0.78 ± 0.01 0.02 ± 0.003 0.05

TDRv15 JAVAD 0.75 ± 0.05 0.72 ± 0.03 0.10 ± 0.006 0.07

TDRhz10 JAVAD 0.76 ± 0.05 0.65 ± 0.03 0.04 ± 0.006 0.06

The statistics refer to the scatter plot in Fig. 7

The confidence interval is based on a 95 % level of significance
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compared to 0.65 ± 0.02 for the JAVAD antenna

(Table 1). The differences in the regression slopes of up to

0.13 indicate a slight dependency of the calibration

coefficient on the antenna model. The time period for the

GNSS observation with the AOAD/M T covers more than

4 years, while data for the Javad antenna are analyzed for

less than 1 year. Since the longer AOAD/M T data set

covers the full range of soil moisture variations, it is the

most suitable for an error estimation of the GNSS soil

moisture.

Fig. 7 Scatter plot of the soil

moisture from GNSS data and

TDR sensors. Upper panels

show the comparison for GNSS

data from the AOAD/M T

antenna for the period from

December 5, 2008, to May 7,

2013. Lower panels show the

comparison for GNSS data from

the Javad antenna for the period

from May 7, 2013, to September

12, 2014. Left panels refer to the

vertically installed TDR sensors

giving integrated values over a

depth from 0 to 15 cm

(TDRv15), and right panels

refer to the horizontally placed

sensors at 10 cm depths

(TDRhz10). Blue line represents

the regression line and black

line the ideal 1:1 line. Statistics

on the comparison are given in

Table 1

Fig. 8 Mean soil moisture at 10 and 20 cm depths (each is an

average of four horizontally placed TDR sensors) and difference

between both time series (red line)

Fig. 9 Scatter plot of the soil moisture residuals (VWC from GNSS-

VWC from TDR sensors at 10 cm depth, see Fig. 5 bottom panel)

compared to the soil moisture from GNSS. The blue line represents

the regression line
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Comparison of GNSS soil moisture results for L1,
L2P and L2C

For the particular antenna used in this study, the L1 signal

has a similar signal strength as the L2C signal transmitted

by the newer satellites (Fig. 10). However, the SNR from

L1 is less precise than the SNR for L2C, with more noise in

the interference pattern in particular at higher elevation

angles between 20 and 30 � (Fig. 10). The L2P signal is

20 dB weaker, which means 100 times weaker as L2C.

Since the L2C signal provides the highest signal strength

and precision, previous studies focused mainly on L2C

signals or the upcoming L5 signal (Larson et al. 2010;

Tabibi et al. 2015).

However, the SNR of the L1 and L2P signal also shows

interference patterns (Fig. 10). The SNR of L2P is a more

distorted, showing less sinusoidal interference pattern

because the SNR of L2P exhibits significant auto-correla-

tion. Nevertheless, the parameters of the frequency,

amplitude and phase can clearly be identified from the SNR

of the L1 and L2P signal using (2). The standard deviation

from the least-square adjustment of the phase estimates is

0.71�, 0.78� and 0.44� for the L1, L2P and L2C signal.

Since the elevation angles at which the observations are

collected are the same for all signals, their design matrices

are also the same; thus, the difference in the parameter

uncertainty can only arise from the scaling of the covari-

ance matrix diagonal by the RMSE of the residuals. This

interpretation corroborates with the smaller uncertainty in

the phase estimates for the L2C SNR, which is the least

noisy one. The standard deviation of the phase estimates

translates by factor 1.5 into the precision of the VWC

estimates corresponding to 0.011, 0.012 and 0.007 m3/m3,

respectively. Even if the precision of the soil moisture

estimates from L2C is better by nearly a factor of two than

for L1 and L2P, the precision of the soil moisture derived

from L1 and L2P is still good enough for most hydrological

applications.

Soil moisture time series derived from the L1, L2P and

L2C signals all reproduce the wetting and drying cycles in

response to rainfall (Fig. 11). Since the SNR from the L2C

signal gives the most precise solution, we used this as

reference and compared the soil moisture estimates from

the L1 and L2P signal against L2C. The RMSE of the

differences in soil moisture is 0.03 m3/m3 between both,

L2C and L1 as well as L2C and L2P. There are small inter-

frequency and inter-code biases in the GPS soil moisture

retrievals of -0.02 m3/m3 for L1 and L2C and 0.01 m3/m3

for L2P and L2C. Larger differences between L2C and L1

compared to L2P can be related to the different penetration

depth of the L1 signal. The L1 signal with a wavelength of

19.05 cm has a smaller penetration depth than the L2P and

L2C signal with a wavelength of 24.45 cm. This is con-

sistent with the slightly higher correlation between L2C

and L2P with 0.96 ± 0.01 compared to the correlation of

0.91 ± 0.02 for L2C and L1. The regression slope for L2C/

L2P is with 1.12 ± 0.01 different from the regression slope

of L2C/L1 with 1.03 ± 0.01. Hence, the calibration seems

to be carrier frequency dependent.

Both the L1 and L2P signals are suitable for soil

moisture estimation, especially for older GNSS records,

where no L2C observations are available. In the case of

SUTM, the L2C has been only available since May 2013,

when the new receiver was installed (see ‘‘GNSS data’’

section). Additionally, the spatial coverage was improved.

By including observations from older satellites that are

transmitting the L2P signal only, the number of scans per

day increased by a factor of three from two to six scans.

Fig. 10 Comparison of the signal-to-noise ratio (SNR) of the L1,

L2P and L2C signals for the GPS satellite PRN 17. Top panel shows

the SNR of the complete signal (direct and reflected), middle panel

refers to the SNR of the reflected signal converted to volts/volts,

bottom panel presents the Lomb–Scargle periodogram of the SNR

from the reflected signal
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Effect of the data sampling rate

The analysis step of fitting a sinusoidal to the SNR data

depends on the sampling rate. The precision of the phase,

estimated by least-square adjustment using (2), strongly

decreases from 0.5�, 1�, 1.8� to 2.5� with lowering of the

sampling interval from 1, 5, 10 to 30 s, respectively. The

three down-sampled solutions were compared with the 1-s

solution as reference (Fig. 12). The soil moisture retrievals

from the 30-s data can differ in some cases up to 0.04 m3/

m3 from the 1-s soil moisture estimates. The RMSE of the

differences in soil moisture is 0.006, 0.0012 and 0.013 m3/

m3 for the estimates of the 5-, 10- and 30-s data sets com-

pared to the 1-s data set, respectively. The regression

analysis of the 1-s solution with the down-sampled solu-

tions reveals a correlation of better than 0.99 ± 0.003, a

regression slope of 0.98–1 and a bias smaller than 0.001 m3/

m3 for all sampling rates. For soil moisture estimation, the

high-rate 1-s GNSS observations are preferable as they give

the most precise results. However, when the high-resolution

data are not available, the differences for the soil moisture

derived from the 30-s data are small with an RMSE of

0.01 m3/m3. The effect of sampling rate is expected to be

dependent on the reflector height. With a larger reflector

height, the frequency of the interference pattern increases.

The results presented here for an antenna 2 m above terrain

surface are not necessarily valid for antenna setups much

higher than that, e.g., for roof-top installations.

Fig. 11 Comparisons of the soil moisture, estimated from the L1 and

L2P data with those from L2C signals of the GPS satellite PRN 17 for

the period May 7–December 31, 2013. The blue line represents the

linear regression result and the black line the ideal 1:1 line

Fig. 12 Comparison of soil moisture derived from GNSS data with

5-, 10- and 30-s sampling rates for the period January 1–December

31, 2013. The blue line represents the linear regression line
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Conclusions

This case study with the longest GNSS-based soil moisture

time series published to date shows that temporal variations

of near-surface soil moisture estimated from GNSS data at

the IGS station SUTM capture the soil moisture increase

due to precipitation events and the subsequent drying due

to evapotranspiration very well. The data from the hori-

zontal TDR sensors at 10 cm depth and the GNSS soil

moisture time series from the AOAD/M T antenna, cov-

ering more than 4 years, seem to be the most suitable for

the GNSS soil moisture validation, resulting in an overall

accuracy of GNSS-derived soil moisture of 0.05 m3/m3

(RMSE in Table 1). The GNSS-derived soil moisture

estimates are highly correlated with the soil moisture

variations observed by TDR sensors. Deviations between

the GNSS and TDR datasets are primarily due to the fact

that TDR sensors are installed at deeper soil depths and soil

moisture is generally increasing with depth and also

becomes less sensitive to precipitation events with depth.

Despite these deviations, the good agreement implies that

the GNSS soil moisture estimates can fill data gaps in the

TDR time series. Additionally, for sites without TDR

sensors, permanent GNSS stations with similar environ-

mental conditions could provide near-surface soil moisture

data. Thus, the already existing worldwide network of

geodetic GNSS receivers has a great potential to comple-

ment the existing dedicated soil moisture-monitoring

networks.

The SNR of the L1 and L2P signals from geodetic

antennas can provide reliable soil moisture estimates,

which are less precise than the L2C signal. The compar-

isons of the soil moisture estimates from the SNR of the L1

and L2C signals as well as from L2P and L2C signals show

differences with an RMSE of 0.03 m3/m3. Extending the

soil moisture estimation to the L1 and L2P signals has the

strong advantage that it broadens the applicability of the

soil moisture estimation to historical GNSS observations

when no L2C signal was available. Another advantage of

using L1 signals is that L1-only GNSS receivers are much

cheaper than geodetic dual-frequency receivers and could

be used to increase the density of network observations.

Historic GNSS data are mainly stored with 30-s tem-

poral resolution. The soil moisture derived from the 30-s

data differs very little from the soil moisture derived from

the 1-s data with an RMSE of their deviations of 0.01 m3/

m3. This implies that the 30-s data provide a unique data

source to study seasonal and inter-annual soil moisture

changes since many of these stations provide continuous

data over the past two decades. At long-term monitoring

stations, GNSS equipment usually needs to be replaced or

updated at some point. The change in GNSS antennas may

cause an additive bias of more than 0.1 m3/m3. There is

also a small dependence of the GNSS-TDR regression

slope on the antenna model. Possible causes for the antenna

type dependence of the soil moisture retrievals, e.g., the

impact of different antenna phase center or the antenna

gain pattern, need to be investigated further.

In future, soil moisture estimates based on GNSS signals

could be obtained in near real time and assimilated into

hydrological models or numerical weather prediction

models as an important descriptor of the state of the land

surface. They could also provide a valuable database to

validate soil moisture estimates from other sensors like

COSMIC ray sensor networks or from satellite missions

(Dorigo et al. 2014).

Data supplement

The GNSS-based soil moisture time series for the station

Sutherland, South Africa, is made available for the time

period of this study (January 1, 2008, to September 1,

2014). It provides the integral soil moisture over an area of

60 by 60 m for the uppermost surface (max. down to 10 cm

depth). The data are daily averages based on daily mea-

surements from six different satellites (Vey et al. 2015).
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