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Abstract Acceptance testing or ambiguity validation is a

key step in global navigation satellite system (GNSS)

ambiguity resolution, which combined with integer esti-

mator is the so-called integer aperture (IA) estimator. The

difference test and ratio test are the two most popular tests.

In order to compare the performances of both IA estima-

tors, their differences in different GNSS models are ana-

lyzed from algebraic and geometrical perspectives.

Furthermore, both tests are connected by comparing with

the optimal acceptance test, and then, they can be trans-

formed each other based on certain numerical conditions.

As to the instantaneous applications, both tests are first

compared with their corresponding instantaneous approa-

ches, including the fixed failure rate approach for ratio test

IA (RTIA) and the instantaneous and controllable approach

for difference test IA (DTIA). Advantages and drawbacks

of both IA estimators in theory and application are ana-

lyzed based on these comparisons. In order to verify these

conclusions, typical multi-frequency, multi-GNSS situa-

tions are constructed to evaluate the performances of DTIA

and RTIA ambiguity resolution. Then, both IA estimators

are compared based on their instantaneous approaches in

the field test. All the simulation experiments and field test

results indicate that DTIA has more advantages and is

better than RTIA not only in theory, but also in the prac-

tical applications.

Keywords Integer aperture estimation � Ratio test �
Difference test � Fixed failure rate � Instantaneous

Introduction

Integer carrier-phase ambiguity resolution is required for

rapid and high-precision GNSS positioning and navigation.

Once the ambiguities are fixed, one can take advantage of the

precise phase measurements to realize highly demanding

application such as attitude determination, integrity moni-

toring, and formation flying of satellites. Integer ambiguity

resolution is a nontrivial problem, especially when one

attempts to fix ambiguities instantaneously and reliably.

Each GNSS model including ambiguities can be casted

in the linearized observation equation with a dispersion

matrix

EðyÞ ¼ Aaþ Bb; DðyÞ ¼ Qyy ð1Þ

where E(�) and D(�) are the expectation and dispersion

operators, y the m-vector of ‘‘observed minus computed’’

single- or dual-frequency GNSS data, usually the carrier

phase and/or code observations, a the n-vector of unknown

double-difference ambiguities and a 2 Zn, the p-vector

b consisting of the remaining unknown parameters, and

b 2 R
p. The combined design matrix (A, B) is the

m 9 (n ? p) design matrix and Qyy the m 9 m variance–

covariancematrix ofGNSSdata. In the following parts, â and

b̂ denote the float solutions of ambiguities and unknown

parameters, and a
^

and b
^

denote their fixed values.

The procedures of integer ambiguity resolution are

usually divided into the following four steps:

1. Float solution. In the first step, one estimates the

ambiguities by least-square adjustment as real-valued

parameters. These are the so-called float solutions. The

float parameters and their covariance matrix are

usually denoted as
â

b̂

� �
;

Qââ Qâb̂

Qb̂â Qb̂b̂

� �
and
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â ¼ ð�ATQ�1
yy

�AÞ�1 �ATQ�1
yy y

b̂ ¼ ðBTQ�1
yy BÞ

�1
BTQ�1

yy ðy� AâÞ
ð2Þ

where �A ¼ P?
BA, PB

\ = Im - PB, PB = B(BTQyy
-1-

B)-1BTQyy
-1 and Qââ ¼ ð�ATQ�1

yy
�AÞ�1

. PB is the projec-

tor that projects orthogonally onto the range space of

B with the metric of Qyy. Covariance matrix of other

float parameters, such as baseline vectors, also can be

obtained. Quality control steps are also implemented in

this step.

2. Integer solution. The float solution â is further adjusted

to take its integer nature into account and constrained

to the integer vector a
^

. It can be obtained by different

methods, which are essentially realized by a many-to-

one mapping just as

a
^ ¼ SðâÞ; S : Rn 7!Z

n ð3Þ

where S is the many-to-one integer mapping operator.

Among various integer estimators, integer least square

(ILS) is the optimal one and has the highest success

rate. In order to improve the computational efficiency,

the LAMBDA method (de Jonge and Tiberius 1996;

Teunissen 1993, 1995, 2010a) can be used.

3. Acceptance test. In practice, one can never ensure the

correctness of the integer identification, but one can

exclude integer candidates who are most likely

suspected. Through acceptance testing, one can avoid

the severe influence brought by incorrectly fixed

integers. Various tests have been proposed in the

literature, such as RT (Frei and Beutler 1990), DT

(Tiberius and De Jonge 1995), projector test (Han

1997; Wang et al. 1998), and others. RT and DT,

basically outperforming other tests, are analyzed in

detail in Verhagen and Teunissen (2006). Note that,

the combination of steps 2 and 3 is the so-called IA

estimator (Teunissen 2004).

4. Fixed solution. Once the integer ambiguities are

determined, the constrained adjustment must be com-

pleted. The so-called fixed solution can be achieved as

follows

b
^

¼ b̂� Qb̂âQ
�1
ââ ðâ� a

^ Þ ð4Þ

with Qb̂â the covariance matrix between the ambiguity

vector and other unknown parameters. Once ambigui-

ties are successfully fixed, the estimation results will

have accuracy in accordance with the precise phase

observations.

An incorrectly fixed ambiguity will lead to severe

biases in real-valued parameters. Hence, the failure rate,

which users mainly pay attention to, should be controlled

to be close to 0. It can be realized by adjusting the critical

value of acceptance test according to the requirement of

failure rate, the so-called fixed failure rate approach

(Teunissen 2003b, c). However, the precise control to

failure rate is not a trivial problem due to the difficulty in

precisely evaluating the performance of IA estimators,

which is usually realized by Monte Carlo simulation.

Besides quality control of ambiguity resolution, the fail-

ure rate can also be chosen as a comparing criterion

between different acceptance tests (Teunissen and Ver-

hagen 2008). A better acceptance test should have higher

success rate than those of other tests with the same con-

trolled failure rate.

In order to apply the fixed failure rate approach into

practice, the look-up table for RTIA estimator is created

based on a large amount of Monte Carlo simulations to

various GNSS models (Verhagen and Teunissen 2013).

Users can check the critical value of fixed failure rate by

inputting the number of double-difference ambiguities

and the failure rate of ILS for certain GNSS model. This

method first provides a feasible way for the applications

of the controllable IA ambiguity resolution. Based on

this method, the next step is to find the most suitable

acceptance test which can be applied in practice. Ver-

hagen and Teunissen (2006) give an initial investigation

about the comparison of IA estimators and finding the

good performance of RTIA and DTIA estimators. Fur-

thermore, in Wang and Verhagen (2014), DT and RT are

compared in detail. However, those comparisons only

give initial explanations to the phenomena in simulation

experiments. The essence of their difference in different

models is not revealed. In addition, the instantaneous and

controllable ambiguity resolution approach based on

DTIA is shown in Zhang et al. (2015b). At this time, we

have two available choices for instantaneous and con-

trollable IA ambiguity resolution: RTIA and DTIA. In

this contribution, we focus on exploiting the following

two aspects:

(1) the relations and differences between both IA

estimators;

(2) the comparison for instantaneous application of both

IA estimators.

First, both acceptance tests are analyzed from the per-

spectives of geometry reconstruction and algebra. Their

differences are explicitly illustrated in weak and strong

GNSS models, so that their advantages and drawbacks are

clear and easy to be compared and analyzed. Second, as a

reference, the relations between RT and DT are studied

through OA from numerical perspective. Then, the

instantaneous approach for both IA estimators is reviewed

and compared. Finally, in order to verify previous con-

clusions, RTIA and DTIA are compared in simulation

experiments and field test.
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Acceptance test and integer aperture estimator

Acceptance testing is one part of quality control for ambi-

guity resolution. It has a close relation with GNSS model

strength.When theGNSSmodel is strong enough, its success

rate almost approximates to 1, and then, its ambiguities can

be directly fixed without any testing. Unfortunately, many

GNSS models, such as single-frequency, single-epoch

solutions, are not strong enough, and acceptance testingmust

be implemented for quality control.

As to acceptance tests, they are the necessary parts of IA

estimators introduced in Verhagen (2005). They can be

summarized into the unified form (Teunissen 2013a)

TðxÞ� l ð5Þ

where T(�) is the acceptance testing function and l the

critical value.

An IA estimator can be interpreted as integer estimation

whose results satisfy a certain acceptance test, which is

defined as

Xz ¼ x 2 R
n; z 2 Z

njSðxÞ ¼ z; Tð�Þ� lf g ð6Þ

where the properties of Xz are given in Teunissen (2004). It

is the combination of integer estimator and acceptance test.

The detailed theory about integer estimator and IA esti-

mator can be referred to Teunissen (2010b). The theory of

IA estimation provides the foundation of ambiguity vali-

dation and gives the feasible way to realize quality control

of ambiguity resolution. In order to provide users with

controllable failure rate, the so-called fixed failure rate

approach is recommended in Teunissen and Verhagen

(2008), which can make the failure rate of ambiguity res-

olution equal to or below the required failure rate. The

difference between acceptance test and IA estimator is that

the former one is just a test, while the latter represents one

region whose samples also satisfy the test. Hence, in the

following parts, we will use IA to denote the performance

or geometry properties of certain estimators, while RT or

DT will be used when we analyze their algebra or

numerical properties of testing.

As an illustration, Fig. 1 demonstrates the two-dimen-

sional (2D) DTIA estimator. There are four judgments for

the estimation results of IA estimator:

1. Success, denoted as Ps,IA: The float solution resides in

the correct IA pull-in region and passes acceptance test

as the green part shows. The mathematical expression

for Ps,IA is given as Ps;IA ¼
R
Xa

f ðxjaÞdx, where a is the

correct integer vector, f(x|a) the probability density

function (PDF) of normal distribution, and Xa; a 2 Z
n

the correct IA pull-in region.

2. Failure, denoted as Pf,IA: It resides in the wrong IA

pull-in region and passes acceptance test, just as the

red parts show. Its computation formula is Pf;IA ¼R
Xz;z2Zn=fag

f ðxjaÞdx.

3. False alarm, denoted as Pfa: It does not reside in any

IA pull-in region and does not pass acceptance test, but

fall into the correct ILS pull-in region, just as the pink

part shows. It can be deduced from the known Ps,IA

and Ps,ILS, since Pfa = Ps,ILS - Ps,IA, where Ps;ILS ¼
R
Sa

f ðxjaÞdx and Sa is the correct ILS pull-in region.

4. Detection, denoted as Pd: It does not reside in any IA

pull-in region or does not pass acceptance test, while it

falls in the wrong ILS pull-in region, just as the blue

parts show. It also can be directly obtained by

Pd = 1 - Ps,ILS - Pf,IA.

The size of Xa is controlled by the critical value of accep-

tance test. The adjustments of Ps,IA and Pf,IA are realized by

choosing critical values based on a certain rule. From another

point of view, due to the corresponding relations between

critical value and sizeof IApull-in region, critical value can be

determined by adjusting the size of IA pull-in regions. Since

the properties of IA estimators are much discussed in the lit-

erature, here we do not list their definitions. Their properties

are directly compared and summarized.

−1.5 −1 −0.5 0 0.5 1 1.5
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Fig. 1 2D geometry reconstruction for DTIA estimation results.

Success and detection represent correct judgments, while failure and

false alarm represent incorrect judgments. Green success; blue

detection; pink false alarm; and red failure
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The differences between difference test and ratio
test

The original definitions of both tests are given here. Let the

squared norm of ambiguity residuals for ith integer can-

didate with the metric of Qââ be given as

Ri ¼ â� a
^

ik k2Qââ
¼ ðâ� a

^

iÞTQ�1
ââ ðâ� a

^

iÞ
i ¼ 1; 2; 3; . . .; n

ð7Þ

where Qââ is the covariance matrix of float ambiguities,

and a
^

i is the ith integer candidate of float ambiguities. Ri

can be interpreted as the Mahalanobis distance (MD)

(Maesschalck et al. 2000) between float ambiguities and

the ith integer candidates.

Based on previous definition, RT is given as

Accept a
^

iff:
R1

R2

� lRT; 0� lRT � 1 ð8Þ

with R1 and R2 the two smallest values of Ri. When

lRT = 0, all testing results are rejected, and only float

solutions are accepted. If lRT = 1, RTIA pull-in region is

overlapping with ILS pull-in region. RTIA estimator will

be the same as ILS estimator.

DT is shown below

Accept a
^

iff:R2 � R1 � lDT; lDT � 0 ð9Þ

when lDT = 0, the DTIA is also equivalent to ILS esti-

mator. The upper bound of critical value and more prop-

erties for DT is deduced in Zhang et al. (2015a). In order to

explicitly present the differences in both tests, the geom-

etry reconstruction of 2D IA pull-in regions for both tests is

shown in Fig. 2. Their ambiguity model matrix is chosen as

Qââ¼
0:0865 �0:0364
�0:0364 0:0847

� �
.

Notice that in (8) and (9), the tests are designed based on

different calculations of two smallest MDs, and then testing

judgments are made. Explicitly, RT is realized by calcu-

lating the quotient, while DT is based on subtraction.

Eventually, we can obtain the ratio of two MDs by RT and

absolute difference by DT. The construction of two IA

pull-in regions in Fig. 2 reflects this difference. The ratio of

MDs preserves the quadratic items of Ri; hence, the

boundary of RTIA is constructed by ellipses. While the

absolute difference removes the influence of quadratic

items, DTIA pull-in region is bounded by linear functions.

The comparisons for both tests from weak model to

strong model are directly demonstrated in Fig. 3. Please

note that the ranges of coordinate are different in both

panels. Hence, the size of IA pull-in region in top panel is

much smaller than that of bottom panel. The critical values

of both tests are determined based on the fixed failure rate

approach and Pf = 0.001. The IA regions for both tests are

denoted with different colors. Besides this, the contours of

MDs to the origin point are presented by colored ellipses.

The performance evaluations for DTIA and RTIA are real-

ized by calculating the size (volume) of three regions. Here, we

denote the green, blue, and magenta parts in each panel asXa,0,

Xa,RT, and Xa,DT, respectively, with Xa,DTIA = Xa,0 [ Xa,DT,

Xa,RTIA = Xa,0 [ Xa,RT. Ps,DTIA - Ps,RTIA is deduced as

follows

Ps;DTIA � Ps;RTIA ¼
Z

Xa[Xa;DT

f ðxjaÞdx�
Z

Xa[Xa;RT

f ðxjaÞdx

¼
Z

Xa;DT

f ðxjaÞdx�
Z

Xa;RT

f ðxjaÞdx ð10Þ

Hence, the sign of Ps,DTIA - Ps,RTIA depends on Xa,DT and

Xa,RT. In addition, the distribution of Xa,DT and Xa,RT in
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Fig. 2 2D geometry reconstruction for the IA pull-in regions of RT

and DT (Verhagen and Teunissen 2006). Top panel RTIA pull-in

region with lRT¼0:4; bottom panel DTIA pull-in region with lDT¼5.

Green parts in both panels are the IA pull-in regions of both tests
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f(x|a) also plays certain role. The MD of x to the vector a is

given as RaðxÞ ¼ x� ak k2Qââ
, then

f ðxjaÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2pQââÞ

p exp �RaðxÞ
2

� �
ð11Þ

The smaller the Ra(x), the larger the f(x|a). Based on Fig. 3,

theorem 1 can be deduced:

Theorem 1 Let Xa;RT ¼ fx 2 R
njx 2 Xa;RTIA=Xa;DTIAg,

Xa;DT ¼ fx 2 R
njx 2 Xa;DTIA=Xa;RTIAg, and Xa,RT \ Xa,DT

= [. Points in both sets conform to the normal distribution

N(a, Qaa). Xa,RTIA and Xa,DTIA are determined based on

fixed failure rate approach. If xRT 2 Xa,RT and xDT
2 Xa,DT, then

f ðxRT jaÞ[ f ðxDT jaÞ ð12Þ

Proof See the ‘‘Appendix’’. h

It means that samples are more likely to fall into Xa,RT

rather than Xa,DT when both sizes are equal. However,

different sizes of Xa,RT and Xa,DT may counteract this

result. There exist two definite cases and one indefinite

case for Eq. (10):

1. Xa,DT B Xa,RT, then Ps,DTIA - Ps,RTIA B 0;

2. Xa,DT � Xa,RT, then Ps,DTIA - Ps,RTIA[ 0;

3. Xa,DT[Xa,RT, then the sign of Ps,DTIA - Ps,RTIA is

uncertain.

These cases can be seen in Fig. 3. The strength of GNSS

model Qââ varies from weak to strong from the top panel to

the bottom panel. For the top panel, when model is weak,

both case 1 and case 3 may happen. When the model

becomes strong, which refers to the bottom panel, case 2 is

more probable since the size of Xa,DT is obviously larger

than that of Xa,RT at that time. If the model is strong

enough, the size difference between Xa,RT and Xa,DT is

trivial, then case 3 happens, and |Ps,DTIA - Ps,RTIA| is also

trivial. In other words, when Qââ gradually varies from

weak to strong, |Ps,DTIA - Ps,RTIA| may first increase and

then decrease to 0. This can be observed in the following

simulation experiments part.

We note that in case 3, the sign of Ps,DTIA - Ps,RTIA is

influenced by the randomness in Monte Carlo integral. We

may obtain different signs for Ps,DTIA - Ps,RTIA for the

same GNSS model in different Monte Carlo simulations.

We choose the sign which appears more frequently.

The relations between difference test and ratio test

Based on statistical inference and IA theory, we can realize

the optimally controlled failure rate based on a certain rule,

the so-called optimal IA (OIA). OIA is defined such that its

success rate is maximized based on a fixed failure rate. Its

principle and derivation can be referred to Teunissen

2003a, 2005, 2013b). For simplicity, here we directly give

the definition of OA

ˆ

ˆ( )Accept     iff:  
ˆ( )

− ≤
−

(
(

(
( OA

a

f a aa
f a a
ε μ ð13Þ

where fâð�Þ is the PDF of float ambiguities, fêð�Þ is the PDF
of ambiguity residuals, with fêðâ� a

^ Þ ¼ C
P1

i¼1

exp � 1
2
R

� �
i
. lOA is the critical value, and C is the nor-

malization constant. Notice that OA is much more com-

plicate than DT and RT, and its nominator is impossible to

be completely known. This is the reason why it cannot be

widely applied in practice.
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Fig. 3 2D comparison of RTIA and DTIA in weak ambiguity model

and strong model with the fixed failure rates Pf = 0.001. The weak

model is chosen as 10Qââ, and that of strong model is Qââ. Green

parts: samples pass DT and RT; blue parts: samples pass DT and fail

RT; magenta parts: samples pass RT and fail DT. Red star is the

coordinate origin. Contours of MDs to the origin for all points are

plotted with colored ellipses
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Previous research (Verhagen and Teunissen 2006)

showed that RT and DT have a good performance close to

OA in many GNSS situations. Therefore, some potential

relations should exist between RT and DT. Here, we con-

nect both tests by OA.

According to (13), we can deduce that

f e^ðâ� a
^Þ

fâðâ� a
^Þ ¼

P1
i¼1

exp � 1
2
Ri

� �
exp � 1

2
R1

� �

¼ 1þ
exp � 1

2
R2

� �
exp � 1

2
R1

� �þ
P1
i¼3

exp � 1
2
Ri

� �
exp � 1

2
R1

� � � lOA

ð14Þ

Rearranging inequality (14) gives

1þ exp � 1

2
ðR2 � R1Þ

	 


þ
X1
i¼3

exp � 1

2
ðRi � R1Þ

	 

� lOA ð15Þ

Equation (15) can be further simplified as

R2 � R1 � 2 ln
1

lOA �
P1
i¼3

exp � 1
2
ðRi � R1Þ

� �
� 1

¼ lDT

ð16Þ

It is obvious that the critical value of DT is coupled with R1

and Ri, i C 3. If condition

X1
i¼3

exp � 1

2
ðRi � R1Þ

	 

� 0 ð17Þ

is satisfied, Eq. (16) will be transformed into

R2 � R1 � � 2 lnðlOA � 1Þ ð18Þ

Condition (17) only happens when GNSS model is very

strong, and then, DT is equivalent to OA.

Unfortunately, it is not easy to deduce similar relation

between RT and OA. However, this relation can be investi-

gated from a numerical perspective. IntroducingRT into (14)

is only feasible when the following approximation exists

exp � 1

2
Ri

	 

� 1

2
Ri i ¼ 1 ð19Þ

This transcendental equation is established within a certain

numerical interval, as shown below

if exp �R1

2

	 

� R1

2

����
����\0:001 then

R1 2 ½1:1331; 1:1335�
ð20Þ

Within this numerical interval, RT can realize its approx-

imation to OA. Ri satisfies the following inequality

1
ˆ ˆ

max min

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )ˆ ˆ( ) ( )−− − − −≤ − − ≤
( ( ( (

( (
TT

Ti i i i
i aa i

a a a a a a a aa a Q a a
λλ

ð21Þ

where kmax and kmin are the maximum and minimum

eigenvalues of Qââ, respectively. The variation in Ri can be

analyzed from two cases: Qââ is changed or â changed.

For the first case, if Qââ becomes more precise, kmax and

kmin will become smaller. As to the same â and a
^

i of

different GNSS models, ðâ� a
^

iÞTðâ� a
^

iÞ keeps constant;
hence, the lower bound and upper bound will increase in

(21), and then, Ri will also be enlarged. Note that in this

case, we only talk about the constant float vector and

integer candidate, â and a
^

i, under the varying GNSS

model Qââ. It is possible that two different GNSS models

may generate the same samples. We admit that �Qââ may

make â get closer to a
^

i, but it is impossible to analyze Ri

when both â and Qââ are changed. For the second case, if a

new ambiguity item is added to the original vector,

ðâ0 � a
^ 0

iÞ
Tðâ0 � a

^ 0
iÞ, â0 ¼ ½â1; . . .; ân; ânþ1�T , and a

^ 0 ¼
½ a^ 1; . . .; a

^

n; a
^

nþ1�T , which means the number of visible

satellites increases, ðâ0 � a
^ 0

iÞ
Tðâ0 � a

^ 0
iÞ also increase.

Under this situation, the added satellite will not worsen the

GNSS model, so kmax and kmin will decrease or basically

keep constant. Then, the lower and upper bounds will

increase in (21), and Ri also will increase.

If the approximation in (19) is satisfied, we have

exp � 1
2
R2

� �
exp � 1

2
R1

� � �
2 exp � R1

2

� �R2
R1

R1

ð22Þ

then (14) can be rearranged as

1þ
2 exp � 1

2
R2

� �R2
R1

R1

þ
X1
i¼3

exp � 1

2
ðRi � R1Þ

	 

� lOA

exp � 1

2
R2

	 
R2
R1

� R1

2
lOA � 1�

X1
i¼3

exp � 1

2
ðRi � R1Þ

	 
 !

ð23Þ

Finally, the following relation can be deduced

R2

R1

� 2

R1

ln
2

R1 lOA � 1�
P1
i¼3

exp � 1
2
ðRi � R1Þ

� �� � ¼ 1

lRT

ð24Þ

Obviously, the critical value of RT is also coupled with R1

and Ri, i C 3. It cannot be independently determined as DT
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in (18). This essentially means that RT cannot realize

optimal testing in any GNSS situation. However, when the

GNSS model is very strong, just as condition (17), DT is

equivalent to OA and its critical value is independent of the

candidates. Hence, the following inequality between the

success rates of three IA estimators finally can be estab-

lished based on condition (17)

Ps;OA �Ps;DTIA �Ps;RTIA ð25Þ

Here, some remarks should be added regarding inequality

(25):

a. According to the theorem on loss of precision (Kincaid

and Cheney 2003), DT loses more precision (signifi-

cant binary bits) than RT when R2 is very close to R1.

This is the intrinsic drawback of subtraction or DT, but

it will rarely happen in GNSS situations.

b. Based on the analysis in previous section about the

difference between RTIA and DTIA, when there is

trivial difference between the size of Xa,RT and Xa,DT,

it is also possible that Ps,OA C Ps,RTIA C Ps,DTIA;

c. Theoretically, if the critical value of OA is determined

based on the fixed failure rate approach and other

integer candidates are also known, the critical values of

both tests can also be derived and both tests would

have the same fixed failure rate. However, this is

impossible in practice, and commonly we only know

the first and second integer candidates. That is the

reason why DT and RT are always suboptimal.

d. The numerical condition (19) reveals that RT is not the

best choice for strong GNSS models or multi-GNSS

models. Fortunately, these requirements are just the

conditions of DT to approximate OA. This proves that

DT is more suitable for multi-frequency, multi-GNSS

ambiguity resolution than RT.

Combining condition (16) with (24), the relation

between lDT and lRT can be found as

lRT ¼ R1

lDT � 2 ln R1

2

ð26Þ

This formula proves that the critical values of both tests are

coupled with the first integer candidate, which means that

this relation depends on each sample or each first integer

candidate. Notice that the RT approximation condition (19)

also depends on R1. Hence, this determines that RT and DT

are not equivalent in most GNSS situations. Though the-

oretically DT outperforms RT under condition (17), it may

be trivially worse than RT when both IA regions have

trivial difference, which will lead to case 3 in the analysis

of the previous section. All in all, when multi-frequency

and multi-GNSS are widely applied into practice, DT will

reveal its advantages in theory.

Instantaneous application for difference test
and ratio test

Though the fixed failure rate approach is an effective

method for the quality control of ambiguity resolution, it

cannot be instantaneously realized due to time consump-

tion in Monte Carlo simulation. That is the reason why a

look-up table is created for RT. Based on the created look-

up table, RTIA can realize controllable ambiguity resolu-

tion by checking the critical value in the look-up table.

However, until now only RT has such table. Of course, we

can create such a table for other acceptance tests as the

method shown (Verhagen and Teunissen 2013). But the

numerous GNSS models and time cost in creating tables

are the main obstacles for the widely applications of other

tests. Hence, an instantaneous approach independent of

look-up table is necessary to be found. Fortunately, we can

realize instantaneous IA ambiguity resolution for the esti-

mators with analytical probability evaluation formulas

based on the instantaneous and CONtrollable (iCON)

approach introduced in Zhang et al. (2015b). Here, we only

take DTIA as example due to its distinct performance.

Based on the iCON approach, DTIA can realize

instantaneous ambiguity resolution with controllable fail-

ure rate. Here, we briefly give an introduction to the iCON

approach:

Set the fixed failure rate and initial critical value as Pf,

l0, and Pl. Calculate the probability for N integer candi-

dates, and sort them into descending order. Choose

n(1\ n B N), so that

Pf;ILSðnÞ[Pl; Pf;ILSðnþ 1Þ\Pl ð27Þ

Then, P0 =
P

k=n?1
N Pf,ILS(k) and Pf,ILS &

P
k=1
n Pf,ILS(k),

with Pf,ILS the approximated ILS failure rate and

0\P0 	 Pf.

Calculate the approximated failure rates for Pf,DTIA

(k, l0), k = 1,…, N. The values of ratio factor are calcu-

lated as

Rðk; l0Þ ¼
Pf;DTIAðk; l0Þ

Pf;ILSðkÞ
k ¼ nþ 1; . . .;N ð28Þ

Choose R(n, l0) = max{R(k, l0)}.
According to the ratio factor in step 2, we can determine

the critical value l for a certain GNSS model by

Xn
k¼1

Pf ;DTIAði; lÞ þ Rðn; lÞP0 ¼ Pf ð29Þ

where Pf,DTIA(i, l) is the DTIA failure rate of the ith

integer candidate.

Look-up table and iCON have in common that both

approaches are suboptimal methods. Specifically, look-up

table is created based on numerous simulated GNSS
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samples, and the most conservative case is chosen to ensure

that it can be applied globally. For the iCON approach, the

determination of l is approximated by n failure rates of IA

estimators. The GNSS model information is used in iCON

approach. In addition, the approximation errors in Pf,DTIA

also lead to uncertainty in l. However, by the constraining

of Pf, we can limit those errors within very small range.

Simulation verifications

The foregoing analysis reveals the differences, relations, and

their instantaneous application of DTIA and RTIA. Now, we

construct differentGNSSmodels and compare the ambiguity

resolution performances of both IA estimators.

Three GNSS cases are designed here. The first case varies

the model strength by including more epochs in the ambi-

guity resolution; the second case compares the performances

between both IA estimators based on fixed failure rate

approach. The comparison of their performance in instan-

taneous applications is implemented in case 3. All these

GNSS models are generated by means of ‘‘Visual’’ software

(Verhagen 2006) with GNSS ephemeris as input. The basic

simulation settings for singlemedium-length baselineGNSS

model are listed in Table 1. The ambiguity resolution will be

implemented epoch by epoch for 100,000 samples.

Case 1 DTIA and RTIA comparison with varying GNSS

models.

GNSS model strength in this case varies from weak to

strong by including 1 to 10 epochs in the ambiguity reso-

lution. The difference in the success rates between both

tests is presented in Fig. 4. Note that the first value at the

left side is negative.

In Fig. 4, as the number of epochs increases, the ILS

success rate gradually increases, and the value of

|Ps,DTIA - Ps,RTIA| first increases and then decreases

almost to zero. This is possible according to the previous

analysis. When the model is weak, both Ps,DTIA and Ps,RTIA

are small, and then |Ps,DTIA - Ps,RTIA| is trivial. Due to the

trivial difference between Xa,RTIA and Xa,DTIA, the sign of

Ps,DTIA - Ps,RTIA is uncertain. However, because samples

are more likely to fall into Xa,RTIA, Ps,DTIA - Ps,RTIA tends

to be negative. That is the reason why the first value at the

left side is negative but trivial. When the model becomes

strong, Xa,DT � Xa,RT, then Ps,DTIA - Ps,RTIA will be

positive and increase to the maximum as the size of

Xa,DT - Xa,RT increases. When the GNSS model is strong

enough, the IA pull-in regions start to overlap with the ILS

pull-in regions. The size of Xa,DT - Xa,RT is small, and

Ps,DTIA - Ps,RTIA becomes small again. When the ILS

success rate is larger than 1 - Pf, the acceptance test is not

necessary and Ps,DTIA - Ps,RTIA will be 0.

Case 2 DTIA and RTIA comparison based on fixed

failure rate approach.

Here, we mainly investigate the overall performance

comparison between DTIA and RTIA with 12110 GNSS

samples. This simulation experiment includes multi-fre-

quency, multi-GNSS samples. The samples with ILS suc-

cess rates larger than 0.8 are chosen since these samples are

more likely to be fixed. The ambiguity resolutions are

implemented epoch by epoch based on the fixed failure rate

approach.

Among the 12110 samples, the number of samples which

makes Ps,DTIA[Ps,RTIA is 11,626, and the number of

Ps,DTIA\Ps,RTIA is 484. Notice that the negative points in

Fig. 5 mostly appear when the ILS success rates are larger

than 0.95, and their absolute values are very small. This

conforms to previous analysis. When GNSS models are

strong enough, the pull-in regions of DTIA and RTIA will

Table 1 Basic simulation settings for three cases

Items Settings

System GPS, BeiDou, Galileo, and their

combinations

Location Changsha, China

Frequencies L1 (E1), L2, E5a, B1, and B2

Fixed failure rate 0.001

Sampling interval 300 or 600 s

Troposphere delay ZTD estimated

Standard deviation of

ionosphere delay

0.01 m

Standard deviation of raw

observations

Code 20 cm; phase 2 mm

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02
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ILS success rates

δ 
P

s

Fig. 4 Success rate differences between both IA estimators with

different number of epochs. From left to right, the number of epochs

increases from one to 10, and dPs = Ps,DTIA - Ps,RTIA
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be very similar. Their performances will have a trivial dif-

ference, and both negative and positive dPs are possible. In

future, multi-frequency, multi-GNSS ambiguity resolution

will be common, which will benefit from DTIA.

Case 3 Instantaneous application comparison for DTIA

and RTIA with their corresponding approaches.

In this part, we will compare the performances of both

IA estimators by the simulation experiment shown in Fig.

6. The better IA estimator should have higher success rates

with controlled failure rates. The 4039 GNSS samples are

generated based on GPS, Galileo, BeiDou, and three

combinations, including GPS?Galileo, GPS?BeiDou, and

GPS?BeiDou?Galileo.

Here, we set a threshold, Ps,ILS[ 0.8, to select effective

GNSS samples as in case 2, since samples with lower ILS

success rates cannot realize reliable ambiguity resolution in

practice. Experiment results are presented in Figs. 7 and 8,

and their statistics are summarized in Table 2. Note that the

number of epochs involved in Pf = 0.01 is less than those

of Pf = 0.001. This is because only when Ps,ILS\ 1 - Pf

will the IA ambiguity resolution be implemented. Other-

wise, we directly set Ps,IA = 1 - Pf, and Pf,IA = Pf.

Fig. 5 Relations between success rates difference dPs = Ps,DTIA - -

Ps,RTIA and ILS success rates. Blue dots Ps,DTIA[Ps,RTIA; red dots

Ps,DTIA\Ps,RTIA

μ μ

>

Fig. 6 Flow diagram of the simulation experiment for two IA

estimators. Pf,DTIA and Pf,RTIA are the failure rates of two IA

estimators; Ps,DTIA and Ps,RTIA are their success rates, and lDTIA and

lRTIA are their critical values

Fig. 7 Controlled ranges of failure rates for two instantaneous IA

estimators. Top panel Pf = 0.01; bottom panel Pf = 0.001

GPS Solut (2016) 20:539–551 547

123



According to Fig. 7 and 8 and their statistics in Table 2,

we can see that DTIA based on the iCON approach has

almost the same controllability performance as that of

RTIA based on look-up table. Notice that RTIA based on

look-up table actually does not constrain the failure rate

within (0, Pf), because the critical values in the look-up

table choose the worst GNSS model based on limited

locations and samples, which is only locally available.

Due to the approximation error in the computation of

DTIA success rates and failure rates, the variation range of

Pf,DTIA for DTIA is slightly broader when Pf = 0.001, but

its influence can be neglected. According to the IA success

rates, DTIA obviously has better performance since most

of times its success rates are larger than those of RTIA.

When Pf = 0.01, DTIA has obviously a smaller range of

controlled failure rates and higher IA success rates.

When the DTIA success rates approach 1, the success

rates of DTIA and RTIA gradually approximate each other.

This conforms to previous analysis that when the GNSS

model is very strong, both estimators have similar perfor-

mance. Hence, we still can conclude that DTIA has better

performance than RTIA most of the times for instantaneous

applications. Note that the horizontal axis indicates the

DTIA success rates not ILS success rates, since Ps,ILS falls

into the range (0.8, 1.0), which is too narrow to clearly

demonstrate the difference in both IA estimators.

In addition to the previous remarks, the look-up table for

RTIA has a big drawback. Only 0.001 and 0.01 are avail-

able as the choice of fixed failure rates. This means that

users do not have many choices in the quality control of

ambiguity resolution. However, DTIA based on iCON does

not have this shortcoming, whose failure rates can be set

randomly, and the only consideration is its upper bound.

Field test verification

In order to give a final evaluation to the instantaneous

applications of both IA estimators, a field test was carried

out on January 9, 2013 at Delft University of Technology,

the Netherlands. Two low-cost, single-frequency mu-blox

receivers are connected with the baseline length 9.71 m.

One GNSS observation station with high-precision

Septentrio receiver is used as reference receiver. The lay-

out of three receivers is presented in Fig. 9. More than 1-h

GPS single-frequency observations are collected in the

field test. IA ambiguity resolutions are implemented based

on Kalman filter, so that most of the epochs can be fixed as

reliable as possible. The outliers are adapted before

ambiguity resolution. Then, IA estimation is implemented

based on two controllable methods. The IA estimation

results are listed in Table 3. Here, we only talk about the

controlled failure rates, Pf,IA, to compare the performance

of both estimators. The fixed rate is Pfix,IA = 1 - Pf,IA.

Note that the fixed rate includes success rate and failure

rate. Since the true ambiguities are not known, here we

only compare the controlled failure rates.

In Table 3, we can see that DTIA always has lower

failure rates than those of RTIA, especially when Pf chooses

the smaller value. Hence, the fixed rates of DTIA are higher

than those of RTIA. This means that comparing with RTIA,

DTIA is more likely to accept the testing result. Hence, its

failure rate is lower than that of RTIA. In addition, we also

can see that the short baseline R1–R2 has lower failure rates

than the two long baselines. This is because the atmospheric

delays and other common errors are cancelled when the

baseline is short. Hence, according to the results of the field

test, we still can conclude that DTIA has a better perfor-

mance than that of RTIA in ambiguity resolution.
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Fig. 8 Success rate differences between two IA estimators based on

their corresponding controllable failure rate approach, in which

dPs = Ps,DTIA - Ps,RTIA. Top panel Pf = 0.01; bottom panel

Pf = 0.001
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Furthermore, in practice, the failure or fixing rates of IA

estimation are not the only quality indicators of ambiguity

resolution. Precision of positioning or attitude determina-

tion should also be taken into consideration. Hence, the

relation between quality of ambiguity resolution and

positioning will be studied in the future.

Conclusion

The performances of DTIA and RTIA are analyzed and

compared in detail. In order to find the differences between

DTIA and RTIA, their pull-in regions and success rates

were compared in different GNSS models. Two definite

cases and one indefinite case are summarized to deduce the

explicit conditions. For the purpose of finding the mathe-

matical relations between both IA estimators, optimal test

was introduced, and its relations with both tests were

revealed from numerical considerations. The conditions for

the mathematical equivalence between three IA estimators

were investigated, and the probability relations between

DTIA, RTIA, and optimal IA were established. The anal-

ysis showed that the critical value of DTIA was perturbed

by other integer candidates. Only when the model was

strong, the DTIA was mathematically equivalent to the

optimal IA estimator. RTIA is a numerical approximation

of optimal IA estimator under certain numerical condition.

Its critical value is also perturbed, and their influences

cannot be eliminated given its approximation condition.

Hence, DTIA outperforms RTIA when the model is strong.

However, when the model is strong enough and its ILS

success rate approaches 1, both IA pull-in regions are

almost the same, and their probability differences are small

and influenced by the randomness in Monte Carlo simu-

lation. If model is weak, samples are more likely to fall into

the RTIA pull-in region. Hence, RTIA may be better in

weak models. Unfortunately, this advantage is not useful in

practice, since ambiguity resolution in weak GNSS models

is difficult. The available choice is to first strengthen the

GNSS model by adding constraints or decreasing the

observation errors and then implement ambiguity resolu-

tion. Finally, the instantaneous approaches for both IA

estimators, which were the fixed failure rate approach and

the iCON approach, were compared and analyzed.

In order to verify the above conclusions, three simula-

tion experiments and a field test were implemented to

compare the performances of both IA estimators. The

comparison results show that DTIA is better than RTIA in

practice. It can realize better failure rate control and have

higher fixed rate most of the times. Hence, DTIA based on

the iCON approach will be a better choice for the future IA

ambiguity resolution.
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Appendix: Proof of Theorem 1

If xRT 2 Xa,RTIA and xRT 62 Xa,DTIA, we know that this

point passes RT and fails DT, which means

Fig. 9 Configuration of three receivers. R1 and R2 are two low-cost

mu-blox receivers, and R is a high-end Septentrio receiver

Table 3 Results for the field test of two IA estimators. ‘‘Failure RT’’

means the failure rate of RTIA, and ‘‘Failure DT’’ the failure rate of

DTIA

Items Baseline Failure RT Failure DT

Pf = 0.01 R1–R2 0.0003 0.0003

R1–R 0.0015 0.0012

R2–R 0.0012 0.0009

Pf = 0.001 R1–R2 0.0019 0.0005

R1–R 0.0024 0.0015

R2–R 0.0048 0.0018

Table 2 Statistics for the

comparison results of IA

estimators. ‘‘std’’ denotes the

standard deviation

IA estimator Pf,IA std* Pf,IA range dPs[ 0 dPs\ 0

Pf = 0.01 DTIA 0.0015 (3.4e-3, 0.0112) 1171 969

RTIA 0.0015 (3.2e-3, 0.0131)

Pf = 0.001 DTIA 2.321e-4 (1.0e-5, 0.0014) 3285 354

RTIA 1.758e-4 (3.0e-5, 0.0013)
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R2 � lDT �R1 � lRTR2 ð30Þ

and then, we know that 0\R2 � lDT
1�lRT

. Similarly, for

xDT 2 Xa,DTIA and xDT 62 Xa,RTIA, we have

lRT �R2 � �R1 � �R2 � lDT ð31Þ

Then, �R2 � lDT
1�lRT

.

Since lDT and lRT are definite based on fixed failure

rate approach, based on previous relations, we have

R2 � �R2 ð32Þ

then

R1 � lRTR2 � lRT �R2 � �R1 ð33Þ

Eventually, we have

f ðxRTjaÞ ¼ C exp �R1

2

� �
�C exp �

�R1

2

� �
¼ f ðxDTjaÞ

ð34Þ

Since Xa,DT(xDT) \ Xa,RT(xRT) = [, then

f ðxRTjaÞ[ f ðxDTjaÞ ð35Þ
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