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Abstract In urban canyons, buildings and other struc-

tures often block the line of sight of visible Global Navi-

gation Satellite System (GNSS) satellites, which makes it

difficult to obtain four or more satellites to provide a three-

dimensional navigation solution. Previous studies on this

operational environment have been conducted based on the

assumption that GNSS is not available. However, a limited

number of satellites can be used with other sensor mea-

surements, although the number is insufficient to derive a

navigation solution. The limited number of GNSS mea-

surements can be integrated with vision-based navigation

to correct navigation errors. We propose an integrated

navigation system that improves the performance of vision-

based navigation by integrating the limited GNSS mea-

surements. An integrated model was designed to apply the

GNSS range and range rate to vision-based navigation. The

possibility of improved navigation performance was eval-

uated during an observability analysis based on available

satellites. According to the observability analysis, each

additional satellite decreased the number of unobservable

states by one, while vision-based navigation always has

three unobservable states. A computer simulation was

conducted to verify the improvement in the navigation

performance by analyzing the estimated position,

which depended on the number of available satellites;

additionally, an experimental test was conducted. The

results showed that limited GNSS measurements can

improve the positioning performance. Thus, our proposed

method is expected to improve the positioning performance

in urban canyons.

Keywords GNSS � INS � Integrated navigation � Low

GNSS visibility � Vision

Introduction

Global Navigation Satellite System (GNSS) is a position-

ing system that is widely used in cars, ships, and airplanes

because it can provide a position solution regardless of the

time and location. In urban canyons, buildings and other

structures often block the line of sight (LOS) of visible

satellites, which makes it difficult to provide a navigation

solution. GNSS availability simulations (Yoo et al. 2009;

Lee et al. 2008) indicate that four or more visible satellites

may sometimes be unavailable in urban canyons. Further,

the application of GNSS fault detection and exclusion may

reduce the number of available satellites because erroneous

satellites are excluded (Lee et al. 2011).

Research into alternative navigation systems has been

conducted because of constraints on the availability of

GNSS in urban canyons. Zhao (1997) and Fu et al. (2007)

estimated the position and heading based on the number of

revolutions of each wheel using an odometer. In odometer

applications, navigation error arises from wheel slips and

inaccuracies in the scale factor of the odometer, which

results in a drift error due to the absence of error correction

using external information. The Inertial Navigation System

(INS) can also be used as an alternative navigation system

independently of GNSS (Titterton and Weston 1997). INS
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uses dead reckoning to calculate the vehicle position,

velocity, and attitude. As the operational time passes,

however, the navigation solutions become more inaccurate

due to the cumulative error. Numerous studies have been

conducted to integrate INS with vision sensors, such as

camera, lidar, and laser range finders, to mitigate this drift

error. Durrant-Whyte and Bailey (2006a, b) proposed

simultaneous localization and mapping (SLAM) with visual

measurements, which is a technique that estimates positions

in an unknown environment and builds a map. This Vision/

INS integrated navigation system (i.e., SLAM) operates

without the aid of absolute information (premeasured fea-

ture points or exact error correction). Vision/INS integrated

navigation has been implemented actively in the field of

mobile robots and unmanned aerial vehicles (UAVs) by

applying nonlinear estimations including the extended

Kalman filter (EKF), unscented Kalman filter (UKF), and

particle filter (PF). However, these methods still experience

continuous drift errors. According to Bryson and Sukkarieh

(2008) and Bryson et al. (2005), Vision/INS integrated

navigation will always lack observability of three states in

the Kalman filter if additional absolute information related

to the position is not available. Therefore, conventional

approaches inevitably incur drift errors.

Previous studies have been conducted based on the

assumption that absolute information is not available.

Signals from some visible satellites can be received in

urban canyons, which can be used as absolute information

to correct navigation errors, although these are insufficient

to derive a position solution (Soloviev 2008). Soloviev and

Venable (2010) improved the navigation performance of

Vision/INS integrated navigation in urban canyons using

limited GPS measurements. This method utilized the GPS

carrier phase, and it improved the accuracy with a change

in position (delta position). However, the error in the delta

position generated a drift error in the position, which could

not be removed.

We propose a method that improves the navigation

performance by combining less than four observable GNSS

satellites and Vision/INS integrated navigation. An inte-

grated model is proposed to utilize GNSS measurements of

the range and range rate. The possibility of implementing

these measurements was assessed during an observability

analysis of the system. A decrease in the position drift error

when using GNSS measurements was also verified based

on the estimated position in a computer simulation, which

depended on the number of satellites available; addition-

ally, an experimental test was conducted. The results

showed that limited GNSS measurements can improve the

positioning performance in urban canyons.

Section ‘‘GNSS’’ describes the GNSS observation equa-

tions. Section ‘‘INS/Vision integrated navigation system’’

introduces the process model and the observation model for

Vision/INS integrated navigation. Section ‘‘GNSS integra-

tion with Vision/INS integrated navigation’’ explains the

GNSS and vision integrated model. Section ‘‘Observability

analysis’’ analyzes the observability of the proposed system,

and section ‘‘Test and results’’ verifies the improvement in

the observability via a simulation. Finally, the conclusions

are presented in sect. ‘‘Conclusion’’.

GNSS

The number of available signals has increased as various

GNSSs have become operational, such as GPS, GLONASS,

Galileo, and Beidou. As explained above, it is difficult to

obtain signals from four or more satellites in GNSS-blocked

or GNSS-challenged environments. In these situations, a

three-dimensional position solution of the navigation filter

is unavailable, whereas range and range rate measurements

are available. This section describes a linearized observa-

tion model for pseudorange and range rate measurements

that can be used with Vision/INS integrated navigation.

Pseudorange observation model

The pseudorange is the distance between a satellite and a

receiver, which is measured based on the propagation time.

The observation model comprises the distance between the

satellite position and the user position and the receiver

clock error. The satellite clock error is contained in the

broadcasted navigation messages, and it can be estimated.

The pseudorange model is as follows:

q ¼ r þ cbu ð1Þ

q� �q ¼ hGNSS 1½ � dxu

cdbu

� �
ð2Þ

where q is the pseudorange, r is the distance between the

satellite and the user, c is the speed of light, bu is the clock

bias of the receiver, �q is the pseudorange at the nominal

position of the user (xu), and hGNSS is the LOS unit vector

between the satellite and the user. The subscript u denotes

the user. Equation (1) assumes that only a receiver clock

error (cbu) exists. This equation can be linearized around a

nominal point as (2).

Range rate observation model

The range rate can be derived from the Doppler shift of the

GNSS measurement or the time-differenced carrier phase

(TDCP). The two values are obtained by the receiver using

different processes, but they have an identical physical

meaning (Ding and Wang 2011). The expressions are as

follows:

kU tð Þ ¼ q tð Þ þ kN þ cbu tð Þ ð3Þ
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k _U tð Þ � U tð Þ � U t � 1ð Þ½ �
Dt

¼ _q tð Þ þ c _bu tð Þ ð4Þ

k _U tð Þ ¼ hGNSS _xs tð Þ � _xu tð Þð Þ þ c _bu tð Þ ð5Þ

k _U� hGNSS _xs ¼ �hGNSS 1½ �
_xu

c _bu

� �
ð6Þ

where U is the carrier phase, k is the wavelength, N is the

integer ambiguity, and Dt is the time interval. Equation (3)

is the observation equation for the carrier phase (Hofmann-

Wellenhof and Wasle 2007). Unlike the code-based

pseudorange, the carrier phase includes an integer ambi-

guity, so it is cancelled by considering the time difference

in (4). The change in the carrier phase in (4) depends on the

velocity of the satellite ( _xs) and the velocity of the user

( _xu). Equation (5) is expressed in matrix form in (6) (Ding

and Wang 2011).

The range and range rate equations were derived to

utilize the available satellites. As previously mentioned, a

three-dimensional solution cannot be calculated with less

than four available satellites, although the measurements

from each satellite can aid other navigation systems. From

the perspective of GNSS, the problem of insufficient

measurements can be solved by combining it with Vision/

INS integrated navigation.

INS/Vision integrated navigation system

Vision/INS integrated navigation calculates navigation

solutions (such as the position, velocity, and attitude) by

integrating INS and feature points from a vision sensor.

Feature points are fixed points, which can be tracked using

tracking methods such as Kanade–Lucas–Tomasi (KLT),

Scale-Invariant Feature Transform (SIFT), and Speeded Up

Robust Feature (SURF) (Tomasi and Kanade 1991; Lowe

1999; Bay et al. 2006). The coordinates of the feature

points are determined by the position and the attitude of the

sensor installed in a vehicle. The navigation solution can be

calculated using an appropriate process and an observation

model that describes the relationship.

Process model

The state vectors for the vehicle (position, velocity, and

attitude) and the positions of the feature points are required

by Vision/INS integrated navigation. The state vector is

expressed with respect to the local North–East–Down

frame (navigation frame, n). A linearized INS model is

used as the vehicle’s process model. The inertial sensor is

assumed to be of low grade, and the rotation of the earth is

neglected. These systems are formulated as follows:

xn
vehicle ¼ pn vn Wn½ �T ð7Þ

pn t þ 1ð Þ
vn t þ 1ð Þ
Wn t þ 1ð Þ

2
4

3
5 ¼

pn tð Þ þ vn tð ÞDt

vn tð Þ þ Cn
b tð Þf b tð Þ þ gn

� �
Dt

Wn tð Þ þ En
b tð Þxb tð ÞDt

2
4

3
5

þ wvehicle tð Þ ð8Þ

where pn is the position, vn is the velocity, Wn is the attitude, Cn
b

is the direction cosine matrix, En
b is the rotation rate

transformation matrix from the body to navigation frame, fb

is the specific force in the body frame, gn is thegravity,xb is the

angular velocity in the body frame, and wvehicle is the process

noise (Kim and Sukkarieh 2007; Won et al. 2010; Chun et al.

2012; Bryson and Sukkarieh 2008). Equation (8) represents

the process model for the vehicle using INS. The process

model of Vision/INS integrated navigation is as follows:

xn
feature ¼ mn

1 mn
2 � � � mn

j

� �T ð9Þ

xn
feature t þ 1ð Þ ¼ xn

feature tð Þ þ wfeature tð Þ ð10Þ

dxn
Vision=INS t þ 1ð Þ ¼ FVision=INS tð Þdxn

Vision=INS tð Þ þ wVision=INS tð Þ

dxn
Vision=INS ¼ dxn

vehicle dxn
feature½ �T

wVision=INS ¼
wvehicle wfeature
� �T

FVision=INS ¼

I3�3 DtI3�3 03�3 03�3j

03�3 I3�3 Dt f n�½ � 03�3j

03�3 03�3 I3�3 03�3j

03i�3 03i�3 03j�3 I3j�3j

2
6664

3
7775 ð11Þ

where [fn9] is the skew-symmetric matrix of fn and I is the

identical matrix. The subscript a 9 b is the size of the

matrix rows (a) and columns (b), and j is the total number

of feature points. The feature point (mn) is modeled as (10),

which is a fixed point. A perturbation is applied to (8) and

(10), and the total process model is expressed as (11).

Vision observation model

Several coordinate systems are required to derive the

observation model: the navigation frame, body frame, and

sensor frame. To simplify the model, the body frame and

sensor frame are not separated by assuming that the vehicle

has a rigid body.

Figure 1 represents the relationship between the feature

point (m) and the position of the sensor (p). This rela-

tionship can be expressed as:

pn ¼ mn � Cn
c mc ð12Þ

where Cn
c is the transition matrix from the sensor frame to

the navigation frame (Kim and Sukkarieh 2007; Chun et al.

2012).

The feature point is measured in pixel units on the image

plane. Figure 2 shows the feature point position in terms of

the relationship between the sensor frame and the image

plane (i). The coordinates in the image plane (mi) are
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conventionally measured using two-dimensional coordinates

(½mi
x; mi

y�). However, they are transformed into three-dimen-

sional coordinates if the focal length (mi
z) is applied. The focal

length is the distance between the origin (Oc) and the image

plane, which can be estimated during the sensor calibration

process. After estimating the focal length, the state vector mi ¼
mi

x mi
y mi

z

� �T
is expressed in three dimensions. It has an

identical basis vector to the feature point position on the sensor

frame (mc), which is then expressed as a unit vector using (12).

The expressions are as follows:

mi

mik k ¼
mc

mck k

¼ 1

mn � pnk kCc
n mn � pn½ �

ð13Þ

where the finalized term is in the form of a normalized unit

vector. Vision measurements (zn
vision) are expressed as a

conventional observation function with the states

(pn; vn;W;mn) and the measured noise (t), the

observation model is as follows:

zn
vision tð Þ ¼ mc tð Þ

mc tð Þk k
¼ h pn tð Þ; vn tð Þ;W tð Þ;mn tð Þð Þ þ t tð Þ

ð14Þ

zn
vision tð Þ � h �pn tð Þ;�vn tð Þ; �W tð Þ; �mn tð Þ

� �

¼ hvision;p 01�3 hvision;W hvision;m½ �

dpn kð Þ
dvn kð Þ
dW kð Þ
dmn kð Þ

2
6664

3
7775þ t tð Þ

ð15Þ

Equation (14) takes the first-order approximation with respect

to the nominal points (�pn;�vn; �W; �mn) and it becomes (15).

GNSS integration with Vision/INS integrated

navigation

The systems in sections ‘‘GNSS’’ and ‘‘INS/Vision inte-

grated navigation system’’ were implemented using different

state vectors and different coordinate systems. The identical

state vector and coordinate systems need to be used to inte-

grate these systems. This section describes this process and

an observation model with identical conditions.

Process model

In order to integrate GNSS into Vision/INS integrated

navigation, the receiver clock bias (bu) and drift ( _bu) should

be considered as extra state vectors in addition to (11). The

receiver clock model is expressed as:

dxclock t þ 1ð Þ ¼ 1 Dt

0 1

� �
dxclock tð Þ þ gclock tð Þ ð16Þ

where dxclock is dbu d _bu

� �T
. Equation (11) adds the

receiver clock error state to produce the process model, so

the integrated process model is as follows:

dx t þ 1ð Þ ¼ F tð Þdx tð Þ þ w tð Þ
dx ¼ dxvehicle dxclock dxfeature½ �T

w ¼ wvehicle wclock wfeature½ �T

F ¼

I3�3 DtI3�3 03�3 03�2 03�3j

03�3 I3�3 Dt f n�½ � 03�2 03�3j

03�3 03�3 I3�3 03�2 03�3j

02�3 02�3 02�3

1 Dt

0 1
02�3j

03j�3 03j�3 03j�3 03j�2 I3i�3j

2
666666664

3
777777775

ð17Þ

Equation (17) is the final process model which includes all

states for INS, GNSS, and vision.

Fig. 1 Configuration of the coordinates used for Vision/INS inte-

grated navigation, where m is the feature point position, p is the

sensor (camera) position, and O is the origin of the frame, whereas the

superscripts c and n represent the sensor frame and the navigation

frame, respectively

Fig. 2 Feature point position on the sensor frame
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Observation model

GNSS and the vision observation model are calculated

using different coordinate systems. The state vector is

defined with respect to the navigation frame. GNSS is

calculated using the WGS-84 coordinate system, and it

requires the receiver clock bias and drift. However, the

state vector related to vision utilizes the navigation frame,

which can be applied directly in the INS model. To inte-

grate the two measurements, therefore, the total observa-

tion model should be derived based on a consideration of

the coordinates. The observation model of the two sensors

is as follows :

dz¼
dzGNSS;PR

dzGNSS;CP

dzvision

2
4

3
5

¼
hGNSSCe

n 01�3 01�3 1 0 01�3

01�3 �hGNSSCe
n 01�3 0 1 01�3

hvision;p 03�3 hvision;W 0 0 hvision;m

2
4

3
5dxn

ð18Þ

where dzGNSS;PR is the pseudorange, dzGNSS;CP is the carrier

phase, dzvision is the vision measurements, and Ce
n is the

transformation matrix from the navigation frame to the

ECEF frame (WGS-84). Each measurement represents

the residuals from nominal points.

Observability analysis

An observability test was conducted to verify the possi-

bility of implementing the proposed navigation system.

Several steps were applied to simplify the calculation

during verification. The coordinate system was assumed to

be Cn
b ¼ Cc

b ¼ I3�3, and the vision observation component

was hvision;p ¼ �hvision;m in (15). Multiplying the whole

equation by an identical value would not affect the integ-

rity of the equation, so the vision observation equation was

multiplied by h�1
vision;p and the observation matrix (H) was

organized. The simplified observation matrix is as follows:

H ¼
hG 01�3 01�3 1 0 01�3

01�3 �hG 01�3 0 1 01�3

�I3�3 03�3 hV 0 0 I3�3

2
4

3
5 ð19Þ

where hG is hGNSSCe
n and hV is hvision;p

� ��1�hvision;W. The

observability test was conducted based on (19).

Observability of the Vision/INS integrated navigation

The observability of the Vision/INS integrated navigation

was analyzed prior to its integration with GNSS. Before

the receiver clock bias and drift components were applied,

Eq. (11) was used to check the observability of the

Vision/INS integrated system with the form dx ¼
dpn dvn dwn dMn½ �T . According to Bryson and Suk-

karieh (2008) and Bryson et al. (2005), the observability of

the Vision/INS integrated navigation always lacks rank 3.

A feature point is used to form a local observability matrix

(LOM, OLOM) during each single time segment (Goshen-

Meskin and Bar-Itzhack 1992). The expression is as

follows:

OLOM ¼

�I3�3 03�3 hV I3�3

�I3�3 �DtI3�3 hV I3�3

�I3�3 �2DtI3�3 �Dt2 f n�½ � þ hV I3�3

�I3�3 �3DtI3�3 �3Dt2 f n�½ � þ hV|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rank¼2

I3�3

2
66664

3
77775

ð20Þ

where OLOM in (20) contains 12 states and there are four

unobservable states, so the rank is 8. If an additional

feature point is added to the single time segment, there

are 15 states in total and the rank is 11 because of the

four unobservable states. The rank deficiency arises from

the correlation of the vehicle position and the feature

point (three unobservable states), whereas the remaining

rank deficiency derives from the attitude term, which is

constituted by the skew-symmetric matrix.

The total observation matrix (TOM, OTOM) is composed

of multiple time segments for testing the observability

(Goshen-Meskin and Bar-Itzhack 1992). The matrix over

two time segments is as follows:

OTOM¼

�I3�3 03�3 hV;1 I3�3

�I3�3 �DtI3�3 hV;1 I3�3

�I3�3 �2DtI3�3 �Dt2 f n�½ �þhV;1

� �
I3�3

�I3�3 �3DtI3�3 �3Dt2 f n�½ �þhV;1

� �
I3�3

�I3�3 03�3 hV;2 I3�3

�I3�3 �DtI3�3 hV;2 I3�3

�I3�3 �2DtI3�3 �Dt2 f n�½ �þhV;2

� �
I3�3

�I3�3 �3DtI3�3 �3Dt2 f n�½ �þhV;2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rank¼3

I3�3

2
6666666666664

3
7777777777775

ð21Þ

If the number of time segments increases, the attitude

part of each row of the skew-symmetric matrix becomes

independent, thereby increasing the rank by one so the

rank is 3. Similar to LOM analysis, however, an

increment in the number of feature points does not

increase the rank further. Thus, the total number of

unobservable states is never less than three. The

positions of the vehicle and the feature points remain

unobservable. Therefore, only the relative positioning of

the vehicle and feature points can be determined during

Vision/INS integrated navigation.
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Observability of the GNSS/Vision/INS integrated

navigation

The number of states for GNSS/Vision/INS integrated nav-

igation is 11 ? 3 * j, that is, nine for the vehicle, two for the

GNSS receiver clock, and 3 * j for the feature points.

The state vector for GNSS/Vision/INS integrated naviga-

tion is set to dx ¼ dpn dvn dW dbu d _bu dmn
� �T

.

The observability test was conducted based on the assump-

tion that all observations (GNSS, Vision, and INS) were

measured during the same epoch because of the different

update rates of each measurement. The LOM is as follows:

OLOM ¼

hG 01�3 01�3 1 0 01�3

01�3 �hG 01�3 0 1 01�3

�I3�3 03�3 hV 03�1 03�1 I3�3

hG DthG 01�3 1 Dt 01�3

01�3 �hG �Dt f n�½ �hG 0 1 01�3

�I3�3 �DtI3�3 hV 03�1 03�1 I3�3

hG 2DthG Dt2 f n�½ �hG 1 2Dt 01�3

01�3 �hG �2Dt f n�½ �hG 0 1 01�3

�I3�3 �2DtI3�3 �Dt2 f n�½ � þ hV 03�1 03�1 I3�3

2
66666666666666664

3
77777777777777775

ð21Þ

If only one feature point is used, the total dimensions of

the state vector are 14. Equation (21) is the OLOM form

where the process model in (17) and observation model in

(18) are used, and the rank is 10. Assuming that the attitude

term can ensure full rank by formulating TOM as shown in

(20), OTOM has rank 11 and there are three unobservable

states. The unobservable states relate to the vehicle

position, feature point position, and the GNSS receiver

clock.

If the number of time segments is increased, the rank

deficiency is improved by one in the attitude term. With

GNSS, the LOS vector does not change sufficiently during

a few seconds because of the distance between the satellite

and the user. Despite the multiple time segments, the

change in the GNSS LOS matrix (hG) is not significant, and

it does not improve the observability of the position.

However, an additional GNSS satellite increases the rank

by one. Therefore, increasing the number of satellites

increases the rank.

Table 1 shows the number of observable states accord-

ing to the number of GNSS satellites. Using less than four

available GNSS satellites can improve the rank deficiency,

although it does not make the observation matrix full rank.

Assuming that the GNSS receiver clock error is known or

well calibrated when analyzing (21), the receiver clock bias

and drift can be set as known. The dimension of the state

vector is 12 and one available satellite increases the rank

by one. Thus, three available satellites make a full rank and

the states of the vehicle and the feature point positions may

be observable.

According to the observability analysis in this section,

Vision/INS integrated navigation always has three unob-

servable states. If the proposed method is used, however,

each additional satellite decreases the number of unob-

servable states by one, which enhances the estimation

performance for the vehicle position and the feature point

position. If the GNSS receiver clock is also known, three

satellites constitute a full rank and this provides better

performance. The unobservable state is a term related to

the vehicle position and the feature point position, which

ensures observability in addition to the pseudorange.

However, the range rate is a function of the vehicle

velocity, which is already an observable state that does not

improve the rank. Improved precision can be expected

because of the carrier phases.

Test and results

The performance of the proposed system was verified using

a simulation and an experimental test. The following sec-

tion describes the test conditions and results.

Simulation setting

The simulation considered the flight of an UAV and repe-

ated the route shown in Fig. 3, which was followed twice at

a height of 10 m. The simulation was conducted for 300 s.

The IMU used in this simulation was a Honeywell HG-

1700, and the vision sensor was an Allied Vision Tech-

nologies Guppy F-080. The GPS was a Novatel OEM-6,

and the other specifications are listed in Table 2. The vision

sensor was assumed to be installed pointing 45� downward

with respect to the path of movement. The feature points

were assumed to be distributed randomly on the surface of

the ground, and a maximum of seven could be utilized. We

assumed monocular vision and that the feature points were

assigned via delayed initialization (Bailey 2003). The GPS

data for January 15, 2012, from the YUMA Almanac were

provided by the U.S. Coast Guard Navigation Center. And

Konkuk University, Seoul, Korea, was set as the origin.

Figure 4 shows the GPS constellation used in the

Table 1 Observable states with respect to the number of GNSS

satellites

Number of GNSS satellites

1 2 3 C4

Number of unobservable states 11 12 13 14 (full

rank)

Number of unobservable states with

known receiver clock states

10 11 12 (full

rank)

12 (full

rank)
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simulation. All of the simulation results were generated

using Matlab�. The GPS and IMU measurements were

produced using the satellite navigation toolbox and the

inertial navigation toolbox (�GPSoft LLC).

Simulation results

Figure 5 shows the true trajectory and position estimation

results for INS only and Vision/INS integrated navigation.

There were relatively large drift errors, which diverged

when INS calculated the position without the aid of vision

whereas Vision/INS integrated navigation decreased the

divergence. However, the amount of divergence was only

reduced, rather than removed.

Figure 6 shows the position estimated using GPS and

Vision/INS integrated navigation, as described in section

‘‘GNSS integration with Vision/INS integrated navigation’’.

The PRN 13, 16, and 19 satellites were used, and the cal-

culation of the clock error for the GPS receiver was included

in the state vector. We analyzed the estimated position error

as the number of available satellites increased. The true

position and estimated position were compared, and the

position error was analyzed quantitatively. Figure 7 shows

the decrease in the position error with an increasing number

of available satellites. As shown in the previous analysis of

observability, increasing the number of available satellites

decreased the number of unobservable states, which

improved the position estimation performance. When three

satellites were used, the maximum error was 16 m

throughout the entire simulation period and the error had a

relatively low drift compared with the other two cases. When

two satellites were used, the positions estimated in the

direction of the PRN 13 and 16 satellites were excellent,

whereas the estimates were relatively poor in the opposite

direction. Some of the position errors were greater than those

with Vision/INS integrated navigation because of the simu-

lation path and the deployment of the satellites, although the

position error divergence was small. If one available satellite

was used, the position error was higher than that with Vision/

INS integrated navigation. The existence of one satellite only

in a specific direction increased the drift error continuously.

In the previously analyzed cases, the receiver clock error

was included in the state vector. Figure 8 assumes that the

clock error was known or well calibrated. The general

trend was similar to that shown in Figs. 6 and 7. However,

the use of two available satellites produced relatively better

position estimation results. If the receiver clock error term

was removed from the model, the rank increased by one

and the observable states also increased by one (Fig. 9).

According to the observability analysis, one more

observable state was determined compared with Vision/

INS integrated navigation, even with one available
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Table 2 Sensor specifications

Sensor Specification

IMU

Gyroscope error (1r) 1�/h

Accelerometer error (1r) 1 mg

Vision

Field of view 28�
Noise (1r) 1 pixel

GPS position error (1r) 1.5 m
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Fig. 4 Simulated GPS constellation
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satellite. However, the position error was greater than that

with Vision/INS integrated navigation in both cases. This

was because the deployment of the satellites and direction

of the vehicle’s movement had to be considered when one

available satellite was used.

Experimental results

An experimental (driving) test was conducted to verify the

proposed navigation system. The test was conducted at

Konkuk University, Korea, on November 2, 2012. The

IMU was an ADIS 16364, the vision sensor was an LG

LVC-A903HM, and the GPS was a Novatel OEM-5.

Novatel SPAN was used as the reference. The feature

points were tacked using the KLT method (Tomasi and

Kanade 1991). All data were recorded and postprocessed.

Figure 10 shows the test site and trajectory. Figure 11

shows the deployment of the satellites and the number of

available satellites during the experimental test. At this site,

buildings and other structures often blocked the LOS of
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visible satellites. The satellites were blocked in ascending

order of elevation angle. This site was similar to urban

canyons so it was considered to be a suitable site for testing

the proposed algorithm.

Figure 12 shows the estimated positions, and Fig. 13

shows the estimated position errors. The navigation errors

were not corrected in INS, so the other two methods had

better performance than INS. The INS/Vision/GPS

integrated system delivered better performance compared

with the other methods. The number of satellites was

decreased from three to two at 18 s, and the position error

increased until 32 s. After 33 s, the number of satellites

changed to three and the error decreased temporally. After

35 s, the number of satellites dropped to 0 then increased to

one and the errors started to increase. All of these effects

were related to the unobservable states described in section

Fig. 10 Test site and trajectory
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‘‘Observability analysis’’. This test verified that the posi-

tions were estimated accurately because the number of

available satellites increased with the INS/Vision/GPS

integrated system.

This section described simulations and an experimental

test, which verified the proposed navigation system using a

limited number of GNSS satellites.

Conclusion

In urban canyons, it is difficult to obtain four or more

satellites to provide a three-dimensional navigation solu-

tion. Conventional alternative navigation systems are based

on an assumption that GNSS is unavailable when there is a

lack of available satellites. The use of limited GNSS

measurements makes it difficult to derive a navigation

solution, but they can be integrated with Vision/INS inte-

grated navigation to improve the navigation performance.

In this paper, we proposed a Vision/INS integrated navi-

gation system based on GNSS measurements for use when

the number of available satellites is less than four. We

developed an integrated model that combined the range and

range rate of GNSS with Vision/INS integrated navigation.

We verified the improvement in the navigation perfor-

mance via an observability analysis. The observability

analysis confirmed that Vision/INS integrated navigation

always had three unobservable states. However, the

observability was improved by the addition of available

satellites. We conducted simulations and an experimental

test to analyze the position estimation performance,

depending on the number of available satellites. An

improvement in the drift error was confirmed when GNSS

measurements were utilized during Vision/INS integrated

navigation. In urban canyons, only a few satellites are

available and the signal quality is low so the number of

available satellites often drops below four. Improved nav-

igation solutions can be expected in urban canyon envi-

ronments by integrating GNSS measurements with Vision/

INS integrated navigation.
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