
ORIGINAL ARTICLE

GNSS multi-frequency receiver single-satellite measurement
validation method

A. El-Mowafy

Received: 27 February 2013 / Accepted: 28 October 2013 / Published online: 22 November 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract A method is presented for real-time validation

of GNSS measurements of a single receiver, where data

from each satellite are independently processed. A geom-

etry-free observation model is used with a reparameterized

form of the unknowns to overcome rank deficiency of the

model. The ionosphere error and non-constant biases such

as multipath are assumed changing relatively smoothly as a

function of time. Data validation and detection of errors are

based on statistical testing of the observation residuals

using the detection–identification–adaptation approach.

The method is applicable to any GNSS with any number of

frequencies. The performance of validation method was

evaluated using multi-frequency data from three GNSS

(GPS, GLONASS, and Galileo) that span 3 days in a test

site at Curtin University, Australia. Performance of the

method in detection and identification of outliers in code

observations, and detection of cycle slips in phase data

were examined. Results show that the success rate vary

according to precision of observations and their number as

well as size of the errors. The method capability is dem-

onstrated when processing four IOV Galileo satellites in a

single-point-positioning mode and in another test by

comparing its performance with Bernese software in

detection of cycle slips in precise point-positioning pro-

cessing using GPS data.

Keywords Validation � Quality control � GPS �
Galileo � GLONASS � Multi-frequency GNSS

Introduction

Successful GNSS software should include a pre-processing

step for screening of data. During this pre-processing step,

the most severe irregularities in the data should be detected

if necessary repaired. Several techniques were presented

for this purpose. For instance, the receiver autonomous

integrity monitoring (RAIM) algorithms are generally

based on checking consistency of solutions from different

combinations of satellite data (Farrell and Van Graas 1992;

Lee 2012). Other methods estimate cycle slips as additional

unknowns in a least-squares or Kalman filtering processing

(Banville and Langley 2010). Some methods used linear

combinations of the observations or their time difference to

estimate cycle slips (Blewitt 1990). The detection–identi-

fication–adaptation (DIA) is another method for quality

control of single-baseline GNSS observations, which has

been discussed in Teunissen (1990, 1998) and De Jong and

Teunissen (2000). De Bakker el al. (2009a) used the DIA

method to investigate quality control of single-receiver

single-satellite geometry-free model with a focus on the

analysis of the minimal detectable bias (MDB), which is a

measure for the size of the errors that can be detected with

a certain power and probability of false alarm.

While most attention was given to validation of GPS

observations, some studies consider multi-constellation

GNSS. For instance, quality control of GPS with GLON-

ASS was discussed in De Jong et al. (2001), and GPS with

Galileo was considered in Ene et al. (2007), De Bakker el

al. (2009b), and Neri et al. (2011). Most studies consider

the case of dual-frequency observations due to the fact that

signals availability was limited to only GPS and GLON-

ASS (Kim and Langley 2002). Some recent studies con-

sider triple frequencies from GPS or Galileo (Guo et al.

2011). With the availability of new systems such as
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BeiDou, QZSS as well as Galileo, research is still needed

in modelling and validation of quadruple or higher-fre-

quency observations. In addition, as the number of visible

satellites is increasing due to the presence of multi-con-

stellation GNSS systems, there will be an increased like-

lihood that multiple outliers may occur in the collected

observations at one epoch. Detection of multiple outliers in

the data has been discussed in Kok (1984) and Teunissen

(1990), and for RAIM in Blanch et al. (2010).

A method is presented for validation of GNSS data

using a single-receiver single-satellite approach and uti-

lizing the DIA approach. The method is applicable for real-

time or post-mission data processing. A re-parameteriza-

tion approach of the unknowns in a geometry-free model is

presented, and the used functional and dynamic modelling

is discussed. The technique is applied for screening data of

each satellite in an independent processing, i.e. one by one

at each epoch and in a successive manner between epochs.

First, the multi-frequency single-receiver single-satellite

method is discussed. Next, examples of its performance for

processing data of a continuously operating reference sta-

tion are presented. Data from three GNSS, namely GPS,

GLONASS, and Galileo, collected simultaneously for three

consecutive days will be checked. Finally, the performance

of the method is demonstrated, and conclusions are given.

Single-receiver single-satellite geometry-free modelling

The carrier phase and pseudorange observation equations

of a single receiver that tracks a single satellite on fre-

quency fj (for j = 1 to n) at time instant t read (Teunissen

and Kleusberg 1998; Leick 2004; Kaplan 2006):

/jðtÞ ¼ qðtÞ þ cðdtrðtÞ � dtsðtÞÞ þ TðtÞ � ljIðtÞ þ b/j
ðtÞ þ e/j

ðtÞ
pjðtÞ ¼ qðtÞ þ cðdtrðtÞ � dtsðtÞÞ þ TðtÞ þ ljIðtÞ þ bpj

ðtÞ þ epj
ðtÞ
ð1Þ

where /j(t) and pj(t) denote the observed carrier phase and

pseudoranges in distance units (m), respectively, with

corresponding zero-mean noise terms e/j
ðtÞ and epj

ðtÞ. q(t)

denotes the receiver-satellite range, c is the speed of light,

dtr(t) and dts(t) are the receiver and satellite clock errors,

and T(t) is the tropospheric delay. The parameter I(t)

denotes the ionospheric delay for code observations and

advance in phase observations expressed in units of

distance with respect to the first frequency. For frequency

fj, the ionospheric coefficient lj = f1
2/fj

2 is used to express

its ionosphere in terms of I(t). The parameters bpj
ðtÞ and

b/j
ðtÞ are the code and phase biases (including the phase

ambiguity) at epoch (t), respectively. A geometry-free

approach is used where positioning is of no interest at this

stage. Thus, the satellite orbit error is not present in the

model as knowledge of the accurate 3D satellite position is

not needed. The ionospheric delay I(t) can be decomposed

into two components; its initial value I(to) and the

difference from this value, which is denoted as (dI), such

that:

IðtÞ ¼ IðtoÞ þ dIðtÞ ð2Þ

where to refers to the initial epoch of data processing.

The model given in (1) shows that the problem at hand

is under-determined. The rank defect is caused by the fact

that the information content of the observables is such that

only time differences of the parameters can be determined.

The rank deficiency in the model solution is reduced by re-

parameterization of the unknowns in the observation

equations as follows (El-Mowafy et al. 2010):

q�ðtÞ ¼ qðtÞ þ cðdtrðtÞ � dtsðtÞÞ þ TðtÞ ð3Þ
q��ðtÞ ¼ q�ðtÞ � q�ðtoÞ ð4Þ
b�/j
ðtÞ ¼ b/j

ðtÞ þ ½q�ðtoÞ � ljIðtoÞ� ð5Þ

b�pj
ðtÞ ¼ bpj

ðtÞ þ ½q�ðtoÞ þ ljIðtoÞ� ð6Þ

where j = 1 to n. The observation equations in terms of

the re-parameterized vector of unknowns ðq��ðtÞ; dIðtÞ;
b�/j
ðtÞ; b�pj

ðtÞÞT at time t then read:

/jðtÞ ¼ q�� tð Þ � ljdIðtÞ þ b�/j
ðtÞ þ e/j

ðtÞ
pjðtÞ ¼ q��ðtÞ þ ljdIðtÞ þ b�pj

ðtÞ þ epj
ðtÞ

ð7Þ

During initialization when processing, the first two terms

on the right-hand side of the equation equal zeros at the

first epoch (to), leading to b�/j
ðtoÞ and b�pj

ðtoÞ equal /jðtoÞ
and pj(to), for frequency j, respectively. The rank

deficiency is completely removed by predicting the

unknowns in (7), as will be discussed in the next section,

and treating the predicted unknowns as pseudo-

observations. At time t, for the unknown vector

q��ðtÞ; dI tð Þ; b�/j
ðtÞ; b�pj

ðtÞ
h iT

denoted in a general form as

xt we have:

ext ¼ Ut=t�1bxt�1 ð8Þ

where Ut=t�1 is the transition matrix, bxt�1 and bxt are the

estimated and predicted vectors of unknowns at times t -

1 and t. The reparameterized unknown range q�� is in

general hard to predict unless the satellite and receiver

motion and dynamics are taken into consideration. One

way to avoid the complexity of this scenario is to model

q�� using a random walk process. However, this process

requires good stochastic information, and one has also to

consider the fact that a random walk process noise

increases with time. Alternatively, the reparameterized

unknown range q�� can be considered unlinked in time and
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thus excluded from the prediction process, such that the

predicted vector of unknowns reads:

bgt ¼ Mext ð9Þ

where M is a (1 ? 2n) 9 (2 ? 2n) matrix, where its first

column includes zero elements and the remaining columns

form an identity matrix of size (1 ? 2n) (Teunissen, per-

sonal communication). The vector bgt now reads

dIðtÞ; b�/j
ðtÞ; b�/j

ðtÞ
h iT

, for j = 1 to n.

Processing can be performed using Kalman filtering;

however, this needs some manipulation of its formulation

to account for the use of bgt instead of ext. Equivalently, one

can use a parametric least-squares’ adjustment, processing

epoch-by-epoch, and augmenting the observation model

using the predicted unknowns as pseudo-observations, such

that:

yt

bgt

� �
¼ A

0
t

M

� �
xt þ et ð10Þ

with

A0t ¼
u �lj

u þlj

I 0

0 I

� �
ð11Þ

where yt is the vector of observations, which comprises

code and phase observations, u is a column vector of ones

with a size n, lj here denotes a column vector of lj for each

frequency j, where j = 1 to n, I is the identity matrix of

size n, and et denotes a zero-mean vector of observation

noise. The estimated values of the unknowns bxt can then be

determined as follows:

bxt ¼ A0Tt Q�1
yt

A0t þMT
t Q�1

bgt=t�1

Mt��1½A0Tt Q�1
yt

yt þMT
t Q�1

bgt=t�1

bgt=t�1

� �

ð12Þ

with a covariance matrix equals A0Tt Q�1
yt

A0t þMT
t Q�1bgt=t�1

�

Mt��1
. The method continues between epochs until re-ini-

tialization is needed; then, the processing time is set as to
and the procedure is repeated.

Dynamic and stochastic modelling

In (7), the ionospheric delay dI and the bias components

b�/j
, and b�pj

are assumed changing relatively smoothly with

time for a short period (El-Mowafy 2009), which can be

assumed between 15 and 30 min, depending on site and

observing conditions. The temporal correlations of the

three biases, denoted in a general term as b, are assumed

exponentially decaying with time by using a first-order

autoregressive stochastic process, such that:

b ¼ e�jDtj=s ð13Þ

where Dt is the time interval between the epochs (t - 1)

and (t) and s is the correlation time length. The dynamic

models of dI, b�/j
and b�pj

for a frequency j at t then read:

dI tð Þ ¼ bdIdIðt � 1Þ þ ddIðtÞ ð14Þ
b�/j
ðtÞ ¼ bb�/j

b�/j
ðt � 1Þ þ db�/j

ðtÞ ð15Þ

b�pj
ðtÞ ¼ bb�pj

b�pj
ðt � 1Þ þ db�pj

ðtÞ ð16Þ

where bdI ; bb�/j

and bb�pj
are the temporal correlations for

dIðtÞ; b�/j
ðtÞ and b�pj

ðtÞ. ddIðtÞ; db�/j
ðtÞ and db�pj

ðtÞ are their

process noises, which are assumed Gaussian white noises.

The transition matrix in (8) then reads:

Ut=t�1 ¼ diag½bdI ; bb�/j

; bb�pj
� ð17Þ

for j = 1 to n, where bb�/j

and bb�pj
are diagonal matrices

including the values of bb�/j

and bb�pj
for each frequency.

The variance of each process noise is #
2=s ð1� b2Þ
h i

(Gelb

1974), where # denotes its spectral density. No auto-cor-

relation nor cross-correlation among code and phase mea-

surements are assumed in the used stochastic model.

Validation of the observations using the single-receiver

single-satellite model

For detection of outliers in the observations, one may

consider examining the model using observations only

from the current epoch t. This is referred to as Local

Testing. In local validation of GNSS observations, one may

wish to test q number of possible errors in the observations,

where q \ df, where df is the degrees of freedom of the

model. For u number of unknowns and excluding the

unknown q�� during the prediction process, the number of

predicted unknowns is u - 1. Thus, the degrees of freedom

for n number of observed frequencies are

½2nþ ðu� 1Þ� � u ¼ 2n� 1. The best estimator of the

error vector brt can be determined from (Teunissen 2006):

brt ¼ CT
t Q�1

yt
Qbet

Q�1
yt

Ct

� ��1

CT
t Q�1

yt
bet ð18Þ

and its covariance matrix is:

Q br t

¼ CT
t Q�1

yt
Qbet

Q�1
yt

Ct

� ��1

ð19Þ

where bet and Qbet
are the computed observation residuals

and their covariance matrix from the least-squares solution,

where:
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bet ¼ Yt � Atbxt ¼
yt

bgt

� �
� A

0

t

M

� �
bxt ð20Þ

and Qbet
¼ QYt

� ½AtðAT
t Q�1

Yt
AtÞ�1

AT
t �, with At ¼ A

0
t

M

� �
; and

QYt
¼

Qyt
0

0 Qbgt

� �
are the covariance matrix of the

observations and predicted unknowns. Ct is the matrix

describing which observations are examined, such that

each column of Ct describes one possible error. The ele-

ments of each column are set to zeros except the ele-

ment corresponding to the examined observation, which

equals 1.

Possible detection of the presence of model errors in

local testing can be performed by examining the local

overall model (LOM) statistic TLOM, which can be for-

mulated as (Teunissen 2006):

TLOM ¼ brT
t Q�1br t

brt ð21Þ

and measurement or model errors are suspected when:

TLOM� v2
aðdf ; 0Þ ð22Þ

where va
2 is the chi-squared value for a significance level a.

Once the presence of model errors is detected, one needs

to identify the erroneous measurement(s) that causes such

model errors. The matrix Ct is set to test all possibilities of

the presence of errors in the observations. For local testing,

two cases are of particular interest:

1. The case of a single outlier in one code or phase

observation, i.e. q = 1. In this case, the Ct matrix

reduces to a column vector ct, brt becomes a scalar,

and the test statistic can be computed as follows

(Baarda 1968):

wt ¼
brt

r br t

ð23Þ

where r br t

is the standard deviation of brt. The null

hypothesis, denoted as Ho, is set to present the case that

no outliers are present in the data. Ho is rejected if

jwtj �Na
2
ð0; 1Þ ð24Þ

2. The case of multiple outliers, or complete loss of lock

either in phase or in code observations is seen, i.e.

when 1 \ q B df. In this case, Ct is a matrix with a

number of columns equals q.

For the cases mentioned above, where different alter-

native hypotheses are examined, we have mixed size cases

(i.e. q = 1 for a single outlier and q [ 1 for the case of

multiple outliers). Therefore, a unified criterion needs to be

set to compare the statistical testing outcomes of different

alternative hypotheses in order to identify possible obser-

vations that may contain the errors. This can be performed

by comparing the p values under the v2 distribution for

different alternative hypotheses (where p value is the

probability of obtaining a test statistic at least as extreme as

the observed one). All alternative hypotheses are ranked in

a descending order according to their p values, where the

alternative hypothesis that has the smallest p value is

considered as the most likely alternative hypothesis. For

the case of q = 1, the p value of wt
2 is computed as it has a

v2 distribution.

In identification testing, one has to consider the corre-

lations among observation errors as this may cause iden-

tification of wrong observations that do not include the

outliers and missing the faulty ones if they have significant

correlation. For observations i and j, and ignoring the time

index, the correlation coefficient between their corre-

sponding errors is denoted as n br i; br j

reads:

n br i; br j

¼
cT

i Q�1
Y QbeQ�1

Y cjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT

i Q�1
Y QbeQ�1

Y ci

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT

j Q�1
Y QbeQ�1

Y cj

q ð25Þ

where ci and cj are zero-column vectors except for the

elements corresponding to the observations i and j which

equal 1. If single-frequency observations are used in the

given model, the correlation between phase and code

observation errors is almost -1 and identification is not

possible. For multi-frequency data, the correlation between

phase errors is nearly -1, whereas that between code

observation errors is almost zero. This means that phase

errors will be hard to identify due to their high correlation,

whereas error identification will be possible for code errors

since there is no correlation between them. In this study,

we will restrict attention to detection and identification of

outliers in code observations in the local-testing case and

detection of cycle slips in phase observations. To detect

cycle slips, more than one epoch of data have to be

examined. This is referred to as Global testing, where the

global overall model (GOM) statistic TGOM reads:

TGOM ¼
Xt

i¼t�dt

brT
i Q�1br i

bri ð26Þ

where dt denotes to the time interval considered in

computation of TGOM (e.g. two or three epochs). The

TGOM statistic has also a chi-squared distribution under Ho

and cycle slips are suspected in phase observations if this

statistic exceeds a critical value of chi-squared using the

chosen significance level and degrees of freedom that are

computed from the accumulated observations. Once a

cycle slip is detected, the validation procedure is re-

initialized.
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Testing the single-receiver single-satellite validation

of GNSS measurements

The previous sections summarize the single-receiver sin-

gle-satellite approach for validation of GNSS data. This

approach has the following advantages:

• No satellite positions need to be known beforehand, and

thus, no complete navigation messages need to be read

and used. In this case, observation weighting can be

performed using, for instance, the signal-to-noise ratio.

• Measurements from systems with a limited number of

operational satellites, such as Galileo and QZSS, can be

screened without the need for having a complete

positioning solution.

• There is no need for the determination of inter-system

biases when using data from different constellations.

In addition, the approach has the following capabilities:

• It can detect multi-faults at any one epoch for each

satellite.

• Fault detection can be performed for a single- or multi-

frequency observations.

• Due to the method flexibility, it can be applied to any

receiver type and make, and under static or kinematic

modes.

In this section, practical testing of the proposed method

is carried out. Description of the test data and assumptions

are first given. Next, evaluation of the performance of the

method is discussed, first for detection and identification of

outliers in code observations in a local testing, and next for

detection of cycle slips in phase observations.

Test description

The single-receiver single-satellite method is tested using

data that span 3 days as a representative sample. The

observations were collected in a static mode at a continu-

ously operating reference station (CORS) at Curtin Uni-

versity, Western Australia, during the period 15/3/2012 to

17/3/2012 with 30 s sampling interval. Observations from

GPS, GLONASS and Galileo were collected using a geo-

detic-grade multi-frequency multi-GNSS antenna

(TRM59800.00) and receiver (Septentrio POLARX4).

Tracked signals in the test included L1, L2, and L5 code

and phase observations for GPS, L1 and L2 for GLONASS,

and E1, E5a, and E5b for Galileo. Over each day, 32 GPS

satellites, 24 GLONASS satellites, and four Galileo satel-

lites (including GIOVE A and B, and IOV PRN 11 and 12)

were observed.

An indication on the correctness of the model and

assumed observation stochastic information used can be

obtained by examining whether the estimated w test

statistic of the observed signals has a standard normal

distribution as an incorrect model or inappropriate sto-

chastic assumptions would lead to a wrong distribution.

This can be performed by inspection of the probability

plots of the w test statistic. In this plot, the data are ordered

and plotted against the corresponding percentage points

from a standard normal distribution in such a way that the

points should form an approximate straight line. Departures

from this straight line indicate departures from normality.

An example of tested normal probability plots is given in

Fig. 1 for p1 code observations of GLONASS satellite PRN

18 collected on 15/3/2012. In our tests, the observations

were weighted using an elevation-angle-dependent model

in the form ½1þ 10� eð�Eo=10oÞ� (Euler and Goad 1991;

Teunissen and de Bakker 2012); where Eo is the observed

elevation angle. The standard deviations used for the un-

differenced observations were selected according to the

observation type (phase/code), frequency, and constellation

and to satisfy the condition that the w test statistic of each

observed signal has a standard normal distribution. These

standard deviations along zenith direction agreed in general

with the values given in the literature. For dI, b�/j
and b�pj

,

the used spectral densities were 3, 2, and 50 mm2/s, with

correlation times 1,500, 300, and 300 s, respectively.

Evaluation of the method performance in detection

and identification of outliers in code observations

To evaluate the performance of the proposed algorithm, the

following approach was carried out. First, several artificial

errors were inserted at known epochs in the test data. Next,

the proposed single-receiver single-satellite validation

approach was performed. A check was carried out to

Fig. 1 Normal probability plot of w test statistic for p1 observations

of GLONASS
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examine whether the algorithm was able to detect the

presence of the inserted errors at their known epochs. The

inserted errors in code observations ranged between 0.6

and 5 m. These ranges were selected such that the mini-

mum values equal the MDB, which is the minimum error

that can be detected for each observation type with the

chosen probabilities of false alarm and miss-detection,

taken as 0.001 and 0.2, respectively. The MDBs are com-

puted from the covariance matrix of the observations (see

Teunissen 1998). The artificial errors were created using

the MATLAB function ‘‘rand’’ such that they have random

values that were bounded between 0.6 and 5 m. The

inserted errors had almost a standard uniform distribution.

Extra errors were added close to the lower bound to further

test the method at this critical value. An example of the

distribution of the inserted errors in p1 code errors for

GLONASS satellites on 15/3/2012 is given in Fig. 2.

In total, 5,599 artificial errors were inserted in the code

data. Table 1 gives the number of errors inserted in each

system for each of the three test days followed by the

percentage of successful detection of the inserted errors

referenced to their known information. The errors were

inserted for all observed 32 GPS satellites, 24 GLONASS

satellites, and four Galileo satellites throughout the 24 h of

data for each of the test days and for all available fre-

quencies. In general, the number of inserted errors was

proportional to the number of satellites observed in each

system. The specific epochs and observations where these

errors were inserted as well as their values were recorded.

The results of Table 1 are a function of the test significance

level (a). Using a significance level for w test statistics

equals 0.001, the significance level for the local overall

model in the detection test was computed using Baarda’s B

method (Baarda 1968), which assumes same probability for

type II error (failure to reject a false null hypothesis) in

both the detection and identification tests. In this study, this

probability is taken as 0.2. The corresponding a for dual-

frequency observations was computed as 0.0052, which is

the case for GLONASS satellites and most GPS satellites.

For triple-frequency observations, i.e. for Galileo satellites

and GPS PRN 1 and 25, a was computed as 0.0123.

The success of detection summarized in Table 1 was

separately given for errors within three bands (0.6–2,

2–3.5 m, and the last 3.5–5 m). Detection results showed

that the algorithm success rate increases as the error size

increases and it was best for Galileo, followed by GPS and

last GLONASS. For GPS, over the three test days, the

successful detection of code outliers was on average 77.4,

92.63, and 96.6 % for the error ranges 0.6–2, 2–3.5, and

3.5–5 m, respectively. The detection of code outliers for

GLONASS was less than that of GPS. These percentages

were significantly better with Galileo measurements, which

on average were 94.3, 98.0, and 99.63 %. This can be

attributed to the better signal quality of GPS compared with

GLONASS and the enhanced quality of Galileo measure-

ments as well as the more number of observations it has,

which helps strengthening the application of the model.

For the epochs where detection was successful, a check

was performed to examine whether the observations of the

artificial errors can be correctly identified. Table 2 shows

the overall percentage for identification of errors for the

same data and testing period that was discussed in the

analysis of results of error detection. Successful error

identification was assessed for each of the three error bands

0.6–2, 2–3.5, and 3.5–5 m. Results showed that the success

rates of identifying outliers for the three error bands (for

the epochs where errors were detected) were close and

increased as error size increased. For GPS and Galileo, the

method was successful in identifying code outliers ranged

from approximately 90 % up to 99.5 %. The identification

of outliers were almost 4–10 % less for GLONASS. The

variability of the success rate can be attributed to different

observation precisions.

The advantage of the method is demonstrated in another

test by applying it in a single-point-positioning (SPP) mode

using measurements only from the current Galileo con-

stellation, which includes four IOV satellites, PRN 11, 12,

19, and 20. The used data spanned approximately 3 h on 2/

7/2013 (between 1:30 and 4:26 where the four satellites

were simultaneously visible), collected at a CORS in

Curtin University in a static mode with a sampling interval

of 30 s using a Trimble Net R9 receiver. The data were

screened epoch-by-epoch for detection and identification of

code outliers. Such capability is not possible by current

statistical validation methods, as they require redundancy

of satellite measurements, which was not available in this

test as only four satellites were used. However, with the
Fig. 2 Distribution of inserted errors for GLONASS p1 code

measurements
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single-receiver single-satellite method, data validation was

possible owing to the fact that each satellite data was

screened independently. A similar possible scenario can be

experienced when working with other constellations in

what is called ‘‘urban canyon’’. During the SPP processing

of Galileo measurements, only one code outlier was

detected and removed. The coordinate differences along

the East, North, and Up directions between the epoch-by-

epoch SPP least-squares solution and the known station

coordinates were computed and found to be bounded

within ±5 m, indicating that no outliers were left in the

data. Figures 3 and 4 show two examples of the time series

of the ionosphere-free combination:

mpi
¼ pi � /i þ 2k2

i

/j � /i

k2
j � k2

i

ð27Þ

which mainly gives multipath and code noise for the

Galileo satellites 11 and 12, where i refers to the frequency

E1 and j refers to E5a frequency. As the figures show, no

undetected outliers can be seen.

Evaluation of the method performance in detection

of cycle slips

To evaluate the detection of cycle slips, a similar approach

was carried out, where 970 artificial cycle slips were

inserted in the phase data of the three systems GPS,

GLONASS, and Galileo. The cycle slips were inserted for

all available frequencies throughout the 24 h of data for the

three test days as given in Table 3. Global testing was

performed to examine whether the algorithm was able to

detect the presence of the inserted cycle slips. The inserted

slips were random but ranged from one cycle to six cycles

with almost a standard uniform distribution. Table 3

summarizes the numbers of inserted cycle slips and the

percentage of their successful detection within two bands

(1–3 cycles and 4–6 cycles). The table shows consistency

Table 1 Percentage of epochs with detected code observation outliers (for all frequencies)

System (m) GPS GLONASS Galileo

No. of err 0.6–2 2–3.5 3.5–5 No. of err 0.6–2 2–3.5 3.5–5 No. of err 0.6–2 2–3.5 3.5–5

15/3/12 922 75.6 92.5 98.7 795 72.3 83.9 92.5 148 94.3 98.8 98.9

16/3/12 895 76.3 93.1 95.4 798 76.0 86.2 93.5 158 91.7 95.2 100.0

17/3/12 920 80.2 92.3 95.7 810 78.0 90.5 95.2 153 97.0 100.0 100.0

Table 2 Percentage of identification of code outliers (for all frequencies)

System (m) GPS GLONASS Galileo

0.6–2 2–3.5 3.5–5 0.6–2 2–3.5 3.5–5 0.6–2 2–3.5 3.5–5

15/3/12 88.8 93.2 96.4 83.2 84.3 89.6 98.7 99.1 99.5

16/3/12 89.5 93.8 97.3 85.1 86.1 88.4 94.0 95.1 99.2

17/3/12 90.0 93.4 97.0 86.5 87.0 90.8 97.8 98.8 99.5

Fig. 3 Iono-free combination for PRN 11 Fig. 4 Iono-free combination for PRN 12
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in detection of cycle slips and that successful detection for

GPS was on average approximately 95 and 98 %, respec-

tively, for the two test bands. For Galileo, the latter had

improved to 100 %. For GLONASS, the success rates were

slightly less than GPS and Galileo for the reasons discussed

earlier.

Another test for evaluation of the performance of the

method in cycle slips detection was executed by processing

GPS data of 15/3/12, which contain the above slips using

Bernese GNSS software version 5 in a precise point-posi-

tioning (PPP) mode (see Dach et al. 2007 for the methods

used in Bernese for detection of cycle slips). The number

of cycle slips reported by Bernese software was compared

with the inserted slips and with the slips detected by the

single-receiver single-satellite method. Out of the 144

cycle slips in the data, Bernse software flagged 141 slips.

Comparing this with the results of the proposed method,

which had detected 140 cycle slips, shows that the per-

formance of the single-receiver single-satellite validation

method was comparable to that of Bernse software for the

test at hand.

Summary

A method that can be applied for real-time or post-mission

quality control of GNSS measurements is presented using a

single-receiver single-satellite DIA approach. The advan-

tages of this approach include: it is applicable to any GNSS

with any arbitrary number of frequencies, no need for the

navigation message, the approach is able to detect faulty

measurements for systems with a limited number of oper-

ational satellites, and there is no need for the determination

of inter-system biases when using data from different

constellations.

The capability of the proposed algorithm was evalu-

ated for detection and identification of outliers in code

observations and detection of cycle slips in phase

observations of GPS, GLONASS, and Galileo. Artificial

errors were inserted in a data set that spans 3 days for all

frequencies. The method was successful in detecting

from 77.4 to 96.6 % on average for the errors ranging

between 0.6 and 5 m in GPS observations. For GLON-

ASS, the overall performance was slightly less than

GPS, whereas for Galileo measurements, the average

rates of successful detection ranged between 94.3 and

99.63 %. This can be attributed to differences in signal

quality and number of observations, which helps

strengthening the application of the model. Evaluation of

the method performance in correct identification of code

outliers showed that the method was successful in

identifying 89.4–96.9 % of GPS code outliers and with

slightly lower performance for GLONASS. For Galileo,

the rates of successful identification of outliers were

much better with average values between 96.8 and

99.4 %. Successful detection of artificial cycle slips in

phase data was between 95 and 99 % for GPS and

Galileo and was a little less for GLONASS.

The advantage of the method is demonstrated in another

test using it in a single-point-positioning where measure-

ments from only four IOV Galileo satellites were pro-

cessed. Unlike other statistical testing methods, satellite

redundancy was not needed as data of each satellite were

screened independently. In another test, comparison

between the number of cycle slip detected using the pro-

posed method with that of Bernese software during PPP

processing shows that they have a comparable

performance.
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