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Abstract Multipath remains one of the major challenges

in Global Navigation Satellite System (GNSS) positioning

because it is considered the dominant source of ranging

errors, which can be classified into specular and diffuse

types. We present a new method using wavelets to extract

the pseudorange multipath in the time domain and breaking

it down into the two components. The main idea is an

analysis-reconstruction approach based on application of

both continuous wavelet transform (CWT) and discrete

wavelet transform (DWT). The proposed procedure in-

volves the use of L1 code-minus-carrier (CMC) observable

where higher-frequency terms are isolated as residuals.

CMC residuals are analyzed by applying the CWT, and we

propose the scalogram as a technique for discerning time–

frequency variations of the multipath signal. Unlike Fourier

transform, the potential of the CWT scalogram for exam-

ining the non-stationary and multifrequency nature of the

multipath is confirmed as it simultaneously allows fine

detection and time localization of the most representative

frequencies of the signal. This interpretation of the CWT

scalogram is relevant when choosing the levels of recon-

struction with DWT, allowing accurate time domain ex-

traction of both the specular and diffuse multipath. The

performance and robustness of the method and its boundary

applicability are assessed. The experiment was carried out

using a receiver of Campania GNSS Network. The results

are given in which specular multipath error is achieved

using DWT level 7 approximation component and diffuse

multipath error is achieved using DWT level 6 denoised

detail component.

Keywords Specular multipath � Diffuse multipath � GPS
code-minus-carrier � Continuous wavelet transform �
Discrete wavelet transform � Scalogram

Introduction

Multipath remains one of the major challenges in Global

Navigation Satellite System (GNSS) positioning because it

is considered the dominant source of ranging errors. Urban

situations in particular are affected by this phenomenon,

yielding several blunders in the measurements and unac-

ceptable errors in the navigation solution. Multipath is

caused by multiple signal reflections from various objects

in the environment; multipath signals are always delayed

compared to line-of-sight signals. Multipath error quan-

tification on a given pseudorange observable has been

studied for years. Tranquilla and Carr (1991) classified the

multipath on pseudorange code measurements into three

different types: (1) diffuse multipath generated by reflec-

tions on a rough surface (the signal power is scattered in

various directions, so this type of reflection is not direc-

tional and non-coherent; the repetition period ranges from

sub-minute up to 2–3 min); (2) specular multipath gener-

ated by reflections on smooth surfaces (the signal strength

is reflected in one direction, such as a mirror, and the

repetition period is between 5 and 10 min); and (3) very

low-frequency multipath generated by reflection from the

sea (very long repetition period of the order of 25–60 min).

The greatest drawback in the analysis of the multipath

error is the lack of a model that can accurately describe it.
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It could be seen as a non-stationary random process;

therefore, the sole use of the Fourier analysis would lead to

the loss of time information. In fact, Fourier transform (FT)

shows the presence of harmonics but does not allow ex-

tracting information about when these frequencies are re-

ally present. Short-time Fourier transform (STFT) is also

not suitable due to the limited temporal and frequency

resolution of this technique. Therefore, it is considered

necessary to use a more flexible analysis tool such as the

wavelet transform. The use of wavelets in the GNSS field

has already provided good results when applied to cycle

slips detection, multipath analysis and observable

denoising.

Zhang and Bartone (2004) and Aram et al. (2007) ap-

plied wavelet decomposition to code-minus-carrier (CMC)

residuals in order to mitigate code multipath error using

single-frequency receivers without separating diffuse and

specular components.

Many authors have applied wavelets to reduce high

(diffuse)- and low (specular)-frequency multipath. Wave-

let-based multipath mitigation techniques have been

mainly employed for the processing of GPS double dif-

ferences (DD), where the input data to be analyzed are DD

observations or residuals. The various research work can be

mainly divided into two categories: (1) denoising directly

DD observations for high-frequency mitigation (Souza and

Monico 2004) and (2) the low-frequency multipath, built

by reconstructing the component from the approximation

part of the DD residuals and then applying it to the GPS

measurements to correct for this bias term (Satirapod et al.

2001; Satirapod and Rizos 2005; Elhabiby et al. 2008;

Souza et al. 2008a).

Further work in the field on the use of wavelet transform

for multipath mitigation includes Souza et al. (2008b), who

carried out studies for mitigating low-frequency multipath

effects in kinematic GPS applications, applying the wavelet

decomposition to double difference residuals.

Ogaja and Satirapod (2007), indicating the value of ana-

lysis procedures in identifying multipath frequencies, have

gathered information about high-frequency multipath using a

spectrogram (short-time Fourier transform) of two successive

days of data to analyze 1-Hz GPS horizontal components. El-

Ghazouly (2009) introduced a center frequency matching

procedure based on a priori knowledge of the range of fre-

quencies to ensure that all the important information is left in

the GPS coordinate domain before applying wavelets coef-

ficients thresholding and reconstruction.

Most of the previous research used the discrete wavelet

transform (DWT) as a wavelet tool in filtering and de-

noising problems. As long as only the DWT is applied,

specific care is required to define the decomposition be-

cause it might add processing time by superfluous de-

composition levels or cause the loss of valuable signal

information, particularly for the higher-frequency

components.

The ability to suitably decompose a signal into different

scales (or frequencies) is very important for separating

several signal components, and the continuous wavelet

transform (CWT) provides a useful aid for such a decom-

position. The main advantage of the CWT is that it reveals

the signal content by far greater detail than either Fourier

analysis or the DWT. Therefore, in order to enhance the

versatility and power of the DWT, we propose application

of both CWT and DWT.

The CWT exploits the continuation properties in the

wavelet analysis to allow a best depth-estimation tech-

nique. Low- and high-frequency multipath may be more

conveniently analyzed by the CWT scalogram, providing

useful information concerning the time location and the

frequencies of the two components without any a priori

knowledge.

The trade-off between the DWT and the CWT is that the

DWT is more efficient for signal reconstruction, while the

CWT enables us to detect effects that are not picked up by

the DWT. The novelty in our approach is the use of both

CWT analysis and DWT inversion in order to select ap-

propriate decomposition levels to yield an accurate time

domain extraction of both the specular multipath and dif-

fuse multipath.

Methodology

The code-minus-carrier (CMC) observable was formed to

investigate the multipath error for a single-frequency

GNSS receiver. Aram et al. (2007) used the CMC ob-

servable with real data in order to reject the worst satellite

in the least square solution. Blanco-Delgado and de Haag

(2011) applied the CMC observable to data obtained with a

GSS7800 simulator in order to isolate multipath from other

errors. CMC is obtained by subtracting, in the range do-

main, the carrier phase from the code observable at every

epoch t for each satellite:

CMCi
L1 tð Þ ¼ Pi

L1 tð Þ � k1/
i
L1 tð Þ

¼ 2IiL1 tð Þ � k1N
i tð Þ þMi

P tð Þ þMi
/ tð Þ þ eiP tð Þ

þ ei/ tð Þ ð1Þ

where the superscript i denotes the satellite, PL1
i is the code

observable on L1, k1 is the wavelength at L1 frequency

(k1 = 0.1904 m), /L1
i is the carrier phase observable on

L1, IL1
i is the ionospheric delay, Ni is the integer wave-

length ambiguity on L1, MP
i is the code multipath, M/

i is

the carrier phase multipath, eP
i is the receiver noise error of

L1 code measurements and e/
i is the receiver noise error of

L1 carrier phase measurements.
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The carrier phase multipath error can reach a maximum

value of a quarter of a cycle (approximately 4.8 cm for the

L1), while the pseudorange multipath error can reach

several meters for the C/A-code measurements in a highly

reflective scenario, so that the term M/
i is negligible (El-

Rabbany 2002; Braasch 1996). In addition, the receiver

noise error of code measurements is on the order of cen-

timeters, while that of carrier phase measurements is on the

order of millimeters, so this term is also negligible (Misra

and Enge 2011).

Note that in (1) errors common to code and carrier phase

measurements (i.e., satellite and receiver clock offsets,

troposphere delay or orbit errors) were removed because of

the differencing. Thus the terms remaining in (1) are twice

the ionospheric error, the carrier phase integer ambiguity,

multipath and receiver noise errors associated with the

code measurements as reported in (2):

CMC ¼ 2I � kN þMP þ eP ð2Þ

The terms introduced in (2) occupy different bands in the

frequency domain; the frequency spectrum of the iono-

spheric delay is lower than 0.1 mHz, so it can be con-

sidered bias (Bartone and Zhang 2005). If the cycle slips

and clock jumps are detected and repaired, the ambiguity

term can also be considered a bias (Aram et al. 2007;

Blanco-Delgado and de Haag 2011). The multipath error

spectrum is in the range of 1 mHz to several tens of mHz,

so the noise error can be considered to be white. Thus the

ionospheric delay and ambiguity term can be estimated by

taking the simple moving average (SMA) of the CMC on

k samples from sample n – k ? 1 to sample n as reported

in (3):

CMCn ¼

Pn

i¼n�kþ1

CMCi

k
with n� k ð3Þ

Finally, the two biases can be removed from (2) by sub-

tracting CMC as shown in (4):

CMCres
n ¼ CMCn � CMCn ¼ MP þ eP þ eSMA ð4Þ

where CMCn
res is the observable used in the proposed

method and eSMA is the error introduced by moving average

filtering.

As a result of this operation, higher-frequency terms of

the CMC (MP and eP) are isolated. The moving average

filter is a digital low-pass filter.

In order to choose the value of k, it must be considered

that the longer the window, the less noisier the filtered

signal; however, longer windows hide the diffuse compo-

nent of multipath. Tests were done and showed (Fig. 1)

that k values of 150 and 200 samples do not preserve the

diffuse component because the spectral component has an

amplitude of nearly an order of magnitude smaller than the

specular multipath. Instead, with the k value equal to 50

samples, the signal appears noisier and its variability is

very pronounced. Thus the moving average was carried out

over 100 samples in order to both minimize the noise and

emphasize multipath components at once.

CMC residual error is a non-stationary random process

because it has a time-varying mean, a time-varying variance

and its power spectra are time variant (some spectral

components are present only in limited time intervals).

First, to make sure that the errors in the CMC residuals

exhibit mainly multipath plus receiver noise, data process-

ing was carried out applying three methodologies (corre-

lation, Fourier transform and short-time Fourier transform).

For each, the obtained results reveal the multipath but also

highlight their limitation. Therefore, the multi-level wavelet

analysis tool is applied to CMC residuals.

Our objective is to develop and test a methodology to

identify and isolate specular and diffuse multipath errors of

single-frequency code measurements by applying the

wavelet analysis to CMC residuals.

The basic principle underlying our approach is to first

perform accurate time–frequency detection and separation

of the multipath signal using the continuous wavelet

transform (CWT) and then using these analysis results for

applying the discrete wavelet transform (DWT) for the

signal reconstruction process.

While this research actually involves a post-missionmode,

the approach is developed with the consideration of real-time

implementation (with a small data latency) in the future.

Data processing

The experiment was carried out using data collected in

static mode by a dual-frequency GNSS receiver (Topcon

NET-G3) working as a Continuously Operating Reference

Station (CORS) of the Campania GNSS Network in Italy at

the NAPO reference station.

Fig. 1 CMC residuals of PRN 19 satellite. Power spectral density

(PSD) spectra on DOY 63 calculated with k values of 50, 100, 150

and 200 samples, respectively
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The receiving antenna (Topcon CR-G3) is a choke-ring

antenna mounted on the rooftop of a building located in the

city center of Napoli with no obstacles above the horizon.

This can be practically assumed to be a low-multipath

environment, except for ground reflections. The ground is

at two different distances from the antenna phase center:

0.84 m on the east side of the antenna and 2.57 m on the

west side, as shown in Fig. 2.

In order to investigate the multipath characteristics, GPS

data collected from 3:30 am until 5:00 am local time on

March 4–6, 2013 (DOY 63, 64, 65) at 1 Hz data rate were

analyzed. A mask angle of 10� was set to cut out too noisy

satellites. During the observation period, the selected visible

satellites were always the same for each day. A skyplot of the

satellites tracked on March 4, 2013, is shown in Fig. 3.

Analysis was performed for all visible satellites during

the observation period on DOY 63, 64 and 65, and the

results are shown for the PRN 19 satellite (rising). The first

step was to rule out the presence of any clock jumps and

cycle slips. The methodology introduced by Zhoufeng et al.

(2011) was used along with the threshold provided by Zhen

(2012). The next step was to calculate CMC and CMC

residuals according to (2) and (4); the values for the PRN 19

satellite on DOY 63 are shown in Fig. 4. The CMC repre-

sented in blue shows, in addition to noise (fast variations),

the presence of ionospheric delay causing a descendent

trend for the PRN 19 satellite (rising, thus an ionospheric

error decrease). The time evolution of the CMC residuals

shown in red clearly demonstrates the elimination of both

the ionospheric delay and the ambiguity term.

This observable has been subjected to a preliminary

analysis to verify the actual presence of multipath in the

data. The first test compared (Fig. 5) CMC residuals with

the results of multipath error provided by the TEQC soft-

ware, which is a toolkit for translation, editing and quality

checks (Estey and Meertens 1999).

The second test used the criterion of repeatability, stat-

ing that GPS satellites orbit earth twice every sidereal day

(i.e., 23 h 56 min 4 s). As the satellites return to the same

location 236 s earlier each day, assuming that the multipath

Fig. 2 NAPO station antenna

Fig. 3 Sky Plot DOY 63 from 3:30 am until 5:00 am local time on

March 4, 2013. Each tracked satellite is represented by a color bar.

Blue is shown for the start time of observation, and red is shown for

the end time

Fig. 4 CMC (shown in blue) and CMC residuals (shown in red) of

PRN 19 satellite, plotted versus time on DOY 63. The broken

magenta line represents the Klobuchar model ionospheric delay

translated

Fig. 5 CMC residuals (shown in green) and TEQC pseudorange L1

multipath error (shown in magenta) of the PRN 19 satellite, plotted

versus time on DOY 63
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comes from stationary objects and using the same antenna

and satellite positions, the multipath error should repeat

itself with a difference of approximately 4 min. Figure 6

depicts the normalized auto- and cross-correlations be-

tween CMC residuals for the PRN 19 satellite on DOY 63,

64 and 65. The distances between peaks are 246 and 245 s,

respectively, as expected.

This type of analysis provides only relative temporal

information and the time instant in which the phenomenon

occurs cannot be detected, therefore not allowing absolute

time localization. Furthermore, such as TEQC analysis,

correlation does not make it possible to highlight the

presence of two different components of multipath error.

Two others techniques, namely Fourier transform and

short-time Fourier transform, were applied to the CMC

residuals in order to test the presence of multipath in the

examined data, but the limitations of both are demonstrated.

The classical Fourier analysis, carried out on more days

of measurements, confirms the presence of multipath error

(Fig. 7).

Figure 7 shows the power spectrum of the CMC resi-

duals in logarithmic scale for the PRN 19 satellite. Two

peaks are visible: the first at lower frequency involving

specular multipath and the second peak at higher frequency

due to diffuse multipath and receiver noise. In particular,

power peaks occur between 2 mHz and approximately

20 mHz. The noise in the GPS data is present as a com-

bination of white and flicker noise.

The classical Fourier analysis, more than in the TEQC

results, allows highlighting the presence of two different

components of multipath error but has led to a loss of

temporal information. Because this does not allow the

detection of the time instant in which the phenomenon

occurs, it is only suitable for stationary signals.

Data were analyzed with short-time Fourier transform, a

well-known multi-resolution technique. Representing the

signal as a two-dimensional function of time and fre-

quency, it allows time localization of frequency peaks.

However, the localization in time and frequency provided

by the STFT is limited by the choice of a window because

it fixes resolution in both the time and frequency domains.

These resolutions are inversely proportional to each other,

so estimating frequency and time parameters of a signal

simultaneously with high precision is not possible. A high

resolution in time corresponds to a low-frequency resolu-

tion, and vice versa. To improve the frequency resolution,

the time duration of the window must be increased, causing

a decrease in the resolution in the time domain. Distin-

guishing two near-frequency components may not be

possible. STFT does not offer a frequency resolution useful

for distinguishing two very close harmonics without ex-

cessively decreasing the temporal resolution, making this

technique unhelpful. Because a good frequency resolution

is required, a time window was chosen with a duration of

512 samples. Therefore, the results (Fig. 8) cannot help us

to precisely identify when multipath error peak occurs

because each spectrogram sample represents power spectra

calculated on 512 s, but the presence of two spectral

components is still evident.

By using SFTF, obtaining a good resolution in both the

time and frequency domains from a single window is not

Fig. 6 PRN 19 satellite CMC residual correlation: normalized

autocorrelation on DOY 63 (shown in blue), normalized cross-

correlation between CMC residuals of DOY 63 and DOY 64 (shown

in red) and normalized cross-correlation between CMC residuals of

DOY 63 and DOY 65 (shown in green)

Fig. 7 Power spectral density (PSD) spectra of CMC residuals of the

PRN 19 satellite on DOY 63 (shown in red), DOY 64 (shown in blue)

and DOY 65 (shown in green)

Fig. 8 CMC spectrogram of PRN 19 satellite on DOY 63. Dark red

pixels mark frequency location of the high- and low-frequency

components
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possible. This type of analysis is not well suited for the

study of spikes (like multipath); in this case being able to

vary, the size of the time window according to the fre-

quency analyzed would be better, but STFT has a fixed

time and frequency resolution. This can be achieved by

analyzing the signal with the wavelet transform.

Wavelet analysis

The basic idea of wavelet transformation is to use a base

function that does not have infinite duration, such as a sine

wave, but one with finite duration: thus, a wavelet is a

waveform with limited duration and an average value of

zero. Unlike the sinusoids that are smooth and predictable,

wavelets tend to be irregular and asymmetric. The wavelet

transforms can be mainly classified into continuous

wavelet transforms (CWT) and discrete wavelet transforms

(DWT).

The continuous wavelet transform of signal f(t) is re-

ported in (5)

C s; pð Þ ¼ 1
ffiffiffiffiffi
sj j

p

Zþ1

�1

f tð Þw� t � p

s

� �
dt ð5Þ

where C is the coefficient, w* is the complex conjugate of

the mother wavelet function w(t), s is the scale, which is

used to change the frequency or shape of the wavelet

function, and p is the time translation, which is used to shift

the wavelet function to a certain position.

The CWT results in many coefficients C, which are a

function of scale and position. CWT is obtained by com-

paring the wavelet with a section of signal at the start time

and calculating C according to (5); then, the wavelet is

shifted and the coefficients are calculated until the whole

signal is covered. Finally, the wavelet is scaled and the

previous steps are repeated. Scaling a wavelet simply

means stretching or shrinking it.

With this technique, the scale can be related to the

frequency of the signal. The lower the value of the scale s,

the more ‘‘shrunken’’ the wavelet; the wavelet will change

quickly and will therefore be a type of high-frequency

analysis. Conversely, the higher the scale, the more the

wavelet will be stretched, varying slowly and therefore a

type of low-frequency analysis. A key parameter that

demonstrates the accuracy of multi-resolution analysis

techniques, such as STFT and CWT, is the size of the

Heisenberg boxes, i.e., the resolution in time and fre-

quency. Heisenberg boxes for CWT have a width that de-

pends directly on the scale and indirectly on the frequency,

so the lower the scale, the wider the time window, and the

higher the scale, the narrower the time window. This

property of wavelet transforms make them suitable for

analyzing non-stationary signals such as CMC residuals,

unlike the STFT for which Heisenberg boxes are consti-

tuted by all equal rectangles once the window size is fixed.

The mathematical definition of the CWT coefficients in

(5) is continuous, while, for reducing computational com-

plexity, it has been applied a numerical implementation

corresponding to the discrete version of the CWT that is

distinct from the DWT.

The main issues in wavelet analysis are the selection of

the mother wavelet function and the choice of the suitable

decomposition level in the case of DWT.

In order to choose the appropriate wavelet, it must be

considered that the method we propose is implemented

through an approach, based on both CWT and DWT. The

important point is that the CWT is advisable for analysis

because it provides a finer grained, but also very redundant,

description of a signal in terms of both time and scale (or

frequency). However, achieving inversion of the trans-

formed signal by CWT is not straightforward due to its

redundancy. On the other hand, the DWT solves inverse

problems much better because it is a non-redundant

transform. A one-to-one tight correspondence exists be-

tween the information in the signal domain and the trans-

form domain, which makes the DWT more suitable than

the CWT for reconstruction purposes.

Hence the candidate mother wavelet has to be both

suitable for an efficient time–frequency analysis and sim-

ply invertible with the DWT.

Analyzing wavelets, such as the Mexican Hat or Morlet,

with a fine-scale structure do exist, but they do not easily

permit the application of the DWT algorithm. By restrict-

ing the field to the wavelet that simultaneously satisfies

both requirements stated above, the choice is limited to

Daubechies (DB), Symlet (SYM), which is already used in

the field of GNSS measurements (Souza and Monico 2004;

Satirapod and Rizos 2005), and Discrete Meyer (Dmeye).

Furthermore, these mother wavelets avoid redundant co-

efficients as they are orthogonal functions. The identifica-

tion of additional wavelets that satisfy the above conditions

could be the subject of a specific study. The results ob-

tained using DB, SYM and Dmeye vary very slightly.

By using MATLAB Wavelet Toolbox software (Misiti

et al. 2014), the analysis herein was conducted with the

Discrete Meyer mother wavelet, which is a discrete im-

provement in the original Meyer wavelet, generated by the

FIR-based approximation of the Meyer wavelet. In addition

to the calculation of CWT coefficients, this wavelet allows

fast DWT inversion and reconstruction of the transformed

signal, which is not possible with the original Meyer

wavelet because it is not compactly supported.

Wavelet analysis results, showing CMC residuals com-

ponents associated with multipath error in wavelet domain,

will be represented through the CWT scalogram, which
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provides a better resolution than the DWT that considers

dyadic levels instead of continuous scales.

The scalogram can be seen as the equivalent of the

spectrogram for the STFT. It represents, in the timescale

plane, the percentage of energy for each wavelet coefficient

calculated according to (6):

Sci ¼
Ci s; pð Þj j2

PN
i¼1 Ci s; pð Þj j2

� 100 ð6Þ

where Sci is the percentage of energy associated with CWT

coefficient Ci at scale s at translation time p.

We use the scalogram to separate the signal’s informa-

tion content in both time and frequency domains. However,

as the scalogram does not directly represent frequencies,

but scales, another method that relates scale and frequency

must be used. A direct correspondence does not exist be-

tween Fourier frequency and scale. An approximate scale-

frequency correspondence can be calculated in a broad

sense using the following relationship by introducing a

pseudofrequency (Misiti et al. 2014):

a ¼ Fc

Fa � D
ð7Þ

where a is the scale, Fc is the wavelet center frequency of a

wavelet in Hz, Fa is the pseudofrequency corresponding to

the scale a in Hz and D is the sampling period.

The wavelet center frequency Fc can be seen as the

frequency of sine wave that approximates wavelet main

oscillation as shown in Fig. 9; for the Discrete Meyer

wavelet, its value is equal to 0.66337 Hz.

Using this method, the scales corresponding to different

center frequencies can easily be calculated. In particular,

we calculate the scales corresponding to the theoretical

frequency bands of the multipath (1.7–3.3 mHz for

specular and 5.6–20 mHz for diffuse) derived from the

repetition periods indicated in the introduction. The spe-

cified multipath frequencies are consistent with the antenna

height at the test site depending on the satellite elevation

angle. In the scalogram, the range of scales related to the

signal depends on the wavelet used for the analysis. Scale

values for the Discrete Meyer wavelet calculated for the

theoretical frequency bands are reported in Table 1.

Figure 10 shows CWT analysis applied to the PRN 19

satellite CMC residuals on DOY 63 by using the Discrete

Meyer mother wavelet. The analysis shows a clearer time–

frequency separation of the multipath signal. The two

components have been detected on the scalogram: the

specular multipath is reached at the highest scale, and the

diffuse multipath is reached at the lowest scale. The red

contour corresponds to a high percentage of energy asso-

ciated with the coefficient. A clear temporal localization is

shown compared to the STFT (see Fig. 8).

In graphs, pseudofrequencies associated with theoretical

multipath bands are reported by black lines for specular

multipath and by green lines for diffuse multipath. A strong

agreement between the calculated values and the theore-

tical ones is shown.

The difference in terms of frequency content between

the specular and diffuse components is shown in the

scalogram by the width of the bound areas: at the lowest

frequencies, for specular multipath, the contour of the

bound area is wider and therefore has a greater time du-

ration; at the highest frequencies, for diffuse multipath, the

regions bounded by the contour are more narrow with a

short time duration.

The temporal information assumes strong evidence by

conducting this analysis on more consecutive days.

Fig. 9 Discrete Meyer wavelet (shown in blue) and the sine function

with the same frequency as the center frequency of the wavelet

(shown in red)

Table 1 Pseudofrequency and

scale correspondences for the

Discrete Meyer wavelet

Multipath Lower Freq. (mHz) Upper Freq. (mHz) Lower Scale Upper Scale

Specular 1.7 3.3 199 398

Diffuse 5.6 20.0 33 119

Fig. 10 PRN 19 satellite CMC residual Discrete Meyer CWT

scalogram. Black lines represent the interval of scales related with

specular multipath error and green lines represent diffuse multipath
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Figure 11 clearly shows that multipath error peaks occur

each day with an advance of approximately 240 s. In ad-

dition to confirming the repeatability, this analysis provides

temporal information in absolute terms.

The DWT and CWT combination we propose lies in

performing the signal reconstruction process using the

classical DWT, while information concerning the time lo-

cation and the frequencies of the two multipath compo-

nents, provided by the preliminary CWT analysis, lead to

select appropriate decomposition levels for the DWT. We

reconstruct the two components by inverse DWT using

Mallat’s pyramid algorithm, which hierarchically performs

decomposition and reconstruction using a set of con-

secutive low- and high-pass filters. The DWT is applied to

CMC residuals through subband decomposition computing

the approximation coefficients (low-pass bands) and the

detail coefficients (high-pass bands).

The benefit of the CWT analysis is allowing it to specify

the DWT levels of decomposition that capture the required

frequencies once a correspondence between the frequency

content and the approximation and detail coefficients is

established. The frequency content of the approximation

fAN
ð Þ and detail fDN

ð Þ coefficients can be calculated by

using the following relationships:

fAN
¼ 0;

1

2Nþ1
fs

� �

fDN
¼ 1

2Nþ1
fs;

1

2N
fs

� �

ð8Þ

where N is the level of decomposition and fs is the sample

frequency.

Table 2 reports the DWT levels that have been inferred

according to CWT scales.

Because specular multipath error is represented by the

coefficient of CMC residuals at scales in the range of

199–398, as reported in Table 2, a decomposition of levels

7 and 8 in DWT corresponds to this range. According to (7),

level 7 corresponds to the 0 to 3.9 mHz frequency band,

while level 8 corresponds to the 0 to 2 mHz band; level 7 is

chosen for the low-frequency component (approximation)

because it corresponds to a frequency band that better

contains the specular multipath information.

The remaining six components correspond to the high-

pass bands (details) and contain the high-frequency infor-

mation. In particular, diffuse multipath can be represented

by the coefficient of CMC residuals calculated at scales in

the range of 33–119. Therefore, the band at level 6 is

chosen for the diffuse multipath component.

Once the bands of interest are isolated, the two multi-

path components are extracted separately through the in-

verse wavelet transform, which returns the reconstructed

specular and diffuse multipath error from the approxima-

tion level 7 and denoised detail level 6, respectively.

Specular multipath error extraction results in the time do-

main are depicted in Fig. 12.

Specular multipath error peaks occur at 3:41, 3:54 and

4:35 local time on DOY 63 with values of 0.18, 0.24 and

-0.23 m, respectively. The reconstructed multipath is also

reported for the two consecutive days 64 and 65 showing

the multipath repeatability.

The graphs in Fig. 13, showing the scalogram and

Fourier analysis of the extracted signal, confirm that the

signal has the property of the specular multipath error. In

terms of frequency, the power spectrum shows only one

peak near 2 mHz, while the scalogram does not have co-

efficients in the range of scales between the green lines.

The temporal localization of specular multipath is shown in

the scalogram, confirming the time instants in which the

peaks occur.

Fig. 11 PRN 19 satellite CMC residual Discrete Meyer CWY

scalogram on DOY 63 (top plot), DOY 64 (middle plot) and DOY

65 (bottom plot). The red circles highlight specular multipath peak

Table 2 Correspondence be-

tween CWT scales and DWT

levels

CWT scale DWT level

398 8

199 7

119 6

33 5

Fig. 12 Time evolution of specular multipath error for the PRN 19

satellite on DOY 63 (top plot), DOY 64 (middle plot) and DOY 65

(bottom plot). Repeatability can be established by comparing the plots

for the three consecutive days
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Diffuse multipath error extraction results in the time

domain are shown in Fig. 14. The diffuse multipath error

peaks occur at 3:38 and 4:05 local time on DOY 63 with

values of -0.17 and -0.30 m, respectively. The recon-

structed multipath is also reported for the two consecutive

days 64 and 65, showing the multipath repeatability.

The graphs in Fig. 15, showing the scalogram and

Fourier analysis of the extracted signal, confirm that the

signal has the property of the diffuse multipath error. In

terms of frequency, the power spectrum shows only one

peak near 15 mHz, while the scalogram does not have

coefficients in the range of scales between the black lines.

The temporal localization of diffuse multipath is shown in

the scalogram, confirming the time instants in which the

peaks occur.

Conclusions

We have proposed a method based on the use of wavelets

to extract the pseudorange multipath in the time domain,

breaking it down into two components: specular and

diffuse. The procedure involves the use of code-minus-

carrier (CMC) observable, so it can be implemented in

single-frequency receivers. We may conclude that the

CWT analysis inferring the multipath properties helps the

DWT reconstruction; utilizing the continuous analysis re-

sults, the DWT is effective for allowing the extraction of

both the high- and low-frequency multipath. We have

shown a real case where the specular and diffuse compo-

nents are clearly separated and the time in which the peaks

occur is exactly marked for both.

From the application point of view, the CWT method-

ology is not only crucial for the multipath extraction pro-

cess, but is also of independent interest for time series

analysis and will be applied directly at the GPS sites for

multipath investigation purposes because similar results, in

terms of both time and frequency, cannot be achieved with

other analysis tools. The tests were conducted in open sky,

and the results show that the specular multipath error

component corresponds to the DWT approximation level 7,

while the diffuse multipath error corresponds to the DWT

denoised detail level 6. These results can be applied under

similar conditions.

Some related avenues of research that should be pursued

include further validation using different data in different

environments and coming from other GNSS systems, such

as GLONASS and Galileo. The results and analysis pre-

sented herein have used data acquired by a GPS antenna

placed in a low-multipath environment. The proposed

method should be applied to other locations in order to gain

a better understanding of its capabilities and limitations. Of

special interest is the performance in situations with high

multipath and, particularly, study of the best decomposition

level, which represents the specular and diffuse multipath

under these conditions. Other areas to examine include

testing additional mother wavelets and analysis of issues

relating to the development of operational aspects for real-

time use.

Fig. 13 Power spectral density (PSD) spectrum (top plot) and

scalogram (bottom plot) of the PRN 19 satellite specular multipath

error on DOY 63

Fig. 14 Time evolution of diffuse multipath error for the PRN 19

satellite on DOY 63 (top plot), DOY 64 (middle plot) and DOY 65

(bottom plot). Repeatability can be established by comparing the plots

for the three consecutive days

Fig. 15 Power spectral density (PSD) spectrum (top plot) and

scalogram (bottom plot) of the PRN 19 satellite diffuse multipath

error on DOY 63
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