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Abstract Precise point positioning (PPP) integer ambi-

guity resolution with a single receiver can be achieved

using advanced satellite augmentation corrections. Several

PPP integer ambiguity resolution methods have been

developed, which include the decoupled clock model, the

single-difference between-satellites model, and the integer

phase clock model. Although similar positioning perfor-

mances have been demonstrated, very few efforts have

been made to explore the relationship between those

methods. Our aim is to compare the three PPP integer

ambiguity resolution methods for their equivalence. First,

several assumptions made in previous publications are

clarified. A comprehensive comparison is then conducted

using three criteria: the integer property recovery, the

system redundancy, and the necessary corrections through

which the equivalence of these three PPP integer ambiguity

resolution methods in the user solution is obtained.

Keywords PPP integer ambiguity resolution �
Method equivalence � Single-difference between-

satellites method � Decoupled clock model � Integer

phase clock model

Introduction

Precise point positioning (PPP) using ionosphere-free code

and phase observations (Zumberge et al. 1997) is able to

provide centimeter-level positioning accuracy with a single

receiver. However, the ambiguity parameter estimated in

the conventional PPP model cannot be resolved to the

integer value. In fact, the estimated ambiguity parameter is

a combination of the integer ambiguity, the receiver biases,

and the satellite biases. This means the integer property of

the ambiguity parameter is lost. As a result, fixing the

integer ambiguity using the conventional PPP model is not

feasible.

Following the investigations on integer ambiguity

pseudo-fixing (Gao and Shen 2002) and integer ambiguity

resolution with simulated data sets (Wang and Gao 2006,

2007), several PPP integer ambiguity resolution methods

have been developed and implemented with real data sets

in recent years. Ge et al. (2008) proposed a single-differ-

ence between-satellites method characterized by eliminat-

ing the receiver biases through a single-differencing. The

integer property is recovered by sequentially correcting the

satellite wide-lane and narrow-lane fractional-cycle biases

(FCBs). Collins (2008) developed a method known as the

decoupled clock model and proved that the code biases also

contributed to the fractional part of phase ambiguities in

PPP. By applying the satellite decoupled clock corrections

and estimating the receiver decoupled clock parameters,

both the undifferenced integer wide-lane and N1 ambigui-

ties can be directly estimated. Laurichesse et al. (2008) also

developed an integer phase clock model featuring different

clock terms for code and phase observations. This model

utilizes the wide-lane satellite bias (WSB) corrections to

resolve the integer wide-lane ambiguity, whereas the

integer N1 ambiguity is directly estimated.
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Although similar positioning performances have been

demonstrated with these three methods (Collins et al. 2010;

Ge et al. 2008; Geng et al. 2009; Laurichesse et al. 2008),

very few efforts have been made to explore the relationship

between these methods. Geng et al. (2010) compared the

single-difference between-satellites method and the integer

phase clock model with a focus on how the receiver and

satellite biases are isolated from the phase ambiguity in

PPP. But, this contribution is based on specific assump-

tions. For example, the satellite code biases can be absor-

bed by the code residual in the network solution; the code

observations are not employed in the user solution so that

the receiver code biases are ignored. As a result, the effects

of satellite and receiver code biases on phase ambiguities in

PPP are not taken into consideration. In other words, the

method equivalence obtained by Geng et al. (2010) is

based on those assumptions about the satellite and receiver

code biases.

We aim to prove the equivalence of the three PPP

integer ambiguity resolution methods without any

assumption made in the previous publications. First, these

three methods will be explained using the same notation.

Then, a comprehensive comparison is carried out in three

criteria: the integer property recovery, the system redun-

dancy, and the necessary corrections through which the

method equivalence in the user solution can be obtained.

PPP integer ambiguity resolution methods

Three PPP integer ambiguity resolution methods have been

described in literatures using different notations and

assumptions. This makes it difficult for readers to under-

stand these methods and to make a theoretical comparison.

Therefore, these methods are derived again in this section

using a consistent notation system. In the following, we

will first present the GPS code and carrier phase observa-

tion equations and several linear functions of these obser-

vations and then describe different PPP models.

GPS observations and linear functions

For the purpose of this study, the GPS code and phase

observations at frequency Li are written as:

Pi ¼ qþ cðdtr � dts Þ þ T þ f 2
1

f 2
i

I1 þ br
Pi � bs

Pi
þ ePi

ð1Þ

Li ¼ qþ cðdtr � dtsÞ þ T � f 2
1

f 2
i

I1 � kiNi þ br
Li
� bs

Li
þ eLi

ð2Þ

where the frequency index i equals 1 and 2. The carrier

frequencies are f1 ¼ 154 f0, f2 ¼ 120f0, with

f0 ¼ 10:23 MHz. The symbol Pi denotes the raw code

observation, Li is the raw phase observation, q is the

geometric distance between receiver and satellite, c is the

speed of light in vacuum, dtr is the receiver clock error, dts

is the satellite clock error, T is the tropospheric delay, I1 is

the first-order ionospheric delay on frequency L1, ki is the

wavelength of frequency Li, Ni is the integer ambiguity, br
Pi

is the receiver code hardware delay (bias), br
Li

is the

receiver phase hardware delay (bias), bs
Pi

is the satellite

code hardware delay (bias), bs
Li

is the satellite phase

hardware delay (bias), ePi
contains code multipath and code

noise, and eLi
contains phase multipath and phase noise of

frequency Li. The b-terms are often referred to as biases

instead of the more narrow designation of hardware delays.

The general linear functions of the observations are

PLC¼aP1þbP2 and LLC¼aL1þbL2, where a and b are

combination coefficients. Using aIF ¼ f 2
1 =ðf 2

1 � f 2
2 Þ and

bIF ¼ �f 2
2 =ðf 2

1 � f 2
2 Þ, we obtain the ionosphere-free (IF)

code function PIF and phase function LIF,

PIF ¼ aIFP1 þ bIFP2

¼ qþ ðcdtr þ br
PIF
Þ � ðcdts þ bs

PIF
Þ þ T þ ePIF

ð3Þ

LIF ¼ aIFL1 þ bIFL2

¼ qþ ðcdtr þ br
LIF
Þ � ðcdts þ bs

LIF
Þ þ T � kIFNIF þ eLIF

ð4Þ
cdtr

P
IF
¼ cdtr þ br

P
IF

ð5Þ

cdts
P

IF
¼ cdts þ bs

P
IF

ð6Þ

cdtr
LIF
¼ cdtr þ br

LIF
ð7Þ

cdts
LIF
¼ cdts þ bs

LIF
ð8Þ

br
PIF
¼aIFbr

P1
þ bIFbr

P2
ð9Þ

bs
PIF
¼aIFbs

P1
þ bIFbs

P2
ð10Þ

br
LIF
¼aIFbr

L1
þ bIFbr

L2
ð11Þ

bs
LIF
¼aIFbs

L1
þ bIFbs

L2
ð12Þ

kIF ¼
2cf0

f 2
1 � f 2

2

ð13Þ

NIF ¼ 17N1 þ 60NWL ð14Þ

Regarding the terms defined in (5) to (8), the following

terminology is found in the literature: cdtr
P

IF
(receiver code

clock error), cdts
P

IF
(satellite code clock error), cdtr

LIF

(receiver phase clock error), and cdts
LIF

(satellite phase

clock error). These ‘‘clock’’ terms are a function of the

actual receiver clock error dtr, satellite clock error dts,

receiver code and phase biases br
PIF
; br

LIF
, and satellite code

and phase biases bs
PIF
; bs

LIF
. The casual reader might mis-

takenly think that there are two receiver clock errors and
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two satellite clock errors. This is not the case since the

signals at the receiver and at the satellite are generated by a

single receiver clock and a single satellite clock, respec-

tively. Equations (13) and (14) follow straightforwardly

from the definition of PIF and LIF. The ionosphere-free

wavelength is kIF ¼ 6:3 mm, and NIF is called the iono-

sphere-free ambiguity. The wide-lane ambiguity NWL

equals N1 � N2.

The wide-lane (WL) phase combination LWL with

coefficients aWL ¼ f1=ðf1 � f2Þ and bWL ¼ �f2=ðf1 � f2Þ is

LWL ¼ aWLL1 þ bWLL2

¼ qþ cðdtr � dtsÞ þ T þ f 2
1

f 2
2

I1 � kWLNWL

þ ðaWLbr
L1
þ bWLbr

L2
Þ � ðaWLbs

L1
þ bWLbs

L2
Þ þ eLWL

ð15Þ

Similarly, the narrow-lane (NL) code combination PNL is

PNL ¼ aNLP1 þ bNLP2

¼ qþ cðdtr � dtsÞ þ T þ f 2
1

f 2
2

I1 þ ðaNLbr
P1
þ bNLbr

P2
Þ

� ðaNLbs
P1
þ bNLbs

P2
Þ þ ePNL

ð16Þ

with aNL ¼ f1=ðf1 þ f2Þ and bNL ¼ f2=ðf1 þ f2Þ.
Two additional ionosphere-free functions are needed.

The first function is the difference in the carrier phase

wide-lane function and the pseudo-range narrow-lane

functions, which was first proposed by Hatch (1982). This

linear combination was also mentioned in Melbourne

(1985) and Wübbena (1985) and called the Melbourne–

Wübbena (MW) function in most literatures. For better

understanding, we use the term ‘‘MW function’’ in this

paper. The MW function is

AMW ¼ LWL � PNL ¼ �kWLNWL þ ðbr
A

MW
� bs

AMW
Þ þ eAMW

ð17Þ
br

AMW
¼ ðaWLbr

L1
þ bWLbr

L2
Þ � ðaNLbr

P1
þ bNLbr

P2
Þ ð18Þ

bs
AMW
¼ ðaWLbs

L1
þ bWLbs

L2
Þ þ ðaNLbs

P1
þ bNLbs

P2
Þ ð19Þ

The second function is the difference of LIF and PIF,

AIF ¼ �kIFDNIF þ ðbr
LIF
� br

PIF
Þ � ðbs

LIF
� bs

PIF
Þ þ eAIF

ð20Þ

The wide-lane receiver bias (WRB) br
AMW

of (18) is a

function of the receiver biases, whereas the wide-lane

satellite bias bs
AMW

of (19) refers to the satellite biases.

The above expressions represent well-known functions

of the basic code and phase equations. No assumptions

about the receiver and satellite code and phase biases have

been made in these expressions.

Traditional PPP model

The traditional PPP model of Zumberge et al. (1997) uses

(3) and (4). For this discussion, we use (5) and (6) in (3)

and (4), resulting in the model

PIF ¼ qþ cdtr
PIF
� cdts

PIF
þ T þ ePIF

ð21Þ

LIF ¼ qþ cdtr
PIF
� cdts

PIF
þ T � kIFNIF þ ðbr

LIF
� br

PIF
Þ

� ðbs
LIF
� bs

PIF
Þ þ eLIF

ð22Þ

It can be seen that the ionosphere-free code and phase

functions contain the actual clock errors and the code and

phase biases. The satellite code clock cdts
P

IF
is available

from the International GNSS Service (IGS) by means of

the precise clock products (Kouba 2009; Kouba and Hér-

oux 2001; Dow et al. 2009), and the receiver code clock

cdtr
PIF

is to be estimated.

If the satellite code clock cdts
P

IF
is applied to the phase

observation (22) and the receiver code clock cdtr
PIF

is

estimated together with the troposphere and ambiguity

parameters, then the estimated ambiguity parameter

�kIFNIF þ ðbr
LIF
� br

PIF
Þ � ðbs

LIF
� bs

PIF
Þ is a linear function

of the integer ambiguity and the code and phase biases of

the receiver and the satellite. Therefore, the estimated

ambiguity parameter will be real-valued. As a result,

resolving the integer ambiguity using (21) and (22) is not

feasible.

From the user point of view, a tracking network is

required that provides the satellite code clock corrections

cdts
P

IF
. Considering one epoch, suppose the user observes n

satellites. The number of observations is 2n in (21) and

(22). The number of unknown parameters is

3 ? 1 ? 1 ? n, which includes three coordinates, one

receiver code clock cdtr
PIF

, one troposphere delay, and n

ionosphere-free ambiguities �kIFNIF þ ðbr
LIF
� br

PIF
Þ�

ðbs
LIF
� bs

PIF
Þ. The degree of freedom is 2n - (3 ? 1 ?

1 ? n) = n - 5, which means a minimum of five satellites

are required using the traditional PPP model.

Decoupled clock model

Unlike the traditional PPP model which applies the satellite

code clock cdts
P

IF
for both the code and phase observations,

one method featuring separate satellite code clock and

satellite phase clock has been proposed by Collins (2008).

As the satellite clocks are decoupled for code and phase

observations, this model is called the decoupled clock

model.
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By substituting (5) and (6) into (3), and (7), (8), and (14)

into (4), the ionosphere-free functions are transformed to

PIF ¼ qþ ðcdtr
PIF
� cdts

PIF
Þ þ T þ ePIF

ð23Þ

LIF ¼ qþ ðcdtr
LIF
� cdts

LIF
Þ þ T � kIFð17N1 þ 60NWLÞ

þ eLIF

ð24Þ

The decoupled clock model consists of three expressions

(23), (24), and

AMW ¼ ðbr
A

MW
� bs

AMW
Þ � kWLNWL þ eAMW

ð25Þ

In this model the terms (cdts
PIF
; cdts

LIF
; bs

AMW
) and

(cdtr
PIF
; cdtr

LIF
; br

AMW
) are called the satellite and receiver

decoupled clock parameters, respectively.

Network solution

If all parameters, i.e., the coordinates, the decoupled

clocks, the troposphere delay, and the integer ambiguities,

were to be estimated using the three model equations, the

number of unknown parameters would be greater than the

number of observations, resulting in a singular solution.

The solution to the singularity problem is to fix a minimum

number of parameters. This technique is called in adjust-

ments imposing minimal constraints or defining the datum.

First, we choose a reference receiver and set its cdtr
PIF

and

cdtr
LIF

, and br
AMW

parameters to zero. This defines the clock

datum for the network. Second, we set all N1 and NWL

ambiguities of the observed satellites at the reference

receiver in (24) and (25) to arbitrary integer values. This

defines the ambiguity datum for the reference receiver.

Third, we add a non-reference receiver in the network and

choose a reference satellite for this receiver. Two ambigu-

ities, N1 and NWL in (24) and (25), of the reference satellite

are set to arbitrary integer values. In this case, the other

ambiguities for this non-reference receiver are estimated

with respect to the N1 and NWL ambiguities of the chosen

reference satellite. This defines the ambiguity datum for the

chosen non-reference receiver. Forth, we repeat the third

step for all other non-reference receivers in the network. It

should be noted that the reference satellite chosen for the

non-reference receiver in the third and forth steps could be

different. In other words, each receiver has its own ambi-

guity datum, and there is no relationship between the

ambiguity datum for each receiver in the network.

By implementing the above procedure for defining the

clock datum and the ambiguity datum in the network, we

can resolve the datum defect implied in (23) to (25).

Suppose there are m receivers observing n common satel-

lites. There are 3n observations per receiver and 3mn

observations for the network. For the reference receiver,

the number of unknown parameters is 3 ? 1 ? 0 ? 3n,

which includes three coordinates, one troposphere delay, 0

receiver decoupled clocks, and 3n satellite decoupled

clocks. All of the 2n ambiguities of n observed satellites

are fixed to define the ambiguity datum at the reference

receiver. For the remaining m - 1 receivers that are not

used to define the clock datum, the number of unknown

parameters is 3(m - 1) ? (m - 1) ? 3(m - 1) ? 3n

? 2(n - 1)(m - 1), which includes 3(m - 1) coordinates,

(m - 1) troposphere delays, 3(m - 1) receiver decoupled

clocks, 3n satellite decoupled clocks, and 2(n - 1)(m - 1)

ambiguities. Note that we estimate 2(n - 1)(m - 1)

ambiguities for n satellites because 2(m - 1) ambiguities

are fixed to define the ambiguity datum at the m - 1

receivers. Since the n satellites are observed by all

receivers, only 3n satellite decoupled clocks should be

estimated in the network solution. Therefore, for a network

consisting of one reference receiver and m - 1 non-refer-

ence receivers, the number of unknown parameters

is 3m ? m ? 3(m - 1) ? 3n ? 2(n - 1)(m - 1). For

example, if m = 4, the number of observations is

3 9 4 9 n = 12n and the number of unknown parameters

is 12 ? 4 ? 9 ? 3n ? 6(n - 1) = 9n ? 19. The corre-

sponding degree of freedom is 3n - 19. This means that in

order to resolve the datum defect issue, at least seven

common satellites are required in the network solution.

When the number of receivers increases, the minimal

number of common satellites decreases. More receivers

and more common satellites will further increase the

redundancy in the network solution.

User solution

From the user point of view, a tracking network is required

that provides the satellite decoupled clocks

(cdts
PIF
; cdts

LIF
; bs

AMW
) resulting from the network solution.

The clock datum defined by the reference receiver can be

retained, which means no additional clock datum is required

in the user solution. However, the ambiguity datum must be

defined by choosing one reference satellite and setting the N1

and NWL ambiguities of the reference satellite to arbitrary

integer values. It should be noted that the reference satellite

in the user solution can differ from those chosen in the

network solution. In fact, each receiver should define its own

ambiguity datum. The integer cycle ambiguity datum dif-

ference will be absorbed by the receiver decoupled clock

parameters as pointed out in Shi and Gao (2010) and as can

also be seen from (24) and (25). From this perspective, the

estimated receiver decoupled clocks become relative clocks

with respect to the ambiguity datum.

By applying the satellite decoupled clocks

(cdts
PIF
; cdts

LIF
; bs

AMW
) and setting the ambiguity datum in
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(23) to (25), the unknown parameters become estimable.

More specifically, the integer wide-lane and N1 ambiguities

can be directly estimated in the function model.

Method summary

In summary, the satellite decoupled clocks

(cdts
PIF
; cdts

LIF
; bs

AMW
) are required to remove the satellite

clock and bias errors in (23) to (25). By defining the

ambiguity datum and estimating the receiver decoupled

clocks (cdtr
PIF
; cdtr

LIF
; br

AMW
) containing the receiver clock

and bias errors, the integer wide-lane and N1 ambiguities

can be directly estimated in the user solution.

Suppose n satellites are observed. The number of obser-

vations is 3n in (23) to (25). The ambiguity datum is defined

by fixing the wide-lane and N1 ambiguities of the reference

satellite to arbitrary integer values. The number of unknown

parameters is 3 ? 3 ? 1 ? 2(n - 1), which includes three

coordinates, three receiver decoupled clocks, one tropo-

sphere delay, and 2(n - 1) wide-lane and N1 ambiguities.

The degree of freedom is 3n - (3 ? 3 ? 1 ? 2(n - 1)) =

n - 5, which means a minimum of five satellites are required

to apply the decoupled clock model.

Single-difference between-satellites method

The function model consists of the ionosphere-free

functions (21) and (22), plus the MW function (17). A

sequential solution is adopted. The wide-lane ambiguity

is fixed first because its long wavelength of 86.9 cm

makes resolution feasible for a very short period of

observations. The fixed wide-lane ambiguities are then

treated as known integer values in the subsequent N1

ambiguity resolution.

Network solution

Both the integer wide-lane and N1 ambiguities can be

obtained by rounding the real-valued wide-lane and N1

ambiguities in the network solution. The corresponding

products are the satellite wide-lane and N1 FCB correc-

tions. Both corrections are computed as the differences of

the real-valued and the integer ambiguities.

Wide-lane ambiguity fixing The development starts with

the MW function (17) and applies it to the between-satellite

single-difference,

DA
j;i
MW ¼ A

j
MW � Ai

MW ¼ �kWLDN
j;i
WL � Db

s j;i
AMW
þ eDA

j;i
MW

ð26Þ

where the double superscripts indicate the differencing

operation. The differencing has canceled the receiver wide-

lane biases br
AMW

seen in (18). The satellite wide-lane biases

have been found to be quite stable over several consecutive

days (Wang and Gao 2007; Ge et al. 2008). As a result,

epoch-averaging can be applied to determine the satellite

wide-lane FCB correction. A certain period of time is

required to allow the single-differenced MW function (26)

to reach convergence. Then, the integer wide-lane

ambiguity can be obtained by rounding the real-valued

wide-lane ambiguity to its nearest integer value as

DN
j;i

WL ¼ �
DA

j;i
MW

kWL

* +
ð27Þ

where �h i denotes rounding of the real value to the nearest

integer value. The satellite wide-lane FCB correction in

unit of meters is calculated as

Db
s j;i
AMW
¼ �DA

j;i
MW � kWLDN

j;i

WL ð28Þ

This equation is used to determine the satellite wide-lane

FCB corrections at a receiver. By averaging the satellite

wide-lane FCB corrections over the receivers in the net-

work, a correction with high precision can be obtained.

This process can be repeated for singe-difference obser-

vations of other satellite phase pairs, resulting in a unique

set of satellite wide-lane FCB corrections to be broadcast to

the users.

N1 ambiguity fixing The first step in resolving the N1

ambiguity is to apply (14) to the between-satellite single-

difference,

kIFDN
j;i
IF ¼ 17kIFDN

j;i
1 þ 60kIFDN

j;i
WL ð29Þ

where DN
j;i
IF ¼ N

j
IF � Ni

IF, Ni
IF and N

j
IF are the estimated

ionosphere-free integer ambiguities in (22). Next, we apply

(20) to single-differences, giving

DA
j;i
IF ¼ �kIFDN

j;i
IF � ðDb

s j;i
LIF
� Db

s j;i
PIF
Þ þ eDLIF

ð30Þ

and note, again, that the receiver biases have been

canceled. Substituting (29) into (30) and rearranging the

equation leads to

DA
j;i
IF þ 60kIFDN

j;i
WL ¼ �17kIFDN

j;i
1 � ðDb

s j;i
LIF
� Db

s j;i
PIF
Þ

þ eDLIF

ð31Þ

The left side is computable since DN
j;i
WL is known from

(27). Denoting the left side by DA
j;i
1 and labeling the

difference of the single-difference phase and code biases

by Db
s j;i
A1

, we obtain

DA
j;i
1 ¼ �17kIFDN

j;i
1 � Db

s j;i
A1
þ eDLIF

ð32Þ

Db
s j;i
A1
¼ Db

s j;i
LIF
� Db

s j;i
PIF

ð33Þ
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The integer single-differenced ambiguity DN
j;i
1 is

contaminated by Db
s j;i
A1

. Therefore, the determination of

this single-differenced bias term is the key to resolving the

integer single-differenced ambiguity DN
j;i
1 .

Similar to the procedure used to determine the single-dif-

ferenced satellite wide-lane FCB corrections, a certain period

of time is needed to allow the real-valued single-differenced

ambiguity (32) to reach convergence. Then, the integer

ambiguity DN
j;i
1 can be obtained by rounding as follows:

DN
j;i

1 ¼ �
DA

j;i
1

17k3

* +
; ð34Þ

and the single-differenced satellite N1 FCB corrections in

unit of meters can be calculated, using the just computed

DN
j;i

1 , as

Db
s j;i
A1
¼ �DA

j;i
1 � 17kIFDN

j;i

1 ð35Þ

Equation (35) can be used to determine the satellite N1

FCB correction Db
s j;i
A1

at a receiver. By averaging the

satellite N1 FCB corrections from multiple receivers in the

network, a precise value can be obtained. Applying this

process to other between-satellite differences, a set of the

satellite N1 FCB corrections with high precision can be

obtained and then broadcast to the users.

User solution

By applying the satellite wide-lane and N1 FCB corrections

determined in the network solution to remove the satellite

biases and a single-difference between-satellites operator

to remove the receiver biases, the integer property of the

wide-lane and N1 ambiguities in the user solution can be

recovered.

Wide-lane ambiguity fixing At the user site, a single-

difference between the same satellite pair ði; jÞ as in (26) is

also performed,

DA
j;i
MW u ¼ A

j
MW u � Ai

MW u

¼ �kWLDN
j;i
WL u � Db

s j;i
AMW
þ eA

j;i
MW u

ð36Þ

where all terms have the same definition as used in (26),

but now for the user solution. The satellite wide-lane FCB

corrections Db
s j;i
AMW

of (28) determined in the network

solution are applied to the single-differenced MW

combination, giving

DA
j;i
MW u þ Db

s j;i
AMW
¼ �kWLDN

j;i
WL u ð37Þ

It is thus clear that by applying the satellite wide-lane FCB

correction Db
s j;i
AMW

determined in the network solution, the

integer property of the single-differenced wide-lane ambi-

guity DN
j;i
WL u in the user solution can be recovered.

N1 ambiguity fixing At the user site, the single-differ-

encing between the same satellite pair ði; jÞ as in (32) is

applied as

DA
j;i
1 u ¼ �17kIFDN

j;i
1 u � Db

s j;i
A1
þ eLIF u ð38Þ

where all terms have the same meaning as used in (32), but

now for the user solution. The satellite N1 FCB corrections

Db
s j;i
A1

of (35) determined in the network solution are

applied to (38), giving

DA
j;i
1 u þ Db

s j;i
A1
¼ �17kIFDN

j;i
1 u ð39Þ

It is clear that by applying the satellite N1 FCB corrections

Db
s j;i
A1

determined in the network solution, the integer

property of the single-differenced N1 ambiguity DN
j;i
1 u can

be recovered from (39).

Method summary

In summary, the IGS satellite code clock cdts
PIF

is required to

remove the satellite clock and code bias errors in (21) and

(22). The estimated ambiguity parameter in (22) is the real-

valued ionosphere-free ambiguity. By using a single-dif-

ferencing between-satellites operator of (36) and applying

the single-differenced wide-lane FCB corrections of (28),

the integer property of the wide-lane ambiguities can be

recovered in (37). After the integer wide-lane ambiguities

are obtained, the real-valued N1 ambiguities can be com-

puted from the real-valued ionosphere-free ambiguities

using (31). By using the single-differencing between-sat-

ellites operator of (38) and applying the single-differenced

N1 FCB corrections of (35), the integer property of the N1

ambiguities can be recovered in (39). Once the single-dif-

ferenced integer wide-lane and N1 ambiguities are obtained

in (37) and (39), the single-differenced integer ionosphere-

free ambiguities can be reconstructed in (29). By setting the

single-differenced integer ionosphere-free ambiguity of the

reference satellite to arbitrary integer value, the undiffer-

enced integer ionosphere-free ambiguity can be obtained.

Suppose n satellites are observed. The number of

observations is 2n in (21) and (22). One reference satellite

is required for single-differencing of the wide-lane and N1

ambiguities. The number of unknown parameters is

3 ? 1 ? 1 ? n, which includes three coordinates, one

receiver code clock, one troposphere delay, and n iono-

sphere-free ambiguities. The degree of freedom is 2n -

(3 ? 1 ? 1 ? n) = n - 5, which means a minimum of

five satellites are required to apply the single-difference

between-satellites method.
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Integer phase clock model

The integer phase clock model proposed by Laurichesse

et al. (2008) consists of the ionosphere-free functions (21),

(22), and the MW function (17). In addition to the IGS

satellite code clock for the code observation in (21),

another satellite phase clock is required for the phase

observation in (22). As the usage of the satellite phase

clock is for the integer N1 ambiguity resolution, this

method is called the integer phase clock model.

Network solution

The wide-lane ambiguity resolution in the network solution

is achieved by rounding the MW function (17). The by-

product is the wide-lane satellite bias as the fractional part

of MW function. On the other hand, the integer N1 ambi-

guities are estimated using (22) with another by-product of

the satellite phase clock.

Wide-lane ambiguity fixing The determination of the

integer wide-lane ambiguity begins with the MW function

(17), and the integer wide-lane ambiguity is computed by

means of rounding. Similar to the clock datum definition in

the decoupled clock model, a reference receiver is chosen

and its wide-lane receiver bias br
A

MW
is set to zero. Then, the

integer part of the MW function (17) is attributed to the

integer wide-lane ambiguity as

NWL ¼ �
AMW

kWL

� �
; ð40Þ

and the fractional part is attributed to the WSB as

bs
AMW
¼ �AMW � kWLNWL ð41Þ

The computed WSB is used to calculate the other WRBs in the

network solution. Eventually, a set of WSB bs
AMW

are deter-

mined in the network solution and broadcast to the users.

N1 ambiguity fixing The ionosphere-free code and phase

observations (21) and (22) are involved in resolving the

integer N1 ambiguity. We substitute (14) into (22) in order

to replace the ionosphere-free ambiguity with N1 and NWL.

Since the wide-lane ambiguities NWL have already been

fixed, it can be moved to the left side. Moving the geo-

centric satellite distance and the tropospheric term also to

the left results in the rearrangement of (22) as

LIF � 60kIFNWL � qþ T ¼ cdtr
LIF
� cdts

LIF
� 17kIFN1 þ eLIF

ð42Þ

Calling the left side QIF, we obtain

QIF ¼ ðcdtr
LIF
� cdts

LIF
Þ � 17kIFN1 ð43Þ

where QIF can be calculated since all terms on the left side

of (42) are known.

The determination of satellite phase clocks cdts
LIF

in (43)

can be explained as follows. First, we use the reference

receiver chosen in ‘‘Wide-lane ambiguity fixing’’ section

and set its cdtr
LIF

to zero. Second, the ambiguity datum at

the reference receiver is defined by setting all N1 ambi-

guities of the observed satellites to arbitrary integer values.

Note that since the wide-lane ambiguities have already

been fixed, it is not necessary to fix the wide-lane ambi-

guities as the ambiguity datum. Third, initial estimates of

the satellite integer phase clocks cdts
LIF

are derived as the

fractional parts of �QIF � 17kIFN1 in (43). Only the

satellite phase clocks for observed satellites are determined

in this step. Forth, a new receiver is added. With the initial

estimates of satellite phase clocks cdts
LIF

obtained in the

third step, the difference QIF þ cdts
LIF

can be calculated.

Applying rounding as done for other methods, the integer

part is attributed to the N1 ambiguity and the fractional part

is the receiver phase clock cdtr
LIF

. Moreover, the satellite

phase clocks cdts
LIF

for those satellites which are not

observed in the third step can also be obtained once the

integer N1 ambiguity and the receiver phase clock cdtr
LIF

are

known. The newly calculated satellite phase clocks cdts
LIF

are then added to those obtained in the third step. Fifth,

another receiver is added, and the fourth step is repeated

until a complete set of satellite phase clocks cdts
LIF

are

obtained.

Following the above procedure, the integer N1 ambi-

guities can be obtained. In addition, a set of satellite phase

clocks cdts
LIF

are determined in the network solution and

broadcast to the users.

User solution

The required corrections in the user solution are the wide-

lane satellite bias correction, the IGS satellite code clock,

and the satellite phase clock. First, by applying the wide-

lane satellite bias correction and the satellite-averaged

wide-lane receiver bias correction, the wide-lane ambiguity

resolution in the user solution can be obtained. Second, the

integer N1 ambiguities can be directly estimated with the

satellite phase clock determined in the network solution.

Wide-lane ambiguity resolution Regarding the user

solution, the MW observation at the user site can be

derived as

AMW u ¼ �kWLNWL u þ ðbr
AMW u

� bs
AMW
Þ ð44Þ

By applying the wide-lane satellite bias corrections (41) to

(44), we can obtain
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AMW u þ bs
AMW
¼ �kWLNWL u þ ðbr

AMW u
� bs

AMW
Þ

þ bs
AMW
¼� kWLNWL u þ br

AMW u
ð45Þ

It can be seen that the wide-lane ambiguity, after correcting

for the wide-lane satellite bias, is still contaminated by the

wide-lane receiver bias br
AMW u

. Since this wide-lane

receiver bias is the same for all observed satellites, it can

be obtained by averaging the fractional parts of the real-

valued ambiguities from all observed satellites as

b
r

AMW u
¼ 1

n

Xn

i¼1

AMW u þ bs
AMW

� �
� kWL

AMW u þ bs
AMW

kWL

� �� �
i

ð46Þ

where n represents the number of observed satellites. By

substituting the wide-lane receiver bias (46) into (45), we

can obtain the integer wide-lane ambiguity as

AMW u þ bs
AMW
� b

r

AMW u
¼ �kWLNWL u ð47Þ

through which the wide-lane ambiguity resolution in the

user solution can be achieved.

N1 ambiguity resolution Regarding the user positioning

determination, we should first substitute (14) into (22) and

then move the wide-lane ambiguities fixed in ‘‘Wide-lane

ambiguity resolution’’ section to the left side as

LIF � 60kIFNWL ¼ qþ cdtr
L3
� cdts

L3
þ T � 17kIFN1 þ eLIF

ð48Þ

Equations (21) and (48) are used to compute the user

positioning. The IGS satellite code clock cdts
PIF

and the

phase clock cdts
LIF

determined in ‘‘N1 ambiguity resolution’’

section are used in (21) and (48), respectively. Along with

the user coordinates, the receiver code clock cdtr
PIF

, the

receiver phase clock cdtr
LIF

, the troposphere delay, and the

integer N1 ambiguities can be directly estimated.

Method summary

In summary, the integer wide-lane ambiguities NWL u in

the user solution are first estimated through (47), fol-

lowing the WSB correction bs
AMW

in (45) and the WRB

correction �br
AMW u in (46). Thus, the ionosphere-free NIF

ambiguity estimation in the phase observation LIF in (22)

becomes the N1 ambiguity estimation in (48). The satel-

lite phase clocks cdts
LIF

are applied to LIF in (48), and the

IGS code clocks cdts
PIF

are applied to PIF in (21).

Therefore, the receiver code clock cdtr
PIF

and receiver

phase clocks cdtr
LIF

are the remaining clock parameters to

be estimated, which is to say, by applying separate

satellite code/phase clocks and estimating separate

receiver code/phase clocks, the integer N1 ambiguity can

be directly estimated in (48).

Suppose the user observes n satellites. The number of

observations is 2n in (3) and (48). The ambiguity datum is

required which can be defined by fixing the N1 ambiguity

of the reference satellite to arbitrary integer value. The

number of unknown parameters is 3 ? 2 ? 1 ? (n - 1),

which includes three coordinates, two clocks (receiver code

and phase), one troposphere delay, and n - 1 N1 ambi-

guities. The degree of freedom is 2n -

(3 ? 2 ? 1 ? (n - 1)) = n - 5, which means a mini-

mum of five satellites are required to apply the integer

phase clock model.

Method comparison

The user implementation details of the traditional method

and the three PPP integer ambiguity resolution methods are

listed in Table 1. Our method comparison focuses on the

strategy of the integer property recovery, system redun-

dancy, and the necessary corrections.

The methods are classified into two categories

according to the characteristics of the satellite clock

terms. The first category uses only the satellite code

clock. This category includes the traditional PPP model

and the single-difference between-satellites method. When

the satellite code clock is applied to the phase observation

in such models, the estimated receiver clock parameter is

the receiver code clock and the corresponding ambiguity

parameter is real-valued. For the traditional PPP model,

integer phase ambiguity resolution is not feasible since no

additional ambiguity corrections are provided to correct

the real-valued ambiguities. For the single-difference

between-satellites method, the integer property can be

recovered and integer phase ambiguity resolution

becomes feasible because two additional wide-lane and

N1 FCB corrections are provided to correct the real-val-

ued ambiguities.

The second category is for methods that model satellite

code clock and satellite phase clock, which includes the

decoupled clock model and the integer phase clock model.

The only difference between the two models is the

approach for fixing the wide-lane ambiguity. The integer

phase clock model utilizes the WSB corrections and the

satellite-averaging process to fix the integer wide-lane

ambiguity, whereas the decoupled clock model directly

estimates the integer wide-lane ambiguity along with other

unknowns through the function model. As to the N1

ambiguity resolution, both models require the satellite code

clock cdts
PIF

and phase clock cdts
LIF

and estimate the receiver

code clock cdtr
PIF

and phase clock cdtr
LIF

. As a result, the

integer N1 ambiguity can be directly estimated.
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If n satellites are observed by the user receiver, although

the number of observations and unknown parameters is

different in these methods, the degree of freedom n - 5 is

the same for all methods. All methods require at least five

satellites for position determination.

As to the broadcast requirements, the decoupled clock

model requires three decoupled clocks cdts
PIF

, cdts
LIF

, and

bs
AIF

for each satellite. For the single-difference between-

satellites method, the IGS code clock cdts
PIF

is required for

both code and phase observations. Two satellite wide-lane

and N1 FCB corrections Db
s j;i
AMW

and Db
s j;i
A1

are necessary to

correct the real-valued wide-lane and N1 ambiguities. For

the integer phase clock model, the satellite WSB correction

bs
AMW

is needed to fix the wide-lane ambiguity. In addition,

the IGS code clock cdts
PIF

and the satellite phase clock

cdts
LIF

are required in order to resolve the integer N1

ambiguity. In summary, all three PPP integer ambiguity

resolution methods require three corrections for each

satellite. From this point of view, the correction broad-

casting burden is the same.

The analysis above has demonstrated that the three

methods developed for integer ambiguity resolution in PPP

are equivalent since they all based on the same ionosphere-

free code and phase combinations [(3), (4), and (17)] and

the same phase ambiguities (wide-lane and N1) are

resolved. These methods differ only in their approaches to

remove the fractional phase part, such as different

parameterizations for clock and bias modeling and cor-

rections as shown in Table 1. Although small numerical

difference may exist due to different computational pro-

cedures, the three methods will provide equivalent posi-

tioning solution and precision once the phase ambiguities

are correctly resolved to their integer values.

Conclusions and discussions

We first explained the reason why integer ambiguity res-

olution is not feasible in the traditional PPP model. The

three PPP integer ambiguity resolution methods are then

described using the same notation, which helps better

understand these methods and is of value for their proper

implementation by users. Since no assumption is made

during the method derivation, this contribution also sup-

plements the previous method comparison work which

ignores the effects of the code biases on the phase ambi-

guity in PPP.

Some practical differences exist among the three

methods, for example, the consideration of the code and

phase biases into the separate code and phase clocks (the

decoupled clock model), the ambiguity corrections (the

single-difference between-satellites method), or both the

separate code and phase clocks plus the ambiguity cor-

rections (the integer phase clock model); the procedure for

the integer property recovery by estimation (the decoupled

Table 1 Method comparison between the traditional PPP model and the three ambiguity fixing models in the user solution

Traditional PPP Decoupled clock Single-difference between-

satellites

Integer phase clock

Satellite clocks IGS code clock:

cdts
PIF

Code clock: cdts
PIF

Phase clock: cdts
LIF

MW bias: bs
AMW

IGS code clock: cdts
PIF

IGS code clock:

cdts
PIF

Phase clock: cdts
LIF

Receiver clocks Code clock: cdtr
PIF

Code clock: cdtr
PIF

Phase clock: cdtr
LIF

MW bias: br
AMW

Code clock: cdtr
PIF

Code clock: cdtr
PIF

Phase clock: cdtr
LIF

Datum definition or reference

satellite

N/A One ambiguity datum One reference satellite One ambiguity

datum

NWL ambiguity correction N/A N/A FCB Db
s j;i
AMW

WSB bs
AMW

N1 ambiguity correction N/A N/A FCB Db
s j;i
A1

N/A

Integer property Not recovered Recovered Recovered Recovered

Number of observations 2n 3n 2n 2n

Number of parameters 3 ? 1 ? 1 ? n 3 ? 3 ? 1 ? 2(n -

1)

3 ? 1?1 ? n 3 ? 2?1 ? (n - 1)

Degree of freedom n - 5 n - 5 n - 5 n - 5

Required corrections cdts
PIF

cdts
PIF

cdts
LIF

bs
AMW

cdts
PIF

Db
s j;i
AMW

Db
s j;i
A1

cdts
PIF

cdts
LIF

bs
AMW
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clock model), ambiguity correction (the single-difference

between-satellites method), or both ambiguity correction

and estimation (the integer phase clock model). However,

the three methods will provide equivalent results once the

phase ambiguities are correctly resolved to the integer

values.

The comparison among the three PPP integer ambiguity

resolution methods is conducted with respect to integer

property recovery method, system redundancy, and

required corrections. As all these methods require three

corrections to recover the ambiguity integer property and

the system redundancy for all methods is equal to n-5

(n denotes the number of observed satellites), the equiva-

lence of these three methods for PPP integer ambiguity

resolution in the user solution has been obtained.
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