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Abstract Traditional carrier phase combinations are lin-

ear functions of the original carrier phases. We develop a

new way of carrier phase combination that regards carrier

phases of different frequencies as the basis of the carrier

phase space. The combined carrier phase is a point of this

space. Then, this point, i.e., the combined carrier phase, is

mapped back to a single-dimensional carrier phase by a

bidirectional mapping. The new single-dimensional carrier

phase is called mapped carrier phase. The advantages of

this combination approach are a long wavelength and small

noise of the mapped carrier phase, which make ambiguity

resolution easy. Unfortunately, the mapped carrier phase

value is not well determined due to the noise in the ob-

served phases. On the contrary, a set of possible mapped

carrier phase values are attained; however, only one value

is correct. To reduce the number of candidates and fix the

correct value of the mapped carrier phase, the following

steps are discussed: (1) The integer nature of the original

carrier ambiguity is used to attain an initial set of possible

mapped carrier phase values; (2) the distribution of the

mapped carrier phase ambiguity is included to reduce the

possible values; and (3) the Gaussian least-squares objec-

tive function is introduced to fix the correct value. As a

result of these steps, a single-epoch positioning algorithm

is established. Two experiments are carried out to pre-

liminarily compare the new algorithm with LAMBDA. The

results show that the new algorithm is slightly below

LAMBDA in resolution success rate, but computationally

more efficient than LAMBDA.

Keywords GPS � Short baseline � Single epoch � Carrier
phase combination

Introduction

Many algorithms have been developed for ambiguity fixing

recent decades. Examples are the ambiguity function al-

gorithm (Counselman and Gourevitch 1981) and its

modifications (Baselga 2010; Cellmer et al. 2010), FARA

algorithm (Frei and Beutler 1990), Cholesky decomposi-

tion algorithm (Euler and Landau 1992; Xu 2001),

LAMBDA (Teunissen 1993) and its modifications (Chang

et al. 2005), and the ARCE algorithm (Park et al. 1997).

These algorithms are very successful; however, most of

them are designed to fix the ambiguities based on several

epochs of observation.

The development of the GNSS constellations and more

frequencies makes reliable instantaneous precise position-

ing possible. Although Wang et al. (2009), Teunissen et al.

(2011) and Chen and Qin (2012) achieve reliable single-

frequency single-epoch ambiguity resolution, their resolu-

tions require baseline constraints. Others have reported

about unaided instantaneous precise positioning. Sjoeberg

(1993, 1998) and Pratt et al. (1997) have developed single-

epoch ambiguity resolution algorithms based on precise

code observables. However, these observables are not

available for civilian receivers. Teunissen et al. (1997)

discuss the performance of LAMBDA as applied in dual-

frequency GPS fast resolution. Later, many contributions

discuss the Real Time Kinematic (RTK) performance

combining observations of two or more constellations. For
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example, Tiberius et al. (2002) and Odijk et al. (2012)

discuss the instantaneous positioning combined GPS and

Galileo by the means of simulation and real data, and

combined GPS and BDS RTK results can be found in Deng

et al. (2014), He et al. (2014), Li et al. (2013) and

Teunissen et al. (2014). Odolinski et al. (2014) demonstrate

single-frequency RTK combining observations of available

Code Division Multiple Access (CDMA) satellite systems,

i.e., GPS, BDS, Galileo and QZSS.

Multi-frequency information provides more reliability

and freedom for ambiguity resolution. At present, carrier

phase combinations are linear functions of the original

carrier phases that include integer parameters. In case of

GPS, these can be expressed in unites of cycles as follows

/ = c1/1 ? c2/2 ? c5/5, where /1, /2 and /5 are carrier

phase observations of L1, L2 and L5, respectively, with

ck 2 Z, (k 2 {1, 2, 5}) are the combination parameter.

Specifically, this equation degenerates to dual-frequency

carrier phase combination when one of the parameters is

zero. Based on such combination, Jung (1999) and Hatch

et al. (2000) developed cascade integer resolution (CIR)

method. Forssell et al. (1997) introduced the geometry-free

three-carrier ambiguity resolution (TCAR) method for tri-

ple-frequency case. Generally speaking, a combined carrier

phase with long wavelength and small noise is preferable

for integer ambiguity fixing (Richert and El-Sheimy 2007;

Cocard et al. 2008). However, long wavelength and small

noise is a pair of paradox in the traditional carrier phase

combination approach. When trying to get a long wave-

length combination, we must use large combination pa-

rameter, which accompanies large observation noise. When

a combined carrier phase with small observation noise is

obtained, its wavelength is always short. This situation is

particularly severe for the dual-frequency carrier phase

combination.

We propose a new way of carrier phase combination in

order to attain a combined carrier phase with long wave-

length and small noise at the same time. This new method

will be introduced in the following sections, and its po-

tential for single-epoch positioning is discussed. In the first

section, we discuss the new approach of mapped carrier

phase generation. Due to the observation noise, the possi-

ble values of mapped carrier phase are not unique; how-

ever, only one of them is correct. The various values are

regarded as candidates of the mapped carrier phase. In

order to determine the correct value, we discuss the

geometric model of positioning in the following section,

including pseudoranges to sift the candidates of mapped

carrier phase. The remaining candidates are sifted by

minimizing a Gaussian least-squares residual function in

the subsequent section. Combining the process introduced

in these sections, we develop an algorithm for single-epoch

precise positioning. Two experiments are carried out to

preliminarily verify the real-time performance and re-

liability of the proposed algorithm.

New method for carrier phase combination

In order to obtain a combined carrier phase with long

wavelength and small noise, we develop a dimension-

added approach for carrier phase combination, instead of

the traditional linear addition way. First, we consider a

dual-frequency combination free of observation noise to

interpret the ideal case. We get the fractional parts of the

double-difference carrier phase observables in both fre-

quencies by rounding ui
0 = /i

0 - [/i
0], /i

0 is the ideal

carrier phase free of noise (in unit of cycles), and ‘‘[�]’’
denotes rounding to the nearest integer. We regard the

observable ui
0 and uj

0 as the basis of the carrier phase

space. The new combined carrier phase we are proposing is

a point in this space, which is denoted as (ui
0, uj

0). Con-

sidering ui
0 and uj

0 periodic, it is easy to prove that (ui
0, uj

0)

is a periodical variable whose period is the least common

multiple of the original carrier phase periods. The mathe-

matical expression of (ui
0, uj

0) is as follows:

ðu0
i ;u

0
j Þ u0

i ;u
0
j 2 ð�1

2
; 1
2
� i 6¼ j; i; j 2 f1; 2; 5g

Tr ¼ minT : ffiT 2 Z; fjT 2 Z; T 6¼ 0g

(
ð1Þ

with Tr being the period of the combined carrier phase, and

fi and fj are the frequency of ui
0 and uj

0. However, the

combined carrier phase (ui
0, uj

0) is an abstract two-di-

mensional variable that cannot be intuitively used in nu-

merical calculation. So we must find a bidirectional

mapping to transform it to a single-dimensional variable

for the convenience of calculation as

ðu0
i ;u

0
j Þ !

t\Tru0
r ð2Þ

where ur
0 is the mapping of (ui

0, uj
0), and t\ Tr means the

bidirectional mapping is within a period of (ui
0, uj

0). The

type of bidirectional mapping used here is expressed as

fit¼u0
i þNi

fjt¼u0
j þNj

(
$

frt¼u0
r

fr¼gcdðfi;fjÞ

(
Ni;Nj2Z;t2½0;TrÞ ð3Þ

where Ni and Nj are the ambiguities of the original carriers,

‘‘gcd(a, b)’’ denotes the greatest common divisor of a and

b, and fr is the frequency of the new variable ur
0. The

expression of ur
0 can be solved from (3) as

Ni ¼ ðu0
j þ NjÞfi

.
fj � u0

i

u0
r ¼ frðu0

i þ NiÞ
�
fi

8<
: Nj 2 Z;Nj 2 ½0; fj

�
frÞ ð4Þ

It is obvious from (4) that the values of ur
0 would not be

the same for any two arbitrarily different values of Nj.
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When the scale range of Nj is limited within [0, fj/fr), i.e.,

one period of (ui
0, uj

0), the bidirectional mapping is one-to-

one. It is also noted that if the role of ui
0 and uj

0 is inter-

changed, the outcome ur
0 will remain the same. Figure 1

shows the sketch of this mapping. Since Ni and Nj are

unknown integers, using the integer nature of Ni and Nj, the

scale range of Nj, ur
0 can be easily fixed from (4). We call

this new variable ur
0 the mapped carrier phase since it is

obtained from a mapping of (ui
0, uj

0). This mapped carrier

phase has the same period as (ui
0, uj

0) and can be intu-

itively used in numerical calculation.

The set of mapped carrier phase candidates

In the previous subsection, we derived the expressions of

the mapped carrier phase on the assumption of no noise.

However, observation noise is inevitable in measurement.

In this subsection, we discuss the influence of the obser-

vation noise. The practical double-difference carrier phase

observable can be expressed as uk = uk
0 ? ek, where ek is

the random stochastic noise assumed to conform to normal

distribution. Regarding ui and uj, rather than ui
0 and uj

0 as

the basis of the carrier phase space, (ui
0, uj

0) is not a

definite point in the carrier phase space anymore. On the

contrary, it can be any point in a specific region in the

carrier phase space, for example, the red region in Fig. 2.

The size of the region is determined by the confidence

interval of the noises, which is set by the user. Equation (4)

could be changed as follows to describe the given mapped

carrier phase noise,

N̂i ¼ ðu0
j þ NjÞfi

.
fj � u0

i þ ejfi
�
fj � ei

ur ¼ frðu0
i þ ei þ ½N̂i�Þ

�
fi

8<
: Nj 2 Z;Nj 2 ½0; fj

�
frÞ

ð5Þ

where ur is the mapped carrier phase given noise. N̂i is no

longer an integer given the observation noise. We denote

its bias as eNi
, with eNi

¼ ejfi
�
fj � ei. This bias degrades the

probability that ½N̂i� is fixed to the correct integer.

To further describe in what way that eNi
influences the

correct fixing of ½N̂i�, we assume there is another ambiguity

N 0j , with N 0j = Nj ? dNj, dNj being an arbitrary nonzero

integer. Replacing Nj with N 0j in (5), a wrong integer am-

biguity estimate is obtained,

N̂ 0i ¼ ðu0
j þ NjÞfi

.
fj � u0

i þ dNjfi
�
fj þ eNi

ð6Þ

with N̂ 0i being the wrong integer ambiguity estimate. The

difference of N̂ 0i and N̂i is dNjfi/fj. If the fractional part of

dNjfi/fj is not much larger than the size of eNi
, the fractional

part of N̂ 0i would be about the same size as the fractional

part of N̂i. It is hard to distinguish N̂i from N̂ 0i using the

integer nature of the ambiguity in such a situation. We

denote the fractional part of dNjfi/fj as FPij for short,

FPij ¼ dNjfi
�
fj � ½dNjfi

�
fj� ð7Þ

On the other hand, the variance of double-difference

carrier phase observation noise r0
2 satisfies 2r0 B 0.05(cy)

under the present measurement precision. Denoting the

variance of eNi
as r2Ni

, it is easy to calculate that r2Ni
and r0

2

satisfy r2Ni
¼ r20ððfi

�
fjÞ2 þ 1Þ. We graph the values of FPij

as a function of dNj in dual-frequency combinations, i.e.,

L1 and L2, L1 and L5, and L2 and L5 in Fig. 3. The range

of eNi
under the confidence probability 99 % is shown by

red dashes. The top panel presents values of FPij and eNi
in

the L1 and L2 combination versus dN2; the middle panel

presents the L2 and L5 combination versus dN5; and the

bottom panel presents L1 and L5 combination versus dN5.

Most of the blue dots in the figure lie above the top or

below the bottom red dash lines, and quiet a few of them lie

between the red lines. That means the fractional part of

dNjfi/fj could be submerged in the noise for certain values

of dNj. As a result, it is hard to distinguish N̂i from some

wrong estimates N̂ 0i using integer constraint. In other

words, there are more than one possible values of ½N̂i�.
Inserting these in (5), several possible values of the mapped

carrier phase can be obtained. These values compose a

candidate set of mapped carrier phase.

We denote the mapped carrier phase candidate set by

S1�a1ðurÞ, where subscript 1 - a1 is the confidence level

of eNi
. The mapping from (ui, uj) to the mapped carrier

φ0
r

t<Tr

φ0
i

φ0
j

(φ0
i, φ0

j)

Fig. 1 Sketch map of mapping free of noises

φi

φj

(φi-ei, φj-ej)(φi, φj)

Fig. 2 New approach of carrier phase combination with observation

noise
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phase given observation noise is shown in Fig. 4, and ex-

pression is as

ðui;ujÞ $
t\Tr

S1�a1ðurÞ ð8Þ

The candidate set S1�a1ðurÞ is defined as

S1�a1ðurÞ ¼ fN̂ijur ¼ frðui þ ½N̂i�Þ
�
fig ð9Þ

where N̂i is defined in (5), with the user-defined confidence

level 1 - a1, Pf ðN̂i � ½N̂i�Þ
�
rNi

�� ��� u1�a1=2g ¼ 1� a1.
Obviously, the number of possible values has a close

relationship with the confidence level of eNi
. Taking Fig. 3,

for example, the width between two red lines determines

how many dots lie between them. Choosing a proper

confidence level is important in mapped carrier phase

resolution.

The process of obtaining the mapped carrier phase in a

triple-frequency combination is similar to the case of dual-

frequency combination. We give the expressions of the

mapped carrier phase based on triple-frequency combina-

tion as follows,

fr ¼ gcdðf1; f2; f5Þ
N̂j ¼ ðu0

k þ NkÞfj
�
fk � u0

j þ ekfj
�
fk � ej

N̂i ¼ ðu0
j þ ½N̂j�Þfi

.
fj � u0

iþejfi
�
fj � ei

ur ¼ frðu0
i þ ei þ ½N̂i�Þ

�
fi

8>>>>><
>>>>>:

Nk 2 Z;Nk 2 ½0; fk=frÞ

ð10Þ

with f5 being the frequency of L5, and Nk and ek being the

ambiguity and observation noise for the third double-dif-

ference observable. To fix the triple-frequency mapped

carrier phase, ½N̂i� and ½N̂j� must be fixed first. Similar to the

dual-frequency mapped carrier phase, N̂i and N̂j are not

well determined because of the bias caused by the noise.

We graph the size of noise and the bias caused by wrong

integer estimates for N̂i and N̂j in Fig. 5, whose abscissa is

dN5. There are a few blue and black dots in the figure

submerged in the noise at the same time for certain dN5. In

such a situation, it is hard to determine which values of N̂i

and N̂j are correct using integer constraint. As a result, the

value of the triple-frequency mapped carrier phase is not

well determined. These possible values compose a candi-

date set of triple-frequency mapped carrier phase. This set

can be regard as the intersection of two dual-frequency

mapped carrier phase candidate sets

Sð1�a1Þ2ðurÞ ¼ S1�a1ðuijÞ \ S1�a1ðujkÞ ð11Þ

where Sð1�a1Þ2ðurÞ is the set of triple-frequency mapped

carrier phase candidates, with (1 - a1)
2 being the
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Fig. 3 Biases caused by wrong ambiguity estimates and observation

noise of dual-frequency combinations. Top L1 and L2 combination.

Middle L2 and L5 combination. Bottom L1 and L5 combination
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Fig. 4 Sketch of mapping given noise
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confidence level, and uij and ujk are dual-frequency map-

ped carrier phases generated by the Li and Lj and Lj and Lk
combinations, respectively. The possible values of the tri-

ple-frequency mapped carrier phase are much less than the

dual-frequency mapped carrier phase.

Now we would like to make some comments on the

traditional carrier phase combination and the mapped car-

rier phase. The traditional carrier phase combinations are

linear functions of the original carrier phases and include

integer parameters. They can be regard as the inner product

of the carrier phase vector and the parameter vector /
= (/1, /2, /5) � (c1, c2, c5)T. The mapping from original

carrier phases to / is an unidirectional mapping

(/1, /2, /5) ? /, which means that / only contains part

of the information in the original carrier phases. In order to

obtain a unique inverse mapping, one has to use more than

one of these mappings. The mapping from original carrier

phases to ur is a bidirectional mapping (u1, u2, u5) $ ur,

so ur contains all the information in the original carrier

phases. One can get the unique inverse mapping using a

single mapped carrier phase. There are four kinds of

mapped carrier phases for GPS, i.e., the combinations of

L1 and L2, L1 and L5, L2 and L5, L1, and L2 and L5,

respectively. The wavelengths of these mapped carrier

phases are shown in Table 1. These mapped carrier phases

have two great advantages: (1) The wavelengths are very

long, so the integer ambiguities can be easily fixed, and (2)

once the correct value of mapped carrier phase is deter-

mined, its observation noise is equal to the original carrier

in unites of meters. However, the correct value of the

mapped carrier phase is not well determined due to the

observation noise. We use the integer constraint of original

carrier phase integer ambiguity, set a certain confidence

interval of the noises, and only obtain some possible values

of mapped carrier phase. In following sections, we will

introduce further steps to determine the correct value from

the candidates set.

Shrinking the mapped carrier phase candidates set

In the previous section, we have illustrated the approach of

mapped carrier phase construction. We obtain a set of

mapped carrier phase candidates for each carrier phase

observable. In this section, we focus on shrinking these sets

utilizing the pseudorange observation information and the

geometry model. Assuming A and B are the endpoints of a

baseline x~, with their precise positions unknown. K is a

satellite in common view. Seen in Fig. 6, the direction

vectors from A and B to K are r~1 and r~2, respectively. The

included angle of r~1 and r~2 is denoted as a. The angle a is

so small that it could be neglected in the ultrashort base-

line, but cannot be neglected in short or middle short

baselines. Setting BK equal to CK, AD is the projection of

the baseline x~. The following equations are satisfied ac-

cording to the geometrical structure

b ¼ a=2

dðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x~j j2�ðx~ � r~1Þ2

q
tan b

8<
: ð12Þ

0 20 40 60 80 100
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
F

P

δN5

Fig. 5 Biases caused by wrong ambiguity estimates and observation

noise of triple-frequency combination

Table 1 Frequency and wavelength of the four mapped carrier

phases

Carriers

combination

Frequency of mapped

carrier (MHz)

Wavelength

(m)

L1, L2 20.46 14.66

L1, L5 10.23 29.33

L2, L5 51.15 5.87

L1, L2, L5 10.23 29.33

α

β

x

d

A B

K

r1

r2

D

C

Fig. 6 Geometry model of short baseline positioning
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where d(v) is the difference of the baseline projection AD

and the range difference AC. The relationship between AC

and the projection of baseline is

AC ¼ �x~ � r~1 � dðvÞ ð13Þ

We call d(v) the distance amendment variable. Its value

can be precisely calculated from the baseline solution using

pseudoranges, because b is a very small angle in the short

baseline model.

Assuming there being n ? 1 satellites in common view,

the GPS single-epoch double-difference mathematical

models of mapped carrier phases and pseudoranges can be

expressed as

yr ¼ aþ Bb=kr þ Dd=kr þ er; r2rQ

yc ¼ Bbþ Dd þ ec; r2cQ

(
ð14Þ

where yr 2 Rn is the observation vector of the mapped

carrier phases, yc 2 Rn is the observation vector of the

pseudoranges, a 2 Zn is the double-difference integer am-

biguity vector of the mapped carrier phases, kr is the

wavelength of mapped carrier phase, b 2 R3 is the baseline

vector, B 2 Rn93 is the double-difference design matrix,

d is the distance amendment vector, D is the single- to

double-difference transformation matrix, and er and ec are

noise vectors of mapped carrier phases and pseudoranges,

respectively. The symbols er and ec conform to the normal

distribution, whose variance covariance matrices are rr
2-

Q and rc
2Q, respectively, with rr = r0fr/fi.

We set r0 = 0.5 cm and rc = 0.5 m in our computa-

tions. A rough baseline estimate can be solved from

pseudorange observation as

b̂c ¼ ðBTQ�1BÞ�1BTQ�1ðyc � DdÞ ð15Þ

with b̂c being the baseline estimate. Inserting b̂c to the first

equation of (14) and letting PB = B(BTQ-1B)-1BTQ-1

yields

yr ¼ aþ Bb̂c
�
kr þ Dd=kr þ er � PBec=kr ð16Þ

Estimates of any arbitrary element in vector a can be

obtained from (16), which reads

EðâðvÞÞ ¼ yrðvÞ � Bðv; :Þb̂c
�
kr � Dðv; :Þd=kr ð17Þ

with â being the estimate of a, v being the v-th element,

B(v,:) and D(v,:) being the v-th row of B and D, respec-

tively. The covariance matrix of â is

Qa ¼ r2cPBQP
T
B

�
k2r þ r2r I ð18Þ

The variable âðvÞ is supposed to be normal distributed as

âðvÞ�NðaðvÞ;Qaðv; vÞÞ. According to the sizes of rc, rr,

and kr, it is easy to derive that Qa(v, v) is�1. Since a(v) is

an integer, the value of âðvÞ should not be far away from an

integer when the value of yr(v) is correct. On the contrary,

if the value of âðvÞ is too far away from an integer, we can

judge that the value of yr(v) used in (17) is incorrect.

Taking advantage of this characteristic, many of the pos-

sible values of yr(v) can be rejected and its corresponding

candidate set is, therefore, shrunk.

Similar to the previous section, we set a confidence level

according to the distribution of âðvÞ and sift the possible

values in the candidate set. We insert each possible value

of yr(v) into (17) to calculate the value of âðvÞ. If the value
of âðvÞ lies outside the confidence interval, we regard this

possible value as incorrect and eliminate it. Through this

step, a new candidate set with less possible values for yr(v)

can be obtained,

R
ðvÞ
1�a2 ¼ fâðvÞjy

Scand
r ðvÞ ¼ âðvÞ þ Bðv; :Þb̂c

�
kr þ Dðv; :Þd=krg

yScandr ðvÞ 2 S
ðvÞ
1�a1 or yScandr ðvÞ 2 S

ðvÞ
ð1�a1Þ2

8<
:

ð19Þ

where S
ðvÞ
1�a1 and S

ðvÞ
ð1�a1Þ2

are the initial candidate sets of

yr(v) for the case of dual- and triple-frequency combina-

tions, respectively; yScandr ðvÞ is one of the possible values in
the initial candidate set, R

ðvÞ
1�a2 is the new candidate set, its

subscript 1 - a2 is the confidence level of âðvÞ, with

Pf ðâðvÞ � ½âðvÞ�Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qaðv; vÞ
p�� ��\u1�a2=2g ¼ 1� a2. The

confidence level can play a major role in eliminating in-

correct candidates of the mapped carrier phase. It should

not be set too conservative to possibly avoid eliminating

the correct candidate.

Objective function threshold

We use a Gaussian least-squares objective function to

determine the correct value of yr(v) from the remaining

possible values in candidate set R
ðvÞ
1�a2ðv ¼ 1; 2. . .nÞ. After

that, a threshold is developed to validate whether the

value minimizing this objective function is correct. As

mentioned in previous sections, the estimate â is very

close to integer, so it can be simply fixed by rounding to

the nearest integer a ¼ ½â�. The least-squares solution of

the baseline is

b̂ ¼ krðBTQ�1BÞ�1BTQ�1ðyRcand

r � ½â� � Dd=krÞ ð20Þ

where yRcand
r is one of the possible values of yr. According to

the least-squares principle, the objective function is the

norm of observation residual
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min : F ¼ yRcand
r � ½â� � Bb̂

�
kr � Dd=kr

�� ��2
Q

yRcand
r ðvÞ 2 R

ðvÞ
1�a2 ðv ¼ 1; 2. . .nÞ

8<
: ð21Þ

where ‘‘ �k k2Q’’ stands for (�)TQy
-1(�) and yRcand

r ðvÞ is the

element of yRcand
r . There are n candidate sets for n elements

of yr, and each set contains one or more possible values. So

the possible vectors of yr are surely not unique. Through

enumerating every possible value of yr, i.e., yRcand
r , the

vector minimizing the objective function can be found. We

denote this vector yr
min and the corresponding value of

objective function Fmin. We expect yr
min to be the correct

value of the mapped carrier phase vector, but sometimes it

is not. The correct value might have been rejected by the

previous two confidence levels illustrated in previous sec-

tions, if these confidence levels are set too conservative. In

following analysis, we set another threshold to validate

whether yr
min is correct.

We denote the value of objective function by Ft when

the value of the mapped carrier phase vector is correct.

Since Ft/(n - 3) is an unbiased estimate of rr
2, it is sup-

posed to distribute as

Ft

�
r2r � v2ðn� 3Þ ð22Þ

with v2(n - 3) the Chi-square distribution with n - 3 de-

grees freedom. Setting a confidence level 1 - a3 for the

value of Ft/rr
2 as

PfFt

�
r2r\v21�a3ðn� 3Þg ¼ 1� a3 ð23Þ

and inserting rr = r0fr/fi in (23) yields

Ft\F1�a3 ¼ ðr0fr=fiÞ
2v21�a3ðn� 3Þ ð24Þ

Equation (24) states that Ft should be smaller than F1�a3
under the confidence level 1 - a3. If Fmin�F1�a3 , we re-

gard the corresponding vector yr
min not the correct value of

yr. The correct value might have been rejected by previous

two confidence levels. In this situation, the first or the

second confidence levels should be enlarged.

Algorithms for single-epoch positioning

Three steps are introduced to construct each mapped carrier

phase and to fix the correct value of mapped carrier phase

vector. These approaches are summarized in algorithms.

We only present algorithms of the mapped carrier phase of

dual-frequency combination for brevity since the triple-

frequency cases are analogous. The process of forming the

initial candidate set is presented in the algorithm InitialSet.

We obtain an initial candidate set for a mapped carrier

phase through this algorithm.

After that, the possible values in each candidate set are

sifted including the GPS positioning geometry model. This

approach is summarized in the algorithm ShrunkSet. In this

algorithm, the superscript v of the candidate set indicates

that it is the set of the vth element of the mapped carrier

vector.
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The possible values of each candidate set are dra-

matically reduced after the second step. We select the

value of the mapped carrier phase vector minimizing the

Gaussian objective function based on these shrunk can-

didate sets. Then, a threshold is developed to verify our

result, and if passed, the algorithm terminates; otherwise,

each mapped carrier phase will be recalculated. The entire

algorithm for single-epoch positioning is summarized in

the algorithm MappedCarrResolut. There are three

confident levels specified and used in this algorithm.

These confident levels must be set properly and reason-

ably. We initially set the first confident level using a

relatively conservative value 1 - a1 = 99 %. The second

and third thresholds are set much more optimistic, with

1 - a2 = 1 - a3 = 99.7 %. The advantage of this setting

is that only the first threshold needs to be enlarged and

the others two can remain unchanged if the result is de-

nied by our validation.
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Experiments

Two sets of double-difference GPS baseline data are used to

verify the performance of the new precise positioning al-

gorithm. One set refers to an ultrashort GPS baseline ob-

served in Wuhan, China, and the other set was collected at

two CORS stations about 9 km apart in USA. In these ex-

periments, we only use the mapped carrier phase generated

by combining L1 and L2, because L5 is not available in our

GPS receivers. Detailed information of the data is presented

in Table 2. The PDOP and number of satellites in common

view during the experiments are shown, respectively, in

Fig. 7. During the data processing, the baselines were

solved epoch by epoch independently using the new algo-

rithm and the LAMBDA method. The ambiguity resolution

results of these two algorithms are compared to illustrate the

advantages and disadvantages of the new algorithm.

Solutions of positioning

The precise positioning solutions of these two experiments

using the new algorithm are shown in Fig. 8. The solutions’

comparison of the new method and LAMBDA is summa-

rized in Table 3. The successful fixed rate of the new al-

gorithm is slightly below that of the LAMBDA method.

That is mainly because the first two thresholds of the new

algorithm do not take the correlation of the double-differ-

ence observation data into account. Considering the opti-

mal property of the LAMBDA method (Teunissen 1999),

the resolution performance of the new algorithm is still

reliable.

Table 2 Information of two experiments

Experiment no. Date Station1 Station2 Epoch numbers Sampling interval (s) Length of baseline (m) Elevation mask (�)

1 2014/7/19 Private Private 720 5 3.321 15

2 2014/5/1 MC01 MC02 720 5 9115.586 15
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Fig. 7 PDOP and the number of visible satellites. Top experiment 1

(Wuhan). Bottom experiment 2 (USA)
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Fig. 8 Positioning results of the new algorithm. Top experiment 1

(Wuhan). Bottom experiment 2 (USA)
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Computational workload

Along with the successful fixing rate, the computational

workload is another index one is most concerned with. We

processed the observations using MATLAB software in

Windows XP operation system, with the hardware Intel

Core2 Duo CPU and 2 GB RAM. The computational time

consumption curves of the new algorithm and LAMBDA

are shown in Fig. 9. The total and average time costs are

presented in Table 4. The time required by the new algo-

rithm is less than that for LAMBDA in most epochs. But in

a few epochs the new method takes longer. This might

occur because the new algorithm is closed loop. If the

value of objective function is denied by the third confi-

dence level, the new method will enlarge its first confi-

dence level with a certain value and repeat the whole

calculation, again and again, until the objective function

threshold is passed. In a few epochs, the circulation might

be executed more often than in others, and their compu-

tational consumption is, therefore, higher.

Conclusions

For multi-frequency positioning, a carrier phase with long

wavelength and low noise level is preferable for integer

ambiguity fixing. Traditional carrier phase combinations

are linear functions of the original carrier phase observa-

tions containing integer parameters. A new way for carrier

phase combination is proposed. We regard the original

double-difference carrier phases as the basis of the carrier

phase space, and the combined carrier phase is a point of

this space. Then, the point is mapped to a new single-

dimensional carrier phase called mapped carrier phase by a

bidirectional mapping. The advantages of the mapped

carrier phase are as follows: (1) It contains all the infor-

mation in the original carrier phases; (2) its noise remains

the same as the original carrier phases; and (3) its wave-

length is very long. However, the correct value of mapped

carrier phase is not easy to be fixed due to the noise in the

observed carrier phases.

Three steps are developed to fix the correct value of the

mapped carrier phase. In the first step, we use the integer

nature of the original carrier phase ambiguity, set a confi-

dence level of the noise and obtain a candidate set for the

each mapped carrier phase. In the second step, we explore

the geometry model, solve the float solution of the mapped

carrier phase ambiguity vector, and shrink all the candidate

sets by setting confidence level of the float solution. In the

third step, an objective function according to Gaussian

least-squares principle is set to determine the correct value

from the remaining candidates; then, we validate the result

using a confidence level of the residual error. Selecting the

values of those confidence levels reasonably, a closed-loop

algorithm for GPS single-epoch positioning is formed.

Table 3 Successful fixing rate comparison of the new algorithm and LAMBDA algorithm

Experiment

no.

Total

Epochs

Successful fixed

(LAMBDA)

Success rate (LAMBDA)

(%)

Successful fixed

(New)

Success rate (New)

(%)

1 720 711 98.75 705 97.92

2 720 716 99.44 714 99.17
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Fig. 9 Computational time comparison of the new algorithm and

LAMBDA. Top experiment 1 (Wuhan). Bottom experiment 2 (USA)

Table 4 Computational time comparison of the new algorithm and

LAMBDA

Experiment

no.

Total

(LAMBDA)

(ms)

Average

(LAMBDA)

(ms)

Total

(new)

(ms)

Average

(new)

(ms)

1 8964.3 12.5 5217.7 7.2

2 17,519.9 24.3 4614.8 6.4
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Two GPS dual-frequency single-epoch positioning ex-

periments have been carried out. The performances of the

new algorithm and LAMBDA are compared in these ex-

periments. The results show (1) the new algorithm is reli-

able and, however, suboptimal because the first two

thresholds of the new algorithm do not take the correlation

of the double-difference observations into account; (2) the

algorithm is computationally more efficient than

LAMBDA in most cases.
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