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Abstract Relative navigation based on GPS receivers and

inertial measurement units is required in many applications

including formation flying, collision avoidance, cooperative

positioning, and accident monitoring. Since sensors are

mounted on different vehicles which are moving indepen-

dently, sensor errors are more variable in relative navigation

than in single-vehicle navigation due to different vehicle

dynamics and signal environments. In order to improve the

robustness against sensor error variability in relative

navigation, we present an efficient adaptive GPS/INS inte-

gration method. In the proposed method, the covariances of

GPS and inertial measurements are estimated separately by

the innovations of two fundamentally different filters. One

is the position-domain carrier-smoothed-code filter and the

other is the velocity-aided Kalman filter. By the proposed

two-filter adaptive estimation method, the covariance esti-

mation of the two sensors can be isolated effectively since

each filter estimates its own measurement noise. Simulation

and experimental results demonstrate that the proposed

method improves relative navigation accuracy by appro-

priate noise covariance estimation.

Keywords GPS/INS integration � Relative navigation �
Adaptive estimation � CSC filtering

Introduction

Relative navigation is purposed to provide relative posi-

tion, velocity, and attitude between separately moving

vehicles accurately and reliably. It enables highly complex

missions such as formation flying, vehicle-to-vehicle col-

lision avoidance, cooperative positioning, and accident

monitoring. In addition, combined with the recently intro-

duced networked vehicles based on wireless communica-

tion, it can produce many innovative applications in the

near future (Dar et al. 2010; Gerla and Kleinrock 2011).

As in the case of conventional single-vehicle navigation,

the integration of the global positioning system (GPS) and

the inertial navigation system (INS) is one of the most

effective ways for relative navigation between multiple

vehicles (Yun et al. 1999; Fosbury and Crassidis 2006).

The most representative GPS/INS integration methods are

the loosely coupled (LC) and tightly coupled (TC) meth-

ods. Among the two methods, the LC method is advanta-

geous regarding implementation simplicity but bears

theoretically undesirable problems since two filters are

arranged in cascaded form (Groves 2008; Kaplan and

Hegarty 2006). The TC method offers theoretical sound-

ness but imposes heavy computational burden since a large

number of system states need to be considered by a single

integration filter.

Related to the mechanization of relative navigation,

several notable methods were introduced recently. Alonso

et al. (2000) proposed a method utilizing multiple line of

sight (LOS) vectors to estimate the relative position and

velocity between multiple satellites in formation. Bever

et al. (2002) compared the characteristics of three relative

navigation approaches; independent separation measure-

ment system, formation needles, and formation flight in-

strumentation system.
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Since many sensors are used in relative navigation, time

synchronization is very important. Related to the time

synchronization in multi-sensor fusion, an analytic

calibration method was proposed by Lee et al. (2002), a

GPS-slaved time synchronization method was introduced

by Li et al. (2006), a method using a counter and two

latching registers was employed by Ding et al. (2008), and

a method to estimate the constant time synchronization

error by time stamp filtering was proposed by Nilsson and

Handel (2010).

Since sensors are mounted on different vehicles moving

independently, sensor errors are more variable in relative

navigation than in conventional single-vehicle navigation

due to different vehicle dynamics and signal environments.

For the reason, a critical factor for the accuracy improve-

ment is the treatment of variable error characteristics. To

resolve this problem, adaptive estimation methods have

been used traditionally to improve estimation accuracy in

the presence of time-varying errors (Magill 1965; Mehra

1970, 1971). In adaptive filtering, time-varying process and

measurement error covariances are estimated based on

residual vectors. The most representative methods in this

category are the multiple-model-based adaptive estimation

(MMAE) method and the innovation-based adaptive esti-

mation (IAE) method (Mohamed and Schwarz 1999).

In MMAE, a bank of local filters with different statis-

tical models runs simultaneously (Maybeck 1989; Hanlon

and Maybeck 2000). The overall system states are esti-

mated by combining all the local filters. MMAE imposes

heavy computational burden due to the utilization of many

filters at the same time. In IAE, the noise covariance ma-

trices are estimated sequentially based on innovation vec-

tors (Kailath 1971; Mehra 1970, 1971). Since IAE utilizes

a single filter, it can reduce computational burden as

compared with MMAE.

Related to navigation, adaptive estimation methods were

applied to attitude and heading reference systems (AHRS)

(Li and Wang 2013), GPS/INS integration (Hao et al. 2009;

Zhou et al. 2010; Fakharian et al. 2011), and velocity es-

timation (Chu et al. 2010). Ding et al. (2007) investigated

an online stochastic modeling algorithm and proposed a

new adaptive scaling algorithm. Almagbile et al. (2010)

compared the innovation and residual vectors in adaptive

estimation.

Recently, studies on adaptive relative navigation have

been published. Li et al. (2013) proposed an adaptive ro-

bust Kalman filter (KF) derived for both process and

measurement noise uncertainties. This method improves

the robustness of the methodology proposed by Garcia-

Velo (1997) and can be implemented in GPS-based relative

navigation with orbit perturbations and non-Gaussian ran-

dom measurement errors. Baek and Bang (2013) proposed

an adaptive sparse-grid quadrature filter for spacecraft’s

relative navigation. This method adjusts the accuracy level

of the filter autonomously with a quadrature error adapta-

tion criterion.

To improve the robustness against sensor error vari-

ability in relative navigation, we propose an efficient

adaptive GPS/INS integration method. Compared with

conventional methods, the proposed method estimates the

covariances of GPS and inertial measurements separately

by the innovations of two fundamentally different filters.

One is the position-domain carrier-smoothed-code filter

and the other is the velocity-aided KF. By the proposed

two-filter adaptive estimation method, covariance estima-

tion procedures for GPS measurement noise and inertial

propagation noise can be isolated effectively since each

filter estimates its own measurement noise.

First, the relative inertial navigation algorithm is ex-

plained and the overall two-filter architecture for GPS/INS

integration is introduced. Next, an adaptive position-do-

main carrier-smoothed-code filter (CSCF) and an adaptive

KF are explained. The adaptive CSCF is used for relative

positioning and the adaptive KF is used to obtain relative

velocity and attitude for improved accuracy. The last sec-

tion deals with simulation and experiment results to

demonstrate the feasibility of the proposed method. Fi-

nally, concluding remarks will be given.

Relative inertial navigation algorithm

Figure 1 shows the configuration of different frames used

in this research. The inertial-frame (i-frame) is a reference

frame in which Newton’s laws of motion apply with non-

accelerating but possibly uniform linear motion. The earth-

centered, earth-fixed (ECEF) frame (e-frame) is fixed to the

center of the earth. The x-axis intersects 0 degree latitude

and 0 degree longitude, the z-axis is pointing toward the

north, and the y-axis follows the right-handed rule. The

navigation-frame (n-frame) is aligned to the local north,

Fig. 1 Configuration of different frames
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east, and downward directions. The body-frame (b-frame)

is fixed to the center of gravity of the vehicle and aligned to

the vehicle’s forward, right, and downward directions. In

relative navigation, the master and slave vehicles corre-

spond to different body frames. To discriminate the body

frames related to different vehicles, the master frame (m-

frame) and the slave frame (s-frame) are utilized.

To obtain high rate relative velocity and attitude, rela-

tive angular velocity and specific force are formed by

differencing between the master and slave vehicles,

xrel ¼ xs
is � Cs

mx
m
im ð1Þ

frel ¼ f s � Cs
mf

m ð2Þ

where f indicates the specific force, xis indicates the an-

gular rate of s-frame from i-frame, Cs
m indicates the

transformation matrix from m-frame to s-frame, respec-

tively. Based on the inertial velocity and attitude equations

(Lee et al. 1998), relative velocity and attitude are com-

puted as follows,

_Vrel ¼ Cn
s frel � 2Xþ qð Þ � Vrel ð3Þ

_Qrel ¼
1

2
UðQrelÞxrel ð4Þ

Qrel ¼ q0 q1 q2 q3½ �T ð5Þ

UðQrelÞ ¼

�q1 �q2 �q3
q0 �q3 q2
q3 q0 �q1
�q2 q1 q0

2
664

3
775 ð6Þ

where Vrel indicates the relative velocity expressed in

n-frame, X indicates the earth rate expressed in the

n-frame, q indicates the transport rate expressed in

n-frame, and Qrel indicates the relative quaternion repre-

senting the rotation from m-frame to s-frame.

It is assumed in (3) that the master and slave vehicles are

under practically the same local gravity field since they are

located closely. By applying the similar procedure outlined

in Lee et al. (1998), the error dynamics model for relative

navigation can be derived as follows,

_X ¼ FX þ GW ð7Þ

X ¼ XINSðsÞT drLAEðsÞT dtSEðsÞ
� �T ð8Þ

XINSðsÞT ¼ dVrel wrel rs es½ � ð9Þ

W ¼ wT
rela wT

relg

� �T ð10Þ

F ¼
F11 F12 O6�4

O6�6 O6�6 O6�4

O4�6 O4�6 F33

2
4

3
5 ð11Þ

F11 ¼
� 2xn

ie þ xn
en

� �
� Cn

s frel
� �

�
03�3 � xn

in

� �
�

� �
ð12Þ

F12 ¼
Cn
s O3�3

O3�3 �Cn
s

� �
ð13Þ

F33 ¼
O3�3 O3�1

O1�3 �1=s

� �
ð14Þ

G ¼
Cn
s O3�3

O3�3 �Cn
s

O10�3 O10�3

2
4

3
5 ð15Þ

where drTLAE is the relative lever arm error expressed in the

n-frame, dtTSE is the time synchronizing error between GPS

and inertial measurements, dVrel is the relative velocity

error expressed in the n-frame, wrel is the relative attitude

error expressed in m-frame, rs is the relative ac-

celerometer bias expressed in s-frame, es is the relative

gyro drift expressed in s-frame, wrela is the relative ac-

celerometer white noise expressed in s-frame, and wrelg is

the relative gyro white noise expressed in s-frame.

It is assumed in (7) that the inertial sensor biases rm and

em of the master INS are negligibly small compared to

inertial sensor biases rs and es of the slave INS due to self-

compensation of the master INS, pre-filtering with a stand-

alone algorithm, or utilizing a higher-grade IMU for the

master vehicle. To obtain feasible accuracy with minimum

hardware, both the lever arm errors and the time syn-

chronization error between GPS and INS are also consid-

ered as shown in (8).

Configuration of relative GPS/INS integration

For GPS/INS integration, the LC and TC methods have

been widely utilized. Among the two representative

methods, the LC method is advantageous in terms of im-

plementation simplicity. However, in the LC method, the

output of a GPS filter may be used as the input to the

integration KF. In this case, the errors in GPS position

solutions used in the KF measurement updates are not

white but temporally correlated. For this reason, cascaded

filtering problem may occur in the LC method (Groves

2008; Kaplan and Hegarty 2006). In this case, the basic KF

assumption is not satisfied since the KF assumes that

measurement and process errors are white Gaussian for

theoretical optimality. Even when snapshot methods are

utilized in computing position solutions, temporally cor-

related error also appears due to the ionospheric and tro-

pospheric errors.

In comparison with the LC method, the TC integration

utilizes raw GPS measurements. Due to the utilization of

raw measurements, the cascaded filtering problem can be

avoided. However, when the number of visible GPS

satellites increases, the total number of filter states

GPS Solut (2016) 20:63–75 65
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increases considerably. The increased number of states

may cause a significant computational burden.

To combine the advantages and avoid the disadvantages

of the traditional LC and TC methods, a two-filter GPS/INS

integration method was proposed recently (Park et al.

2011). The configuration of the GPS/INS integration based

on the two filters is shown in Fig. 2. The figure shows that

the CSCF estimates accurate position and the KF estimates

the remaining INS error states. The CSCF is advantageous

in obtaining relative positions with centimeter-level accu-

racy, and the KF can provide high-speed velocity and at-

titude outputs. The high-speed relative positions can be

obtained by combining the CSCF-provided position and the

KF-provided velocity. It should be noted that, since the KF

utilizes accurate GPS velocity formed by carrier phase

measurements instead of a pre-filter, the cascaded filtering

problem does not occur in the proposed method since raw

measurements are utilized as the input to each filter.

Extending the previous two-filter method, the proposed

adaptive GPS/INS integration method also implements two

heterogeneous filters, the adaptive single differencing (SD)

position-domain (PD) CSCF and the adaptive GPS/INS

KF. The architecture of the proposed adaptive method is

shown in Fig. 3, where the adaptive SD PD CSCF is ap-

plied to the GPS measurements and the adaptive GPS/INS

KF is applied to the relative INS. As shown in the figure,

the relative inertial measurements are utilized as input to

the relative INS algorithm to obtain the relative attitude

and velocity at high output rate. GPS measurements are

utilized as input to the adaptive SD PD CSCF for relative

positioning. Also, GPS carrier phase measurements are

utilized to compute the GPS relative velocity. Finally, the

relative velocities and estimated noise covariance are uti-

lized as the input to the adaptive KF for accurate relative

velocity and attitude.

Adaptive estimation methods

In order to improve accuracy by estimating noise covari-

ances, two filters are proposed, an adaptive single differ-

encing position-domain CSCF and an adaptive GPS/INS

KF. They utilize innovation sequences representing dif-

ferences between estimated and actual measurements. The

noise covariances of GPS measurements are estimated by

the adaptive CSCF, and the noise covariances of inertial

measurements are estimated by the adaptive KF.

Adaptive single differencing position-domain CSCF

The CSC filtering approach was proposed by Hatch (1983)

for high-accuracy GPS applications. Compared with Kal-

man filtering, CSC filtering does not require any dynamics

model for the time propagation of system states. Instead, it

utilizes high-accuracy carrier phase measurements to ac-

count for the incremental positions between two successive

time instants. Since the CSCF does not utilize any dy-

namics model, the carrier phase measurement noise be-

comes the main error source for time propagations. For the

reason, accurate time propagation in CSC filtering requires

accurate covariance estimation of carrier phase measure-

ments. Related to this problem, the adaptive doubleFig. 2 Configuration of GPS/INS integration based on two filters

Fig. 3 Configuration of proposed relative GPS/INS Integration
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differencing (DD) PD CSCF was recently proposed (Lee

et al. 2011). However, since the structure of DD mea-

surements causes additional computational complexity due

to the concept of reference satellite, the DD form is not

suitable for relative navigation. For the reason, we focus on

the adaptive SD PD CSCF.

A representative algorithm of the PD CSCF is summa-

rized in Table 1. More details on the PD CSC principle can

be found in Lee and Rizos (2008) and Lee et al. (2005). The

variables utilized in Table 1 are summarized as follows,

Xk ¼
xu;k
bu;k

� �
; Hk ¼ h1;k h2;k � � � hj;k½ �T ð16Þ

Zk ¼ Hkd �Xk þ ep;k ð17Þ

Xk ¼ HkDXk�1 þWk ð18Þ

Wk ¼ �DHk�1dX̂k�1 � e/;k þ e/;k�1 ð19Þ

DXk�1 ¼ Xk � Xk�1 ð20Þ

d �Xk�1 ¼ �Xk�1 � Xk�1; dX̂k�1 ¼ X̂k�1 � Xk�1 ð21Þ

DHk�1 ¼ Hk � Hk�1; hj;k ¼ eTj;k �1
� �T ð22Þ

where ~pk and ~/k are the pseudorange and carrier phase

measurements, respectively, Hk is the observation matrix,

ej,k is the difference of LOS vector between the reference

and the j-th satellites, k is the time index, j is the satellite

index, �Xk is a priori relative position estimate, X̂k is a

posteriori relative position estimate, d �Xk is a priori relative

position error, dX̂k is a posteriori relative position error,

DXk is the relative position increment, �Pk is a priori relative

position error covariance, P̂k is a posteriori relative position

error covariance, rp and r/ are the noise of pseudorange

and carrier phase measurements, respectively, ep; k and e/; k
are pseudorange and carrier phase measurement noise, re-

spectively, and Ck is the satellite channel selection matrix

with elements of 0 and 1.

In PD CSC filtering, the dimension of the measurement

vector changes from time to time depending on the number

of visible satellites. The estimate DX̂k can be obtained

based on the carrier phase measurement vector Pkþ1 for

time propagation as follows,

DX̂k�1 ¼ Hþ
k Pk

¼ DXk�1 � Hþ
k DH

þ
k�1dX̂k�1 þ Hþ

k Nk � Nk�1ð Þ
ð23Þ

Hþ
k ¼ HT

k Hk

� ��1
HT

k ð24Þ

where Nk is the carrier phase measurement noise vector.

The innovation sequence Z/;k can be obtained by differ-

encing the indirect measurement Pk and the estimated

value HkDX̂k�1 as follows,

Z/;k ¼ P
k
� HkDX̂k�1

¼ I � HkH
þ
k

� �
Nk � Nk�1ð Þ � I � HkH

þ
k

� �
DHk�1dX̂k�1

ð25Þ

Based on (25), the covariance of the innovation vector

can be modeled by

E Z/;kZ
T
/;k

n o
¼ I�HkH

þ
k

� �
R/;k I�HkH

þ
k

� �T

þ I�HkH
þ
k

� �
DHk�1P̂k�1DH

T
k�1 I�HkH

þ
k

� �T
ð26Þ

R/;k ¼ E Nk � Nk�1ð Þ Nk � Nk�1ð ÞT
n o

ð27Þ

P̂k�1 ¼ E dX̂k�1dX̂
T
k�1

� 	
ð28Þ

For further simplification, it is assumed that the fol-

lowing approximation is valid between two successive

time instants. This assumption can be justified since the

observation matrix consists of LOS vectors which are

making nearly two revolutions (6.28 rad) each day based

on the orbital characteristics of the navigation satellites.

Table 1 PD CSC filter

algorithm
Summary of equations

Time propagation H�
k ¼ CkHk; H

s
k�1 ¼ CkHk�1; X

�
k ¼ CkXk

U�
k ¼ H�

k

� �T
H�

k

h i�1

H�
k

� �T

�Xk ¼ X̂k�1 þ U�
kX

�
k

�Pk ¼ U�
k

Hs
k�1P̂k�1 Hs

k�1

� �T�2r/I

�r/H
s
k�1 I � K�

k�1H
�
k�1

� �
U�

k�1Ck�1CT
k

�r/CkCT
k�1 U�

k�1

� �T
I � K�

k�1H
�
k�1

� �T
Hs

k�1

� �T

2
664

3
775 U�

k

� �T

Measurement update
K�
k ¼ �Pk � r/ H�

k

� �T
H�

k

h i�1

 �

H�
k

� �T
H�

k
�Pk H�

k

� �TþrpI
h i�1

Z�
k ¼ CkZk

X̂�
k ¼ �X�

k � K�
k Z

�
k

P̂k ¼ I � K�
k H

�
k

� �
�Pk I � K�

k H
�
k

� �TþrpK
�
k K�

k

� �T
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The assumption is modeled by the following

approximation,

I � HkH
þ
k

� �
DHk�1P̂k�1DH

T
k�1 I � HkH

þ
k

� �Tffi O ð29Þ

where O represents the zero matrix of appropriate dimen-

sion. It should be noted that (29) is easily satisfied in most

cases when GPS measurements are sampled at higher than

1 Hz. With this assumption, the estimated carrier phase

noise covariance R̂/;k can be modeled as,

R̂/;k ¼ E Z/;kZ
T
/;k

n o
I � HkH

þ
k

� �
I � HkH

þ
k

� �Tn o�1

ð30Þ

In order to estimate the pseudorange noise covariance,

the proposed method computes the innovation sequence

similar to the case of carrier phase measurements. The

pseudorange noise covariance is required in measurement

updates. The innovation sequence Zp;k can be obtained as

follows before each measurement update,

Zp;k ¼ Hk
�Xk � Yk ð31Þ

where Yk indicates the real pseudorange measurements.

Similar to (26), the instantaneous covariance matrix of the

innovation vector can be modeled by

�Mp;k ¼ E Zp;kZ
T
p;k

n o
ð32Þ

For more reliability, the smoothed covariance matrix

M̂p;k can be obtained by averaging within the pre-defined

time interval as follows,

M̂p;k ¼ E �Mp

� 	
¼ 1

B

Xk
j¼k�Bþ1

�Mp;j ð33Þ

where B indicates the pre-defined averaging interval. Fi-

nally, the covariance matrix of pseudorange measurement

error is obtained by

R̂p;k ¼ M̂p;k � Hk
�PkH

T
k ð34Þ

The proposed adaptive CSCF estimates the noise co-

variance utilizing actual carrier phase and pseudorange

measurements as shown in (30) and (34). Consequently, the

adaptive CSCF takes the role of accurate position estima-

tion with estimated measurement noise and provides the

noise covariance matrices of pseudorange and carrier phase

measurements.

Adaptive GPS/INS KF

In the proposed method, the adaptive velocity-aided GPS/

INS KF is closely interlaced with the adaptive CSCF. As

explained in the previous section, the carrier phase noise

covariance is already estimated by the innovation sequences

obtained by CSCF. Thus, for the measurement updates of

KF, the previously obtained carrier phase noise can be

utilized. This procedure reduces computational burden of

the adaptive KF by removing unnecessary covariance esti-

mation for carrier phase measurements. Figure 4 shows the

architecture of the proposed adaptive GPS/INS KF.

At each KF measurement update, the previously esti-

mated covariances R̂/;k�1 and R̂/;k assist in computing the

covariance R̂KGPS
of the relative velocity measurement Kn

GPS

as follows,

R̂KGPS
¼ E dKn

GPSdK
nT
GPS

� �

¼ Cn
eH

þ
k R̂/;kH

þT
k CnT

e þ Cn
eH

þ
k�1R̂/;k�1H

þT
k�1C

nT
e

ð35Þ

Kn
GPS ¼ Cn

eH
þ
k Yk � Cn

eH
þ
k�1Yk�1 ð36Þ

where Yk-1 and Yk indicate the relative carrier phase mea-

surements at the previous and current time instants, re-

spectively. As shown in (36), the covariance is affected by

the carrier phase noise covariance. Since the carrier phase

noise covariance is already computed by the adaptive CSCF

as shown in (30), the measurement noise covariance can be

obtained without additional complicated computations.

Before the KF measurement update, the indirect mea-

surement considering lever arm compensation is formed as

follows,

Zk ¼ H �Xk � Kn
GPS

¼ Kn
INS þ I3�3 � W

_ n

b1

D E� 
Cn
b1 x̂m

im

� �
r̂m

� I3�3 � W
_ n

s

D E� 
Cn
s x̂s

is

� �
r̂s � Kn

GPS

ð37Þ

where xh i indicates the 3 9 3 skew-symmetric matrix

constructed by the 3 9 1 vector x, Wn indicates the attitude

error, and r̂ indicates the lever arm vector. The a priori INS

error state �Xk and its covariance matrix �Pk for the current

measurement update are obtained by the following

equations,

�Xk ¼ UkX̂k�1 ð38Þ

Fig. 4 Architecture of Adaptive GPS/INS Kalman filter
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�Pk ¼ UkP̂k�1U
T
k þ Q̂k ð39Þ

Uk ¼ I þ F tkð ÞDt þ F2 tkð ÞDt2
2

ð40Þ

where tk indicates the k-th time instant, Dt indicates the

time interval between tk-1 and tk, and F can be found in

(11). X̂k�1 and P̂k�1 appearing in (38) and (39) indicate a

posteriori INS error state and its covariance matrix after the

previous measurement update. The observation matrix for

the measurement update can be derived as follows.

H ¼ I Cn
s Cs

m x̂m
im

� �
r̂m

� �
03�3 Cn

b2 r̂sh i �Cn
b2 x̂s

is

� �
_Kn

� �

ð41Þ

Finally, the measurement update is performed by the

following equations,

Kk ¼ �PkH
T
k Hk

�PkH
T
k þ R̂KGPS

� ��1 ð42Þ

P̂k ¼ I � KkHk½ ��Pk I � KkHk½ �TþKkR̂KGPS
KT
k ð43Þ

X̂þ
k ¼ KkZk ð44Þ

where Kk indicates the Kalman gain. After the measure-

ment update, the instantaneous innovation covariance

matrix �Mk and the smoothed innovation covariance matrix

M̂k are obtained from (37) as

�Mk ¼ E ZkZ
T
k

� 	
ð45Þ

M̂k ¼ E �Mj

� 	
¼ 1

B

Xk
j¼k�Bþ1

�Mj ð46Þ

Based on the IAE principle, the noise covariance Q̂k for

the next time propagation is obtained combining the in-

novation covariance matrix M̂k and the Kalman gain Kk as

Q̂k ¼ KkM̂kK
T
k ð47Þ

In the previous section, it was shown that the noise

covariances of GPS measurements are estimated inde-

pendently of the adaptive KF. The adaptive KF explained

in this section needs to estimate the covariance of process

noise which is contributed only by inertial sensors. Thus,

the roles of CSCF and KF are clearly divided in the

proposed method, i.e., the adaptive CSCF estimates the

covariances of GPS measurement noise and the adaptive

KF estimates the covariances of inertial measurement

noise.

Fig. 5 Trajectory, baseline, and relative velocity of simulation
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Simulation and experiment

A simulation and an experiment were performed to eval-

uate the feasibility of the proposed method. The simulation

evaluates the accuracy improvement of the proposed

method compared with the conventional method utilizing

pre-defined noise covariances. The experiment evaluates

the applicability of the proposed method in actual

environment.

Simulation

For the simulation, a land vehicle simulator and a GPS/INS

signal generator were utilized. The simulator generated the

reference trajectory for a vehicle consisting of a tractor and

a trailer. The simulation trajectory consists of two circular

turns in opposite directions. Figure 5 shows the trajectory,

the baseline between GPS antennas, and the relative ve-

locity generated for the simulation. The signal generator

generated GPS/INS measurements based on the reference

trajectory.

To simulate two vehicles for relative navigation, a

master (tractor) and a slave (trailer) running on the same

trajectory at a speed of 80 km/h during 6 min were con-

sidered. It was assumed that each of the master and slave

was equipped with a GPS receiver and an IMU. The

stochastic errors of gyro and accelerometer were set as

0.0217�=
ffiffi
s

p
and 0.000723 ðm=sÞ=

ffiffi
s

p
, respectively. These

parameters correspond to low-grade inertial sensors. The

inertial sensor sampling rate was set as 100 Hz. The GPS

pseudorange and carrier phase errors were modeled as the

second-order Gauss-Markov process with the standard de-

viation of 23 m and 0.28 m/s, respectively. The GPS

measurements were generated at 1 Hz. The lever arm was

set as zero.

Figure 6 shows relative velocity errors in north, east,

and vertical directions with or without the proposed

adaptive method. As shown in the figure, the proposed

adaptive method generated more accurate relative velocity

estimates than the conventional method without adaptive

filtering. It can be also seen that the accuracy in the vertical

direction is improved much more than in the horizontal

Fig. 6 Comparison of relative velocity error magnitudes with and without the proposed adaptive method
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direction. The vertical errors are, in general, more influ-

enced by incompletely modeled measurement errors than

horizontal errors due to the intrinsic geometry character-

istics between GPS satellites and receivers. This means that

appropriately estimated measurement errors improve ver-

tical accuracy more than horizontal accuracy. According to

the simulation results, the root-mean-square error (RMSE)

of the relative velocity estimates by the proposed method in

north, east, and vertical directions are 0.0138, 0.0155, and

0.0054 m/s, respectively.

Figures 7 and 8 show the error magnitudes of the rela-

tive attitude and baseline with or without the proposed

Fig. 7 Comparison of relative attitude error magnitudes with and without the proposed adaptive method

Fig. 8 Comparison of relative baseline error magnitudes with and without the proposed adaptive method
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adaptive method. As shown in Fig. 7, yaw accuracy im-

proves by the proposed method. The RMSE of the relative

roll, pitch, and yaw by the proposed method are 0.0789�,
0.3326�, and 0.5786�, respectively. It can also be seen that

the proposed method generates more accurate relative po-

sition estimates than the conventional method without

adaptive filtering. The RMSE (3D) of the estimated base-

line by the proposed method is 1.96 mm.

Field experiment

To evaluate the applicability of the proposed method in

real environments, a kinematic experiment with two iso-

lated ground vehicles was performed. The vehicles were

stationary for 130 s at a static point and moved in cascaded

formation around the trajectory shown in Fig. 9 for 200 s.

Each of the front and rear vehicles was equipped with a

Septentrio PolaRX2e GPS receiver and an MPU-6050

IMU. The noise specifications of the gyroscope and the

accelerometer were 0.05�/s-rms and 400 lg/
ffiffiffiffiffiffi
Hz

p
, respec-

tively (InvenSense Inc. 2013). The sampling rate of inertial

and GPS measurements was set as 20 and 1 Hz, respec-

tively. The lever arm between the GPS antenna and the

IMU was measured as 110.5 cm for the front vehicle and

210.5 cm for the rear vehicle. The GPS receiver provides

dual-frequency measurements; however, only single-fre-

quency measurements were utilized for relative GPS/INS.

The field-collected dual-frequency measurements were

processed to extract reference trajectory based on integer

ambiguity resolutions. All the raw measurements were

logged in the standard RINEX format.

Figure 10 shows the estimated standard deviations of

carrier phase and pseudorange measurements. In the case

of pseudorange measurements, standard deviations were

estimated channel-by-channel. However, in the case of

carrier phase measurements, a single standard deviation

value was estimated and applied to all the channels since

carrier phase errors are far less sensitive to signal envi-

ronments than pseudorange errors. The areas marked by the

rectangles in Fig. 10 correspond to the period when either

an existing satellite disappears or a new satellite arises. In

this case, the previously accumulated information for

making innovation is not valid. For the reason, the noise

variance was fixed until a sufficient number of measure-

ments were obtained for an updated noise variance.

Figure 11 compares relative velocity errors and one-

sigma envelopes, and Fig. 12 compares relative position

errors and one-sigma envelopes. The estimation errors

were computed by the differences between the solutions

generated by the proposed method and the references

generated by dual-frequency RTK method. It should be

noted that if the covariances were estimated incorrectly,Fig. 9 Experiment environment and reference trajectory

Fig. 10 Estimated standard deviations of carrier phase and pseudorange measurements
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inconsistency between the one-sigma envelopes and the

estimation error would be noticeable. The estimation error

would be much larger than the magnitude indicated by the

one-sigma envelops even after the filter enters into the

steady state (Lee et al. 2013). However, it can be seen in

Figs. 11 and 12 that the one-sigma envelopes constrain the

actual estimation errors reasonably and inconsistency does

not occur when the proposed adaptive method is utilized.

This result shows that the proposed method estimates the

covariance appropriately in actual environment. The

Fig. 11 Comparison of relative velocity errors (solid lines) and their one-sigma envelopes (dotted lines)

Fig. 12 Comparison of relative position errors (solid lines) and their one-sigma envelopes (dotted lines)

Fig. 13 Comparison of relative yaw (solid line) and one-sigma envelopes (dotted lines)
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RMSE of the relative positions in north, east, and vertical

directions were 0.0074, 0.0055, and 0.0147 m, respec-

tively, with respect to the reference RTK solutions. The

RMSE of the baseline was 0.0059 m. The RMSE of the

relative velocity in north, east, and vertical directions were

0.0130, 0.0121, and 0.0315 m/s, respectively.

Figure 13 shows the relative yaw and its one-sigma

envelopes generated by the proposed method. Since the

dual-frequency GPS measurements cannot provide refer-

ence attitude information by the RTK processing, it is

difficult to obtain relative yaw errors. However, the relative

yaw between the two vehicles would be practically zero

when the two vehicles move along the same straight road

lane. For the reason, the relative yaw can be considered as

the relative yaw error during the straight movements. In the

right plot of Fig. 13, four areas marked by dashed rectan-

gles correspond to the periods during which the two ve-

hicles are in straight movement so that the relative yaw

equals the relative yaw error. In the four areas, it can be

seen that the relative yaw errors are well within the one-

sigma envelopes. Thus, it can also be considered that

relative yaw is appropriately estimated.

Conclusions

An efficient GPS/INS integration method was proposed for

adaptive relative navigation. The proposed method avoids

the cascaded filtering problem by two fundamentally dif-

ferent filters, i.e., the adaptive SD PD CSCF and the

adaptive velocity-aided GPS/INS KF. The adaptive SD PD

CSCF generates GPS position with the noise covariance

estimates of carrier phase and pseudorange measurements.

The adaptive KF generates accurate relative velocity and

attitude information at high output rate with the noise co-

variance estimates of the inertial sensors. By simulation

and experiment results, it was shown that the proposed

method improves accuracy of navigation solution by ap-

propriate noise covariance estimation. For further im-

provement, covariance estimation techniques for multi-

constellation global navigation satellite systems (GNSS)

need to be developed with more field experiments.
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