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Abstract In recent years, Kalman filter (KF)-based

tracking loop architectures have gained much attention in

the Global Navigation Satellite System field and have been

widely investigated due to its robust and better perfor-

mance compared with traditional architectures. However,

less attention has been paid to the in-depth theoretical

analysis of the tracking structure and to the effects of

Kalman tuning. A new approach is proposed to analyze the

KF-based tracking loop. A control system model is derived

according to the mathematical expression of the Kalman

system. Based on this model, the influence of the choice of

the setting parameters on the temporal evolution of the

system response is discussed from the perspective of a

control system. As a result, a reasoned and complete suite

of criteria to tune the initial error covariance as well as the

process and measurements noise covariances is demon-

strated. Furthermore, a strategy is presented to make the

system more robust in higher order dynamics without

degrading the accuracy of carrier phase and Doppler fre-

quency estimates.

Keywords Kalman filter � GNSS tracking loop � Kalman

tuning � Equivalent control model

Introduction

The primary objective of a Global Navigation Satellite

System (GNSS) receiver is to synchronize the local signal

with the incoming signal of the space vehicle (SV) and to

decode the navigation data message to calculate the final

position, velocity and time (PVT). In modern GNSS

receivers, this process normally involves three logical

stages that are acquisition, tracking, and PVT calculation

(Parkinson and Spilker 1996). The tracking loop is the key

stage that keeps the receiver locked to the incoming

Doppler frequency shift and code delay in both static and

dynamic situations. In conventional digital receiver

designs, the tracking loop consists of a frequency lock loop

(FLL), a phase lock loop (PLL) and a delay lock loop

(DLL), which are responsible of estimating the carrier

frequency, phase and code delay of the received signal. In

the previous years, most digital receivers just inherited the

lock loop architectures from analog counterparts in which

the three loops were designed separately rather than in one

integrated loop (Kaplan and Hegarty 2006).

Recently, several studies focusing on the combination of

these loops have been presented and compared with the

traditional ones (Kaplan and Hegarty 2006; Roncagliolo

et al. 2012; Lashley et al. 2009; Abbott and Lillo 2003;

Psiaki 2001). Among these solutions, the loop structure

known as FLL-assisted PLL/DLL is widely adopted as it

can reduce locking time and avoid false locks (Roncagliolo

et al. 2012). Other solutions that have been proposed to

enhance the tracking robustness are the so-called vector

tracking (Lashley et al. 2009; Abbott and Lillo 2003) and

Kalman filter (KF)-based tracking (Psiaki 2001). In the

vector tracking architectures, the navigation solution is fed

back into the tracking loop with a consequential enhance-

ment of the sensitivity and robustness of the tracking part.
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In the KF-based tracking loop design, both the FLL/PLL

and DLL are substituted by a unique KF that is in charge of

estimating all the unknown parameters in a coupled manner

(Florence and Petovello 2010). The literature demonstrates

that KF-based tracking loop outperforms traditional one in

multiple aspects. For instance, Won et al. (2009) compared

the performance of different designs of tracking loops,

demonstrating that KF-based tracking can work in lower

carrier-to-noise density ratio (C/N0) situations and obtain

more accurate parameter estimates in comparison with

traditional ones. Similarly, in Petovello and Lachapelle

(2006), three different KF implementation options have

been investigated with particular emphasis given to the

carrier phase in the frame of ultra-tight GPS/INS integra-

tion. The advantage of extended Kalman filter (EKF)-based

tracking in terms of positioning accuracy has been con-

firmed by comparison with a professional-grade receiver

(Tang et al. 2013). Furthermore, the usage of EKF-based

tracking has been also analyzed in weak signal situations in

Psiaki and Jung (2002) and Ziedan and Garrison (2003).

However, even though a lot of effort has been made in the

past to the design of a KF at the level of the tracking stage

and many studies have been done to evaluate a posteriori the

performance of such new tracking architecture, less attention

has been paid to the in-depth theoretical analysis of the KF-

based tracking loop itself and KF tuning. In O’Driscoll and

Lachapelle (2009), the Kalman system is analyzed by sim-

ply comparing its equivalent noise bandwidth with the tra-

ditional tracking loop only in steady state. In Salem et al.

(2012), an experimental methodology is proposed to decide

the equivalent PLL for a given EKF-based tracking loop.

Furthermore, Won et al. (2012) offer a more comprehensive

and sensible analysis, comparing the discrete time domain

expressions of a traditional second-order PLL and KF sys-

tem model and deriving the mathematical relationships

between them. However, they simplify the analysis by

considering the KF model with only two states and an

approximated observation matrix, which is only suitable in

case of low dynamics, short integration time and small

frequency error. In addition, the values of initial error

covariance, process noise covariance and measurement

noise covariance are set in an empirical way.

Therefore, in order to overcome the aforementioned

issues, a new approach is proposed to link the KF-based

tracking loop and the traditional one. This allows us to

derive a detailed mathematical description that gives a

better insight into such new tracking loop design and a

clear understanding of the benefits gained by the KF-based

tracking loop. At first, we derive an equivalent control

system model of the Kalman system through its discrete

time mathematical expressions. After that, the corre-

sponding transfer function is obtained, so that the dynamic

responses in the whole process can be analyzed in a

mathematical way. Furthermore, the response to the KF

tuning parameters including initial error covariance, pro-

cess and measurement noise covariance is investigated in

details in order to derive a proper set of criteria to opti-

mally drive the tuning of the filter parameters.

In first section, the Kalman-based tracking loop archi-

tecture is briefly introduced, and a control system model is

derived from the mathematical description of Kalman

system. In the next section, the influence of initial settings

of the KF is discussed from the perspective of a control

system. A reasoned tuning process of noise covariances in

dynamic conditions is also obtained and practical imple-

mentation criteria are identified. Finally, a summary is

provided and conclusions are drawn.

System model

In a KF-based tracking loop, there are generally two fun-

damental implementation options, named EKF-based and

linear KF-based tracking loop. The main difference

between these two architectures is in the type of mea-

surements, which in case of EKF are the accumulated

output of the correlators in their in-phase (I) and quadrature

(Q) components, while in linear KF case, they are the

outputs of the discriminators. In order to the subject simple,

we focus hereafter on the analysis of the linear KF-based

tracking loop only, and the following analysis strategy can

also be applicable to EKF.

Linear Kalman-based tracking loop

A linear KF-based tracking model is typically used to

estimate the following parameters: code phase error Ds
(unit: chips), carrier phase error Dh (unit: radians), carrier

frequency error Df (unit: Hz) and carrier frequency rate

error Da (unit: Hz/s). The system model (error-state) in

discrete time domain can be described as:

Ds
Dh
Df
Da

2
664

3
775
kþ1

¼
1 0 bT

bT2

2
0 1 2pT pT2

0 0 1 T

0 0 0 1

2
66664

3
77775

Ds
Dh
Df
Da

2
664

3
775
k

þwk ð1Þ

where the coefficient b is used to convert the units of cycles

to units of chips, e.g., for GPS L1 b = 1/1,540, T repre-

sents the integration time, and Wk represents the process

noise vector. The subscript k 2 N indicates the discrete

time instant.

In this KF-based vector tracking model, the output of

two discriminators, i.e., carrier phase discriminator output
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du and code phase discriminator output ds are utilized as

measurements. Then, the measurement model can be

written as:

du
ds

� �

kþ1

¼
0 1 �pT

pT2

3

1 0 � bT
2

bT2

6

2
64

3
75

Ds
Dh
Df
Da

2
664

3
775
kþ1

þVk ð2Þ

where Vk is the measurement noise vector, du and ds are

average values rather than instantaneous values because

they are obtained through an integration over time

T. Hereafter, this will be termed as ‘‘averaging effect.’’

From the system model (1) and measurement model (2),

we can observe that the whole system is the combination of

two similar systems, namely code phase tracking loop and

carrier tracking loop. Without loss of generality, we focus

on the carrier phase tracking loop, which can be described

as:

Dh

Df

Da

2
64

3
75
kþ1

¼
1 2pT pT2

0 1 T

0 0 1

2
64

3
75

Dh

Df

Da

2
64

3
75
k

þW 0
k

dukþ1 1 �pT
pT2

3

� � Dh

Df

Da

2
64

3
75þ V 0

k

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

and a similar approach can also be used to analyze the code

tracking loop. The KF theory indicates that we can get an a

posteriori state estimate bXk by incorporating the measure-

ment Zk in the predicted state (a priori state estimate)

(Brown and Hwang 1997) as follows:

bXkþ1 ¼ bX�
kþ1 þ Kkþ1 � Zkþ1 � Hkþ1 � bX�

kþ1

� �
ð4Þ

where bX�
kþ1 is the a priori state estimate obtained by

propagating in time the state estimate bX�
kþ1 ¼ Akþ1 � bXk,

with Akþ1 being state propagation matrix, Kkþ1 is the

Kalman gain, and Hkþ1 is the observation matrix that

connects the measurements with the current states.

Comparing (3) and (4) and defining

bX ¼ Dh; Df ; Da½ �Tk
Zkþ1 ¼ Measurements at time k þ 1ð Þ

Hkþ1 ¼ 1 �pT
pT2

3

� �

Akþ1 ¼
1 2pT pT2

0 1 T

0 0 1

2
64

3
75

ð5Þ

the corresponding a posteriori state estimate can be written

as:

Dh

Df

Da

2
664

3
775
kþ1

¼ Ak �

Dh

Df

Da

2
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3
775
k
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3
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�
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ð6Þ

where

Kkþ1 ¼ k1; k2; k3½ �Tkþ1; Hkþ1 � Akþ1 ¼ 1; pT; pT2

3

h i
, and

we can denote Zkþ1 � Hkþ1 � Akþ1 �
Dh

Df

Da

2
64

3
75
k

0
B@

1
CA ¼ ez as

shown in Fig. 1. It is important to note that in Won et al.

(2012), the observation matrix Hkþ1 for a second-order

system is set approximately as

Hkþ1 2nd orderð Þ ¼ ½1 0 � ð7Þ

without considering the influence of frequency error or fre-

quency rate error on the discriminator output. In this sense,

expression (7) can only work well for short integration time

and small frequency or frequency rate error. In our approach,

the influence of averaging effect (Petovello and Lachapelle

2006) in the discriminator has been taken into account as

shown in (5). Finally, theKFsystemcanbe illustrated as shown

in Fig. 1 where the averaging effect has been highlighted.

Equivalent control system

Based on the diagram depicted in Fig. 1, we can derive the

corresponding equivalent control system model to facilitate

the analysis of KF-based tracking loop. It is known that an

integrator in the continuous time domain

_u tð Þ ¼ f tð Þ ð8Þ

and sampled every T seconds can be expressed as

u k þ 1ð ÞTð Þ ¼ u kTð Þ þ
Z kþ1ð ÞT

kT

f tð Þdt ð9Þ

A mathematical discrete approximation can be applied

to (9) so as to obtain

u k þ 1ð Þ � u kð Þ þ f kð Þ � T ð10Þ

whose corresponding transfer function in the z domain is

H zð Þ ¼ Tz�1

1� z�1
ð11Þ

Finally, the equivalent control system of the KF repre-

sented in Fig. 1 is obtained as shown in Fig. 2 by substituting

the Laplace operator 1/s to the z-transfer function (11).
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According to Mason’s gain formula (MGF) (Newnes

1998), the following transfer function in the s domain can

be easily derived for the system in Fig. 2,

u�
out sð Þ
uin sð Þ ¼

Tpk3
3

þ pk2 þ k1
T

� �
s2 þ 2pk3 þ 2pk2

T

� �
sþ 2pk3

T

s3 þ Tpk3
3

þ pk2 þ k1
T

� �
s2 þ 2pk3 þ 2pk2

T

� �
sþ 2pk3

T

ð12Þ

which conforms to the expression of optimal third-order

phase lock loop in Jaffe and Rechtin (1955). According to

Brown and Hwang (1997), the corresponding noise band-

width can be computed as

Bn ¼
m1 � m2

2 þ m2
1 � m2 � m0

4 m1 � m2 � m0ð Þ ¼ m2

4
þ m2

1

4 m1 � m2 � m0ð Þ
ð13Þ

where

m0 ¼
2pk3
T

m1 ¼ 2pk3 þ
2pk2
T

m2 ¼
Tpk3
3

þ pk2 þ
k1

T

8>>>>><
>>>>>:

ð14Þ
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Fig. 1 Block diagram of the Kalman filter tracking loop. z-1 represents one-step delay in the z domain. k1, k2, and k3 are Kalman gains
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It can be concluded that the equivalent noise bandwidth of

KF Bn is actually decided by the Kalman gain vector Kk

and integration time T. Simply put, it evolves over time

with Kk.

Reasoned criteria to tune the Kalman filter

When using a KF architecture, there are three covariance

matrices that have to be tuned in order to achieve proper

performances, namely the initial estimate error covariance

Pini, the process noise covariance Q and the measurement

noise covariance R. Once Pini, Q and R are set, the Kalman

gain vector Kk can be determined as:

P�
k ¼ AkPk�1A

T
k þ Qk

Kk ¼ P�
k H

T
k HkP

�
k H

T
k þ Rk

� ��1

Pk ¼ I � KkHkð ÞP�
k

ð15Þ

where Qk is the discrete time equivalent of Q, and Rk

represents the time evolution of R. An alternative expres-

sion of (15) can be written as (Stephens and Thomas 1995)

P�1
k ¼ AkPk�1A

T
k þ Qk

� ��1þ HT
k Hk

� �
=Rk

Kk ¼ PkH
T
k

� �
=Rk

ð16Þ

For the state system considered in (3), the measurement

covariance matrix Rk reduces to a scalar, which can be

computed as (Parkinson and Spilker 1996)

Rk ¼ r2Du ¼ 1

2T � C=N0ð Þk
1þ 1

2T � C=N0ð Þk

� 	
ðrad2Þ

ð17Þ

Considering the general cases in the following simula-

tions, C/N0 is set equal to 38 dBHz as a typical value.

Meanwhile, the value of Qk can be expressed as follows

(Brown and Hwang 1997):

Qk �
1

2
Ak � Qþ Q � AT

k


 �
� T ð18Þ

However, the main practical issue is the setting of Q,

since a complete knowledge of the noise input is not

generally available. For this reason, the influence of Q will

be analyzed from a different perspective and will be pre-

sented in section ‘‘Steady-state segment.’’ On the other

hand, the setting of the initial phase error covariance Pini is

strongly related to the accuracy of the prior information

including carrier phase and frequency estimates provided

by the acquisition stage. If given an accurate prior infor-

mation, Pini could be set quite small as, for instance equal

to Qk and the tracking will be in lock nearly with no

transient (Stephens and Thomas 1995).

Generally, during the very initial stage of the tracking,

the uncertainty about the frequency and phase estimates

necessitates a much larger Pini than Qk to leave enough

space for state corrections. Eventually, in terms of error

covariance matrix Pk and Kalman gain Kk, the KF system

will converge progressively to a stable solution. The time

period consumed by the filter to reach a steady state is

called transition segment. From that moment on, the filter

works in steady segment. In the following sections, we will

investigate the effects of KF’s parameters including P,

Q and R in both segments.

Criteria based on the transition segment

As mentioned before, in case of non-perfect a priori ini-

tialization of the tracking loop, the transition segment

should allow the system to correct relatively large esti-

mates errors. Tausworthe (1971) proposed a second/third-

order hybrid approach that can be adopted in this temporal

segment. In principle, the initial second-order loop is

exploited for a fast refinement of the parameter estimates

with ‘‘wide bandwidth’’ during the transient time, and then,

the system switches to a ‘‘narrow bandwidth’’ third-order

loop in the steady segment.

In the case of tracking-based on the KF approach, at the

first processing step, we set the initial error covariance as

Pini ¼
Pi;1

Pi;2

Pi;3

2
4

3
5 ð19Þ

where Pi,1, Pi,2, Pi,3 indicate the initial error covariance of

the state parameters within the system (3). Typically, we

have:

Pini½ � jjð Þ� Q1½ � jjð Þ ð20Þ

which means that Qk can be ignored at the beginning. So,

for the first step, by using (5) and (15), the initial estimate

error covariance P can be simplified as:

P�
1 ¼ A1 � Pini � AT

1 þ Q1

� A1 � Pini � AT
1

¼
Pi;1 þ 4p2T2P1;3 2pTPi;2 þ pT3Pi;3 pT2Pi;3

2pTPi;2 þ pT3Pi;3 Pi;2 þ T2Pi;3 TPi;3

pT2Pi;3 TPi;3 Pi;3

2
64

3
75

ð21Þ

and

H1P
�
1 H

T
1 ¼ Pi;1 þ p2T2Pi;2 þ

p2T4Pi;3

9
ð22Þ

Then the KF gain can be stated as
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K1 ¼ P�
1 H

T
1 H1P

�
1 H

T
1 þ R1

� ��1¼
k1

k2

k3

2
64

3
75
1

¼

Pi;1 þ 2p2T2Pi;2 þ
p2T4

3
Pi;3

pTPi;2 þ
pT3

3
Pi;3

pT2

3
Pi;3

2
6666664

3
7777775

� 1

Pi;1 þ 2p2T2Pi;2 þ p2T4Pi;3

9
þ R1

ð23Þ

Based on (23), the setting of Pi,1 and Pi,3 can be derived

first as follows.

Setting of Pi,1 and Pi,3

In order to make the system (3) equivalent to a second-

order loop, k3 in (12) should be close to zero during the

transition segment that can be achieved through an

appropriate selection of Pi,1 and Pi,3. The choice of Pi,2 will

be analyzed based on another set of considerations in the

following subsection.

In order to guarantee k3 = 0 and keep a setting of Pini

following its physical meaning (Brown and Hwang1997),

from (23) and (17), we can set

Pi;1 ¼ 1 � Rk ð24Þ

Pi;3 �
1

T2
ð25Þ

We set Pi,3 equal to 10 for simplicity so that

pT2

3
Pi;3 � 1

Pi;1 þ p2T2Pi;2 þ
p2T4Pi;3

9
þ Rk [ 1

pT2

3
Pi;3 � Pi;1 þ p2T2Pi;2 þ

p2T4Pi;3

9
þ Rk ð26Þ

Therefore, at the beginning,

k3 ¼
pT2

3
Pi;3

Pi;1 þ p2T2Pi;2 þ p2T4Pi;3

9
þ Rk

� 0 ð27Þ

As a consequence, expression (12) turns to a second-

order loop with s domain transfer function

u�
out sð Þ
uin sð Þ ¼

pk2 þ k1
T

� �
sþ 2pk2

T

� �

s2 þ pk2 þ k1
T

� �
sþ 2pk2

T

� � ð28Þ

and the corresponding second-order system can be descri-

bed as

Dh

Df

� �

kþ1

¼
1 2pT

0 1

� �
Dh

Df

� �

k

þW 0
2k

dukþ1 ¼ 1 � pT½ �
Dh

Df

� �

kþ1

þV 0
2k

8>>><
>>>:

ð29Þ

Furthermore, the process noise error Qk can be ignored

at the beginning due to (20) and consequently (16) changes

to (Patapoutian 1999)

P�1
k ¼ A�T

k P�1
k�1A

�1
k þ HT

k Hk

� �
=Rk

¼ A�T
k

� �k
P�1
ini A�1

k

� �kþ

Pk
j¼0

A�T
k

� � j
HT

k HkA
�j
k

Rk

Kk ¼ PkH
T
k

� �
=Rk

ð30Þ
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Fig. 3 Illustration of Eq. (30) by numerical evaluation
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From (30), it can be concluded that once the system is

determined, and then, in the transition segment, the Kal-

man gain is actually decided by the time evolution of Pini.

However, it is hard to infer the relationship between Kal-

man gain Kk and initial error variance Pini directly by

inspection of (30). For this reason, numerical evaluations

of (30) are useful at this point to get insight into the KF

evolution during the initial steps, in particular into the

evolution of Kk as a function of the initialization Pini.

In the following experiments, the simulation parameters

are set as: C/N0 = 38 dB-Hz, T = 0.001 s. Then, from

(17), it can be computed that Rk ¼ 0:0855 8k 2 N. Based

on (24) and (25), it is possible to observe the time evolution

of the Kalman gain parameters k1 and k2 as shown in

Fig. 3.

Setting of Pi,2

With respect to the choice of Pi,2, several factors have to be

considered, namely the potential ambiguity problem of the

discriminator output, the response of the tracking loop to

the system dynamics, the stability and the true noise

bandwidth. They will be discussed in the following part.

Factor 1: the potential ambiguity problem of discriminator

output The design of PLL follows a linear model, which

implies that no issues of nonlinearity or ambiguity should

occur over the full operating range (Stephens and Thomas

1995). In order to guarantee this assumption, at the very

beginning of a KF-based tracking loop, we also have to

deal with the potential ambiguity problem of the discrim-

inator output in the case of a large initial frequency error.

The initial steps of the KF system are illustrated in Fig. 4,

where

xT0 ¼
Dh0
Df0

" #
ð31Þ

is the assumed true initial state vector, containing the true

values of initial phase error Dh0, a value in the range

ð�p; pÞ and frequency error Df0. Without any a priori

accurate information, the initial state vector is traditionally

set to zero:

bx0 ¼ 0

0

" #
ð32Þ

Without considering the influence of noise, due to the

pull-in range of a two-quadrant phase discriminator which

is �p=2; p=2ð Þ, the first phase measurement error obtained

by a discriminator can be expressed as:

Z1 ¼ Dh0 þ pDf0T � np ð33Þ

where np represents the potential ambiguity and n is an

integer number. In the first measurement update, we will

have

bx�1 ¼ Dbh�1
Dbf �1

" #
¼ 1 2pT

0 1

� �
0

0

� �
þ k1

k2

� �

1

Z1 ð34Þ

and then, both Dbh�1 and Dbf �1 will be used to update the

local NCO including phase and phase rate update (Tang

et al. 2013).

As shown in (33), the discriminator output Z may

involve ambiguity issues due to the uncertainty of Dh0 and
Df0. Therefore, the first measurement update can be used to

solve the aforementioned problem by the following two

considerations:

1. From (33), the initial uncertain phase error Dh0 should
be removed from the discriminator output, and then

only Df0 needs to be considered in the next step in

order to guarantee nonexistence of ambiguity in the

following discriminator outputs. For this reason, in the

first measurement update, k1 should be equal to 1 as

shown in (35).

2. In the first measurement update, ideally the value of k2
should be close to zero in (34) to make sure the initial

large frequency error will not be enlarged due to the

uncertainty of Z1. Otherwise, the enlarged frequency

error will increase the possibility of false frequency

lock, as shown in Fig. 5 (Stensby 2002) where a big

k2Z1 can lead to a wrong estimation of the frequency.

Hence, in (34), the Kalman gain in the first step can be

set as

k1

k2

" #

1

¼
1

0

" #
ð35Þ

then,

k1
k2

� �

1

Z1 ¼ Dh0 þ pDf0T � np
0

� �
ð36Þ
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Fig. 4 Initial steps for KF system
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After the first NCO update, if Df0 can be considered

approximately constant in two consecutive epochs, the true

value of state vector becomes

xT1 ¼
pDf0T 	 np

Df0

" #
ð37Þ

In the following step, the measurement can be expressed

as

Z2 ¼ 2pDf0T � np ð38Þ

in order to remove the potential ambiguity problem in (38),

2pDf0T should be located within the pull-in range of the

phase discriminator:

� p
2


 2pDf0T 
 p
2

ð39Þ

Given T = 1 ms, then

�250 Hz 
 Df0 
 250 Hz ð40Þ

upon condition (40), the value of n in (37) and (38) is equal

to zero. Then, the true value of the state vector and the

discriminator output can be rewritten as

xT1 ¼
pDf0T

Df0

" #

Z2 ¼ 2pDf0T

8>><
>>:

ð41Þ

In addition, the Kalman gain Kk is always positive

during the whole operating process

Kk [ 0 ð42Þ

which can guarantee that starting from the second step,

the NCO frequency update (k2Z) can eventually decrease

the frequency error without any ambiguity involved. In

presence of noise, considering 2r bound, the condition

(40) can be changed to

Df0j j\ 250� rDu
pT

� �
Hz ð43Þ

where rDu can be computed in (17).

With the proper setting as shown in (35), it can be

concluded that the KF system can avoid the potential risk

of ambiguity in the estimation of the carrier frequency from

the second step onward, since the first step is used to

remove the potential ambiguity problem of Z1. From this

perspective, based on Fig. 3,

Pi;1 ¼ 1 and Pi;2 
 1:4e3 ð44Þ

can approximately satisfy the requirement, and Pi;1 ¼
1 and Pi;2 ¼ 1:4e3 can be treated as the boundary value in

this condition.

Factor 2: the response of the KF loop to a ramp input As

mentioned before, the main objective of the transition

segment is to refine parameters estimates in a fast manner.

According to Kaplan and Hegarty (2006) and Jaffe and

Rechtin (1955), the optimal transfer function of a second-

order system concerning PLL is

U sð Þ ¼ 2fwnsþ w2
n

s2 þ 2fwnsþ w2
n

ð45Þ

Comparing (28) and (45), it can be obtained that

w2
n ¼

2pk2
T

2fwn ¼ pk2 þ
k1

T

8><
>:

ð46Þ

and the corresponding noise bandwidth can be computed

as

Bn ¼
wn

2
fþ 1

4f

� 	

¼ k1k2p
4T

þ pk2
2 Tpk2 þ k1ð Þ

ð47Þ

which is plotted in Fig. 6

In order to analyze the loop response in dynamic con-

ditions, suppose there is a ramp input

uramp ¼ Df0 � t ð48Þ

Then, the output of the system (28) in s domain will be

u�
out sð Þ ¼ 2fwnsþ w2

n

s2 þ 2fwnsþ w2
n

� Df0
s2

¼ Df0
s2

� Df0
s2 þ 2fwnsþ w2

n

ð49Þ
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Fig. 5 Result of the first experiment (large initial frequency error
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In the time domain, the output can be expressed as

u�
out tð Þ ¼ Df0t �

Df0

wn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p e�fwnt sin wn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
t

� 	

ð50Þ

In (50), once the damping ratio f is fixed, the bigger the
wn, the faster the output of the system will catch up with

the ramp input signal, which also means the system can

correct the frequency error more quickly. From (46), it can

observed that wn is directly proportional to k2; therefore,

the bigger we choose k2 the shorter the response of the

whole system. In Fig. 3, we have plotted different values of

k2 with different Pi,2. After this analysis and by keeping in

mind the upper bound expressed in (43) to avoid frequency

ambiguities as stated in (44), it appears convenient to select

the highest possible Pi,2 to speed up the convergence of the

KF. Therefore, in the context of transition segment, the

best choice can be

Pi;1 ¼ 1; Pi;2 ¼ 1:4e3 ð51Þ

Otherwise, in case of large initial frequency error, if wn

is too small, such as when Pi;1 ¼ 1 and Pi;2 ¼ 1e2; the

system will enter into a false frequency lock (Stensby

2002) as shown in Fig. 5 (triangle-marked line). However,

if the initial frequency error is small such as 20 Hz, a

correspondingly small wn can also work as shown in Fig. 7.

Generally, since we have no idea in real situations how big

the frequency error is, a good trade-off that has been

proved through several experiments is to follow the criteria

stated in (51), which can make the system capable of

correcting frequency errors in the range of the one

expressed in (43) when T = 0.001 s.

Since wn is proportional to Bn, which represents the

amount of noise within the loop. Therefore, the values of

Pi,1 and Pi,2 in (51) must be validated with an analysis of

the performance in the corresponding noise equivalent

bandwidth as shown in Factor 3 analysis.

Factor 3: stability and true noise bandwidth According

to Stephens and Thomas (1995), a large product BnT can

possibly make the loop diverge from the expected behavior

or cause instability. In order to prevent such issues, the

choice in (51) has to be evaluated both in terms of stability

and true noise bandwidth. Based on (11), (28) and (46), the

second-order model in the discrete time domain can be

expressed as

U Zð Þ ¼ 2fwnTZ þ w2
nT

2 � 2fwnT

Z2 þ 2fwnT � 2ð ÞZ þ 1� 2fwnT þ w2
nT

2
ð52Þ
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As shown in Fig. 5, the first ten steps are very critical in

terms of frequency error correction, additionally with the

previous conclusion stated in Factor 1 analysis that the

system really starts working from step 2, we can mainly

evaluate the average performance in the two initial parts

based on the different equivalent noise bandwidth as shown

in Fig. 6, one part is from step 2 to 6, and a second part is

from 6 to 11. In the first part (step 2–6), the average

nominal noise bandwidth is Bna1 ¼ 300 Hz, and the

damping ratio is f ¼ 0:87 according to (52). The evaluation

result is shown in Fig. 8. Similarly, in the second part (step

6–11), the average nominal noise bandwidth is

Bna2 ¼ 169 Hz, and damping ratio is f ¼ 0:83. The evalu-

ation result is shown in Fig. 9.

As Figs. 8 and 9 show, there is a minor difference

between the real noise bandwidth and input one, which

implies the coherence between real noise bandwidth and

the input ‘‘loop parameter bandwidth Bn’’. Meanwhile, the

system always keeps stable, both for the first and second

part (Thomas 1989). This means the solution in (51) can be

a convenient choice for the transition segment in case

T = 0.001 s and the acceptable initial frequency error

within the range in (43).
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Summary of the tuning criteria based on the performance

in the transient segment

In order to summarize the above considerations referred to

the transient segment of the KF tracking process, the sug-

gested criteria for the setting of Pini in the absence of

accurate prior information can be stated as follows:

1. Independently of the uncertainty of the initial phase

error, the acceptable initial frequency error is

expressed in (43) when a two-quadrant phase discrim-

inator is adopted.

2. Pi;1 � Rk where Rk can be computed using (17).

3. Pi;3 � Pi;1=T
2 where Tis the integration time.

4. Pi,2 depends on the evaluation of the system in terms of

factor 1, 2, and 3, respectively. When T = 1 ms, then

Pi;2=Pi;1 
 1:4e3, and without any accurate prior

information, the choice Pi;2=Pi;1 ¼ 1:4e3 represents

the best trade-off in terms of stability, rapidity of

convergence and the avoidance of carrier phase

ambiguity.

Steady-state segment

The previous discussion proved that during the transient

segment, the influence of coefficient k3 can be ignored

and KF-based loop (3) is comparable to a second-order

traditional PLL if properly initialized. However, as k3
increases with the time, as shown in Fig. 10, the role of

k3 can no longer be ignored, which means that the sys-

tem transitions fast to a third-order system termed

steady-state segment. In steady state, based on (16), the

values of the error variance Ps and Kalman gain Ks can

be computed from the solution of the following system

of equations:

P�1
s ¼ AkPsA

T
k þ Qk

� ��1þ HT
k Hk

� �
=Rk

Ks ¼ PsH
T
k

� �
=Rk

(
ð53Þ

where Ak and Hk are fixed once the KF system is given. Rk

can be computed using (17) and Qk can be computed as in

(18). Both depend on C/N0. Therefore, once the system is

determined, the loop behavior in steady state is substan-

tially driven by the values assigned to the entries of the

process noise error covariance matrix Q of (18) and Rk.

Indeed, to some degree, Ks in (53) is proportional to Q and

inversely proportional to Rk.

As far as the setting of Q is concerned, it can be

computed following the definition of the KF model,

where Q(1,1) and Q(2,2) can be obtained from the

involved clock model (Petovello and Lachapelle 2006;

Brown and Hwang 1997). On the other side, from the

perspective of a control system as shown in Figs. 1, 2,

the value of Kalman gain K is related to the variance of

corresponding parameter estimates and is approximately

proportional to Q in steady state. Hereafter, we mainly

analyze the tuning of Q from the perspective of the

equivalent control system. Since in our experiments the

simulated clock error is very small, we have given the

initial approximate value of Q as

Q ¼
10�3

10�2

1

2
4

3
5 ð54Þ

From (18), Qk can be computed as:
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Qk �
1

2
Ak � Qþ Q � AT

k


 �
� T

¼
10�6 3:14� 10�8 1:57� 10�9

3:14� 10�8 10�5 5� 10�7

1:57� 10�9 5� 10�7 10�3

2
64

3
75

ð55Þ

With Qk and Rk ready, we can start the advanced ana-

lysis of the system in different conditions as follows.

Loop response evolution in dynamic conditions

We now present a set of numerical results showing the

influence of the choice of Q according to the evolution of

KF-based loop response in dynamics conditions. In PLL

applications, the phase input is usually modeled in the form

h tð Þ ¼ aþ bt þ ct2 þ � � �
� �

u tð Þ ð56Þ

where a, b and c are constants and u(t) is the unit step

function. If the highest order of PLL is n, then the PLL can

track n terms of (56) with zero steady-state phase error.

Case-study 1: Doppler frequency variations at constant

rate In the first experiment, the parameters are set as

follows: (C/N0)dB = 38 dB-Hz, T = 0.001 s.

ferror,ini = 150 Hz, and Doppler rate vf ¼ 100 Hz=s. Based

on the analysis in section ‘‘Criteria based on the transition

segment,’’ we can set Pini Pini as

Pini ¼
1

1:4e3
10

2
4

3
5 ð57Þ

During the transition segment, the system follows the

performance of a second-order system (29), with

Pini;2order ¼
1

1:4e3

� �
; Q2order ¼ 10�3

10�2

� �
ð58Þ

From Figs. 10, 11, we can see that during the transition

segment a third-order (3) and a second-order (29) systems

have the same performance. However, when the KF enters

into the steady segment, the role of k3 is no longer negli-

gible and the advantage of the third-order tracking loop

becomes evident, since it can track a signal with a fre-

quency rate equal to 100 Hz/s while the estimate from the

second-order system deviates from the correct value. In

steady state, for third-order system, the solution of (53) is:

Ks ¼
0:0189
0:0276
0:1071

2
4

3
5; Ps ¼

0:0016 0:0024 0:0092
0:0024 0:0057 0:0279
0:0092 0:0279 0:2567

2
4

3
5 ð59Þ

In conclusion, if the value of Pini satisfies (27) and is

initialized properly, then we can state that the KF-based

PLL is a combination of two different models: a second-

order model is used within the transition segment in order

to speed up lock of carrier frequency, then the KF even-

tually transitions to a third-order model to make the system

more robust to the dynamic stress.

Case-study 2: variable Doppler rate It is well known that

in high dynamic situations where the frequency rate

changes quickly, the loop noise bandwidth (13) has to be

enlarged correspondingly to be able to track the signal.

However, at the same time, we may have to keep k1 and k2
small to guarantee the low variance of phase and frequency

estimates. From this perspective, based on (13) and (14),

we can achieve the goal only by increasing Q(3,3) without

degrading the accuracy of phase and frequency estimates

significantly. If we set the parameters as:

Pini ¼
1

1:4e3

10

2
64

3
75; Q ¼

10�3

10�2

Q 3; 3ð Þ

2
64

3
75

T ¼ 0:001 s; C=N0ð ÞdB¼ 38 dBHz

ð60Þ

we can get the results reported in Fig. 12 about the influ-

ence of Q(3,3) on the value of Kalman gain and equivalent

noise bandwidth. The figure shows that the equivalent

noise bandwidth is enlarged when Q(3,3) increases. On the

contrary, k1 and k2 do not change in a significant way.

In order to observe the time evolution of the loop

response with the parameters reported in (60), we feed the

loop with a carrier signal with fdop = 40sin(2pt) Hz and

ferror,ini = 100 Hz. Two different values of Q(3,3) are

considered in Fig. 13.
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Figure 13 shows thatwhenQ(3,3) = 1, the system cannot

work correctly in high-order dynamic case, but it can track

the signal correctly for a short amount of time at the begin-

ning. On the other hand, when Q(3,3) is increased up to 103,

the KF system is able to work in a proper way even though

from A to B, the frequency rate is nearly 160 Hz/s, and there

are ‘‘sudden’’ changes in point A and B.

In conclusion, in high dynamic situations, Q(1,1), Q(2,2)

are set small in order to maintain the low variance of phase

and frequency estimate, while Q(3,3) is enlarged to keep

the loop capable of tracking signals in high dynamics.

Actually, at the same time, the drawback is that the vari-

ance of frequency rate error estimate Da will increase, but

this fact will not affect the accuracy of phase and frequency

estimate that we are concerned with normally.

Summary of the tuning criteria based on the performance

in the steady-state segment

The performance of the system mainly depends on the

value of Q and R in steady state. Intuitively, Q and R could

be computed following the definition of KF system: For

instance, R can be computed by (17) and the values of

Q(1,1) and Q(2,2) can also be obtained through the clock

model, while the value of Q(3,3) depends on the knowl-

edge of frequency rate. Given the value of Rk computed by

(17), the tuning criteria for Q can also be given from the

perspective of a control model. Briefly Q(1,1) and Q(2,2)

are set small values to guarantee the small variance of

phase and frequency estimates, and Q(3,3) can be enlarged

to adapt the system to high dynamics.

Summary and future works

We have analyzed the KF-based tracking loop in depth.

First, the equivalent control model is derived based on the

mathematical expression of Kalman system with the main

focus on the carrier tracking only. Based on the control

model, the influence of initial error variance matrix Pini,

process noise covariance Q, and measurement noise

covariance R is analyzed. Briefly, Pini mainly decides the

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time step(ms)

The value of k1

Q(3,3)=1
Q(3,3)=1e1
Q(3,3)=1e2
Q(3,3)=1e3

0 200 400 600 800 1,000 1,200 1,400

0

5

10

15

20

25

30

35

Time step(ms)

The value of k2

Q(3,3)=1
Q(3,3)=1e1
Q(3,3)=1e2
Q(3,3)=1e3

600 700 800
0

0.2

0.4

zoom in

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

4

Time step(ms)

The value of k3

Q(3,3)=1
Q(3,3)=1e1
Q(3,3)=1e2
Q(3,3)=1e3

0 200 400 600 800 1,000 1,200 1,400
0

50

100

150

200

250

Time step(ms)

N
oi

se
 b

an
dw

id
th

(H
z)

The equivalent noise bandwidth

Q(3,3)=1
Q(3,3)=1e1
Q(3,3)=1e2
Q(3,3)=1e3

600 700 800
5

10

15

20

25

zoom in

Fig. 12 Influence of Q(3,3)

GPS Solut (2015) 19:489–503 501

123



performance of the transition segment, while Q and R have

influence on the steady-state segment. In the transition

segment, with the pre-conditions stated in (20) and (27),

the system can be equalized to a second-order system that

can lock the frequency quickly. Moreover, the setting of

Pi,2 is discussed in details with the main consideration of

three factors in order to avoid false lock issue, speed up the

convergence and guarantee the stability of the system. As

far as the steady segment is concerned, the KF can be

equivalent to a third-order tracking loop. At this stage, the

performance mainly depends on the settings of Q and R:

Q(1,1) and Q(2,2) are set small to guarantee the accuracy

of phase and frequency estimate, while Q(3,3) is enlarged

to adapt the system to higher order dynamic situations. In

conclusion, the Kalman system actually integrates all the

parameters into one single unity, which can decide the

overall tracking performance, and, at the same time, inside

this unity, each value of the Kalman gain k1, k2, k3 has

influence on the variance of Kalman states separately.

Understanding the KF-based tracking loop itself in

depth can also provide the insights into different research

fields such as the design of different integrated navigation

system (Petovello and Lachapelle 2006), adaptive tracking

loop (Won and Eissfeller 2013) and vector tracking tech-

niques (Lin et al. 2011). Additionally, in the future, the

work can be extended to other important promising aspects

including how to design optimal systems corresponding to

different noise models such as Gauss–Markov model in

case of multipath, how to include the analysis of filter

stability and sensitivity and real-time implementation of a

KF-based tracking loop.
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