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Abstract The modernization of the global positioning

system and the advent of the European project Galileo will

lead to a multifrequency global navigation satellite system

(GNSS). The presence of new frequencies introduces more

degrees of freedom in the GNSS data combination. We

define linear combinations of GNSS observations with the

aim to detect and correct cycle slips in real time. In par-

ticular, the detection is based on five geometry-free linear

combinations used in three cascading steps. Most of the

jumps are detected in the first step using three minimum-

noise combinations of phase and code observations. The

remaining jumps with very small amplitude are detected in

the other two steps by means of two-tailored linear com-

binations of phase observations. Once the epoch of the slip

has been detected, its amplitude is estimated using other

linear combinations of phase observations. These combi-

nations are defined with the aim of discriminating between

the possible combinations of jump amplitudes in the three

carriers. The method has been tested on simulated data and

1-second triple-frequency undifferenced GPS data coming

from a friendly multipath environment. Results show that

the proposed method is able to detect and repair all com-

binations of cycle slips in the three carriers.

Keywords Triple-frequency GNSS � Cycle slips �
Minimum-noise combinations

Introduction

A cycle slip is a discontinuity of an integer number of

cycles in the phase observable, caused by a temporary loss

of lock in the receiver carrier tracking loop. This discon-

tinuity is generally due to poor reception, or to the presence

of obstacles in the path of satellite signals; its amplitude

varies from one to millions of cycles.

Cycle slip detection and correction is an important part

of GPS data processing. Therefore, algorithms specifically

dedicated to cycle slip analysis in dual-frequency GPS

observations were developed and implemented. Methods

to detect and repair cycle slips using double differenced

observations can be found in Bisnath and Langley (2000),

Kim and Langley (2001) and Lee et al. (2003). Over the

recent years, Precise Point Positioning (PPP) methods

have become a powerful tool for estimating station

positions. Therefore, techniques to detect and correct

cycle slips on undifferenced observations are needed. The

first technique to detect cycle slips on undifferenced

observations was the approach called Turbo Edit (Blewitt

1990). It is implemented in scientific programs that pro-

cess undifferenced observations such as GIPSY-OASIS II

(Lichten et al. 1995) and BERNESE 5.0 (Beutler et al.

2006). Lacy et al. (2008) faced the cycle slip problem for

single GNSS receivers by exploiting Bayesian theory. The

method is based on the original signal and can be mod-

eled by a multiple polynomial regression. Banville and

Langley (2010) developed a method for instantaneous

cycle slip correction in real-time PPP applications. Liu

(2011) has presented a method to detect and repair cycle
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slips that employs the ionospheric total electron content

rate (TECR).

The space vehicles of the forthcoming GNSS satellite

constellations will add additional frequencies and therefore

making new linear combinations of observations available.

Recently, several authors have proposed new combinations

that can be used to eliminate or mitigate individual sources

of error (Richert and El-Sheimy 2007). New combinations

are used to face different problems. For instance, all possible

triple-frequency geometry-free carrier phase combinations

that retain the integer nature of the ambiguities are studied in

Cocard et al. (2008). The ambiguity resolution problem in

this new context is analyzed in several works (Teunissen and

Odijk 2003; Ji et al. 2007; Feng 2008; Feng and Rizos 2009;

Li et al. 2010). The ionosphere modeling in studied by

optimal ionosphere-free combinations for triple-frequency

GPS observations in Odijk (2003). Finally, some methods

have developed to deal with cycle slips from a multifre-

quency point of view. For example, Zhen et al. (2008) pre-

sented a real-time algorithm to determine cycle slips for

triple-frequency GNSS data which can be applied in PPP

data processing. Dai et al. (2009) developed a real-time

algorithm to detect, determine and validate cycle slips for

triple-frequency GPS applying two geometry-free phase

combinations along with LAMBDA technique to search for

cycle slip candidates.

We present a new method for cycle slip analysis based on

linear combinations of triple-frequency undifferenced

GNSS observations. Section 2 describes the multifrequency

GNSS observation equations. In Sect. 3, the approaches for

detection of cycle slip epochs and the determination of slip

amplitudes are illustrated. Section 4 describes numerical

experiments to assess the performance of the method. The

data consists of simulated and real 1-second triple-fre-

quency GPS data that seem to be free of strong multipath

variations since the pseudorange code noises are close to

15 cm for the first and second carrier and 10 cm for third

one for all observation session. The procedure could be also

used with Galileo observations; in this case, the approach

should be much easier due to the lower nominal noise level

of code observations, as outlined at the end of this study.

Multifrequency GNSS observation equations

The modernization of the GPS and the advent of the

Galileo system will lead to a multifrequency GNSS system

improving the performance of precise positioning appli-

cations. Details of the satellite constellation and frequen-

cies for the modernized GPS and the future Galileo can be

found in IS-GPS-200 (2010), IS-GPS-705 (2010) and OS

SIS ICD (2010). Table 1 summarizes the modernized GPS

and Open Service Galileo signal frequencies.

Euler and Goad (1991) assumed some simplifications in

a general model of GPS observables in order to express

them in a more suitable form. These consist in writing the

observables as the sum of dispersive and non-dispersive

terms. Taking these simplifications into account and

omitting the indices related to receiver and satellite, the

mathematical model of GNSS undifferenced carrier phase

and pseudorange observables for a specific receiver and

satellite at epoch t is the following:

PiðtÞ ¼ DðtÞ þ k1iIðtÞ þ ePðtÞ
LiðtÞ ¼ DðtÞ � k1iIðtÞ þ Bi þ eLðtÞ

ð1Þ

where i = 1,2,3. The symbols Pi and Li are the code

pseudoranges and the carrier phase observations expressed

in distance units at frequency fi, respectively; eP and eL are

the corresponding measurement noise, including the mul-

tipath effect. All parameters in the above equations are

generally biased. The term D is the non-dispersive delay. It

is interpreted as the distance traveled by the signal and is

biased by clock terms and the tropospheric delay. The

ionospheric group delay I at frequency f1 is explicitly

accounted for in (1) and it is multiplied by k1i = (f1/fi)
2 to

get the corresponding delay at frequency fi. It is a disper-

sive delay biased by the Differential Code Biases (DCB).

The term Bi is formed by joining the non-zero initial phase

and the integer carrier phase ambiguity Ni, i.e., the initial

carrier phase ambiguity at frequency fi is biased by ini-

tialization constants and generally is not an integer. Fur-

thermore, both equations (1) are known to be biased by the

travel time of the signal through the circuitries of the

receiver and satellite.

The proposed method

The problem of cycle slip detection and correction can be

reduced to finding discontinuities in a noisy time series of a

regularly sampled smooth signal. The processed time series

are here linear combinations of phase observations, deno-

ted as L1, L2, L3 and expressed in range units, and code

pseudorange observations denoted as P1, P2, P3. The GPS

Table 1 Basic GPS (L) and Galileo (E) signal frequencies

Carrier Frequency

(MHz)

Wavelength

(m)

L1 1,575.42 0.190

L2 1,227.60 0.244

L5 1,176.45 0.254

E2-L1-E1 1,575.42 0.190

E5b 1,207.14 0.248

E5a 1,176.45 0.254
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observations are assumed to have the realistic noise of

rL1
¼ rL2

¼ rL3
¼ 0:002 m, rP1

¼ rP2
¼ 0:15 m and

rP3
¼ 0:10 m. The respective carrier wavelengths are

k1 & 19.0 cm, k2 & 24.4 cm and k3 & 25.5 cm. The

integer cycle slip amplitudes are denoted as dN1, dN2, dN3.

Epoch detection procedure

The proposed method is based on five linear combinations

of GNSS code and phase observations used in three cas-

cading steps. In the first one, the phase and code obser-

vations are combined to detect ‘‘big’’ jumps, i.e., with

amplitudes much higher than the data combination noise.

After that GNSS phase observations are used to detect

‘‘small’’ cycle slips. Finally, a further linear combination of

phase observations is considered to look for the remaining

undetected discontinuities.

Big jumps

The phase and code observations are combined in a mini-

mum-noise, geometry-free combination:

YiðtÞ ¼ aiiLiðtÞ þ bi1P1ðtÞ þ bi2P2ðtÞ þ bi3P3ðtÞ ð2Þ

where the coefficients are aii = 1, bi1 = bi2 = -4/17 and

bi3 = -9/17 for all i = 1,2,3. Such coefficients are derived

by imposing the following conditions:

aii ¼ 1

aii þ bi1 þ bi2 þ bi3 ¼ 0

min
bi1;bi2;bi3

a2
iir

2
Li
þ b2

i1r
2
P1
þ b2

i2r
2
P2
þ b2

i3r
2
P3

h i
8><
>:

: ð3Þ

Applying the covariance propagation law, the noise

standard deviation (STD) of Yi, denoted by rYi
, is at the

7 cm level. The condition aii = 1 acts as a normalization

condition, avoiding the amplification of unmodeled bias

terms (Teunissen and Bakker 2009). Substituting (1) into

(2), the combinations Y1, Y2, Y3 can be expressed as the

sum of the initial ambiguities, the ionospheric effect I

multiplied by constants Mi and random noise. The

constants Mi are given by

Mi ¼ �K1iaii þ bi1 þ K12bi2 þ K13bi3 ð4Þ

and equal -2.57, -3.22 and -3.36 for i = 1,2,3, respec-

tively. The main advantage of the combinations (2) is that

simultaneous cycle slips on different carriers are not mixed

and therefore, a ‘‘big’’ jump in one carrier cannot be

compensated by jumps on the others.

The cycle slip detection test is based on the computation

of the time differences DYi between two consecutive

epochs of Yi. In particular, DYi is considered a random

variable with non-constant mean dNiki, which is different

from zero in case of a cycle slip, and with variance

depending on the noise STD rYi
and on the ionospheric

variation between two consecutive epochs.

Figure 1 shows a typical real example of the variation in

time of the ionospheric effect DI. It has been computed

from the function (L1 - L2)/(k12 - 1). This figure is based

on 1-second dual-frequency GPS data obtained from a GPS

station located at Como (Italy). The receiver and antenna

placed at Como are TPS ODYSSEY-E and TPSCR3_GGD

CONE, respectively. GPS data correspond to the day

December 2, 2007. The maximum value is at 1 cm level.

The corresponding histogram is shown in Fig. 2, indicating

a normal distribution with mean zero and STD of about

3 mm/s. These values prove the low impact of the iono-

spheric effect in differences in time of Yi under general

atmospheric conditions.

Assuming that the measurement noise is independent in

time and considering DI as a random variable with zero

mean and STD rDI ¼ 3 mm and is independent from the

measurement noise, the variance of DYi is

r2
DYi
¼ 2r2

Yi
þM2

i r
2
DI : ð5Þ

It turns out that r2
DYi
ffi 10 cm for i = 1,2,3.

In order to be strongly conservative, a first threshold is

chosen at the level of 4rDYi
. Assuming that DYi is normally

distributed around its mean value dNiki, the hypothesis

H0 : dNi ¼ 0 ð6Þ

is rejected, i.e., a cycle slip is detected, if

DYiðtÞ ¼ YiðtÞ � Yiðt � 1Þj j[ 4rDYi
� 41 cm ð7Þ

with a significance level a ¼ Pð Zj j[ 4Þ ¼ 0:006%. The

probability of ‘‘false alarms’’ is therefore extremely low.

On the other hand, when H0 is not rejected, this does not

mean that there are no cycle slips. A alternative hypothesis
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Fig. 1 An example of ionospheric effect variation in time. Station:

Como (Italy). Receiver/antenna: TPS ODYSSEY-E/TPSCR3_GGD

CONE. Day: 2007-12-2
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test is setup by computing, for different integer values

dNi [ 0, the probability of missed detection as

b ¼ P Z [
dNiki � 4rDYi

rDYi

� �
ð8Þ

i.e., the probability that H0 is incorrectly not rejected when

actually dNi 6¼ 0 (Fig. 3).

The amplitude of cycle slips in Y1, Y2, Y3 for dN1, dN2,

dN3 varying from 1 to 5 (higher slips are surely detected) is

shown in Fig. 4. It turns out that only the cycle slips rep-

resented by dots in Fig. 4 have a probability b\ 0.01%

that we consider acceptable; this limit value of b is com-

puted from (8) for i = 2 and dN2 = 3. The other cycle

slips, corresponding to the cases dN1j j ¼ 1; 2; 3; dN2j j ¼
1; 2 and dN3j j ¼ 1; 2, are called from here on ‘‘small

jumps’’ and are represented by stars in Fig. 4. They are

considered non-detectable by the combinations (2) and

therefore have to be submitted to a further testing

procedure.

Small jumps

In order to detect the remaining small jumps, the noise

level of the data combination has to be reduced. This is

done by combining only GPS phase observations in a

geometry-free and ionosphere-free linear combination:

Y4ðtÞ ¼ a41L1ðtÞ þ a42L2ðtÞ þ a43L3ðtÞ ð9Þ

with a41 = 14/65, a42 = -79/65 and a43 = 1, derived

from the following conditions:

a43 ¼ 1

a41 þ a42 þ a43 ¼ 0

a41 þ K12 a42 þ K13a43 ¼ 0

8<
: : ð10Þ

The resulting noise STD rY4
is at the 3 mm level, much

lower than the one of combinations (2).

Since Y4 is an ionosphere-free combination and assum-

ing again that the measurement noise is independent in

time, the variance of the time variation DY4 can be simply

computed as:

r2
DY4
¼ 2r2

Y4
ð11Þ

Moreover, assuming that DY4 is normally distributed,

the hypothesis

H0 : dN1 ¼ dN2 ¼ dN3 ¼ 0 ð12Þ

is rejected, i.e., a cycle slip is detected, if

DY4ðtÞ ¼ Y4ðtÞ � Y4ðt � 1Þj j[ 4rDY4
� 1:8 cm ð13Þ

with a significance level a = 0.006%.

The values of the jumps in Y4 for all the possible

combinations of three cycle slips that are not yet detectable

are shown in Fig. 5. The number of slip combinations (dN1,

dN2, dN3) under test, for dN1j j � 3; dN2j j � 2; dN3j j � 2 and
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Fig. 2 Histogram of the time variation of the ionospheric effect of

data from Fig. 1
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Fig. 3 Significance level a and risk of second kind b for cycle slip

detection tests on DY1, DY2 and DY3
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slips by DY1, DY2 and DY3 using the threshold in dash line
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excluding the no-slip case (0, 0, 0), is equal to 7959

5-1 = 174. The only slip combinations that are not seen

by DY4 are (-2, -2, -2), (-1, -1, -1), (?1,?1,?1) and

(?2, ?2, ?2), i.e., simultaneous cycle slips with the same

amplitude in all three carriers (dN1 = dN2 = dN3 =-2,

-1,1,2). Note that b & 0 for all other detected cycle slips.

Particular cases

In order to deal with the undetected cycle slips (dN1 = dN2 =

dN3 = dN), a tailored linear combination of phase obser-

vations is finally introduced:

Y5ðtÞ ¼ a51L1ðtÞ þ a52L2ðtÞ þ a53L3ðtÞ ð14Þ

with a51 ¼ 1; a52 ¼ 0:37 and a53 ¼ �0:63. This is a

geometry-free combination that maximizes the ratio

between the squared amplitude of the smallest jump,

corresponding to dN1j j ¼ 1, and the variance of the time

differences DY5:

a51 ¼ 1

a51 þ a52 þ a53 ¼ 0

max
a52 ;a53

a51k1þa52 k2þa53k3ð Þ2
r2

DY5

� �

8>><
>>:

ð15Þ

where

r2
DY5
¼ 2r2

Y5
þM2

5r
2
DI ð16Þ

r2
Y5
¼ a2

51r
2
L1
þ a2

52r
2
L2
þ a2

53r
2
L3

ð17Þ

M5 ¼ a51 þ K12a52 þ K13a53: ð18Þ

The resulting noise STD rY5
is at the 2.5 mm level.

Therefore, since a cycle slip equal to (?1, ?1, ?1)

produces a jump of 8 cm, all cycle slips with the same

amplitude in the three carriers should be detected if the

ionosphere variation between two consecutive epochs is

less than 7 cm, which is a very high value under general

atmospheric conditions.

More precisely, observing that rDY5
� 4 mm and

assuming that DY5 is normally distributed, the hypothesis

H0 : dN ¼ 0 ð19Þ

is rejected, i.e., a cycle slip is detected, if

DY5ðtÞ ¼ Y5ðtÞ � Y5ðt � 1Þj j[ 4rDY5
� 1:7 cm ð20Þ

with a significance level a = 0.006%. Figure 6 shows that

all the analyzed cycle slips have an amplitude in Y5 that

allows their detection. In addition, b � 0 for all of them.

Amplitude determination procedure

Once the epoch has been detected, the problem is to esti-

mate the amplitude of the jump, i.e., the integer number of

cycles slipped in each of these carriers. In the proposed

method, the cycle slip amplitude estimation is based on

linear combinations of phase observations. A rough esti-

mate of the cycle slip amplitudes can be computed as:

d ~Ni ¼ round
DYi

ki

� �
ð21Þ

with i = 1, 2, 3.

By comparing the carrier wavelengths with the noise

level of DYi ðrDYi
� 10 cmÞ, we can state that the true

cycle slip amplitudes are in the range of dNi ¼ d ~Ni þ dni

with dni ¼ �2;�1; 0;þ1;þ2. In order to determine the

correct values, we consider the phase combinations

L12ðtÞ ¼ L1ðtÞ � L2ðtÞ
L13ðtÞ ¼ L1ðtÞ � L3ðtÞ

ð22Þ

and their differences in time

DL12ðtÞ ¼ L12ðtÞ � L12ðt � 1Þ
DL13ðtÞ ¼ L13ðtÞ � L13ðt � 1Þ: ð23Þ

The selected cycle slip amplitudes with respect to dni

are those minimizing the following target functions
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Fig. 5 Detected (dots) and undetected (stars) cycle slips by DY4.
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/12ðtÞ ¼ DL12ðtÞ � ðd ~N1k1 � d ~N2k2Þ � ðdn1k1 � dn2k2Þ
�� ��

/13ðtÞ ¼ DL13ðtÞ � ðd ~N1k1 � d ~N3k3Þ � ðdn1k1 � dn3k3Þ
�� ��:

ð24Þ

The question is whether these target functions are robust

enough to discriminate among all possible 125 combinations

of cycle slip amplitudes that include the case of no-slip. The

answer is positive only if the following two conditions

1

2
D12ðdn1; dn2; dm1; dm2Þ[ 4rDL12

1

2
D13ðdn1; dn3; dm1; dm3Þ[ 4rDL13

ð25Þ

with

D12ðdn1; dn2; dm1; dm2Þ

¼ ðdn1k1 � dn2k2Þ � ðdm1k1 � dm2k2Þj j
D13ðdn1; dn3; dm1; dm3Þ

¼ ðdn1k1 � dn3k3Þ � ðdm1k1 � dm3k3Þj j

ð26Þ

are both verified for all dni; dmi ¼ �2;�1; 0;þ1;þ2 such

that ðdn1; dn2Þ 6¼ ðdm1; dm2Þ and ðdn1; dn3Þ 6¼ ðdm1; dm3Þ.
In this case, the semi-distance between any two points in

the lattice ðdn1; dn2; dn3Þ with dni ¼ �2;�1; 0;þ1;þ2 is

larger than 4r. The implication is that the selected mini-

mum of (24) cannot have an alternative with a reasonable

probability, i.e., the probability of a wrong decision is

P Z [ 4ð Þ ¼ 0:003%. If both conditions (25) are verified,

we can reasonably state that the noise of the phase obser-

vations cannot bias the amplitude estimation.

The result for the first condition (25) is shown in Fig. 7:

the only two uncertain cases of ðdn1; dn2Þ with a semi-

distance in L12 below the threshold are as follows:

• (-2, -2) that could be confused with (?2, ?1)

• (-2, -1) that could be confused with (?2, ?2)

The same uncertain cases can be found for ðdn1; dn3Þ as

a consequence of the close values of k2 and k3.

If the uncertainty is just in one of the two target func-

tions (24), then the value of dn1 can be determined and can

be used to solve the uncertainty in the other target function,

i.e., the only cases of ðdn1; dn2; dn3Þ that cannot be dis-

criminated by combining the two target functions are as

follows:

• (-2, -2, -2) versus (?2, ?2, ?1)

• (-2, -1, -2) versus (?2, ?2, ?1)

• (?2, ?1, ?2) versus (-2, -2, -1)

• (?2, ?2, ?2) versus (-2, -1, -1)

Therefore, a final combination

Y6ðtÞ ¼ a61L1ðtÞ þ a62L2ðtÞ þ a63L3ðtÞ ð27Þ

is introduced with a61 ¼ 1; a62 ¼ �2:78 and a63 ¼ �1:78.

Observing that the absolute difference between two cycle

slip amplitudes in Y6 is the same for all four cases

mentioned before, i.e., it is equal to

d6 ¼ 4a61k1 þ 3a62k2 þ 3a63k3j j: ð28Þ

The coefficients of the linear combination (27) are

derived by imposing the following conditions:

a61 ¼ 1

a61 þ a62 þ a63 ¼ 0

max
a62 ;a63

d2
6

r2
DY6

� �

8>><
>>:

ð29Þ

where

r2
DY6
¼ 2r2

Y6
þM2

6r
2
DI ð30Þ

r2
Y6
¼ a2

61r
2
L1
þ a2

62r
2
L2
þ a2

63r
2
L3

ð31Þ

M6 ¼ a61 þ K12a62 þ K13a63: ð32Þ

This means that Y6 is a geometry-free combination that

maximizes the ratio of the squared difference between two

uncertain cycle slips and the variance of the data time

variations. The resulting noise STD rY6
is close to 1 cm.

At this point, the following target function to be mini-

mized is defined

/6ðtÞ ¼ DY6ðtÞ � a61d ~N1k1 þ a62d ~N2k2 þ a63d ~N3k3

� ���
� a61dn1k1 þ a62dn2k2 þ a63dn3k3ð Þj

ð33Þ
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Fig. 7 Uncertain cycle slip amplitudes (stars) with a semi-distance
1
2

D12 dn1; dn2; dm1; dm2ð Þ smaller than the 4r threshold (dash line).

The minimization of the target function /12ðtÞ is not decisive to

discriminate between them
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which is capable of solving the remaining uncertainty on

ðdn1; dn2; dn3Þ, because the semi-distance between two

uncertain cases in Y6 is in the order of 3rDY6
. This is

slightly less conservative than conditions (25), but it is

acceptable also because there is a very low probability

getting at this final test.

Application to the case of Galileo

The expected nominal noise level of the Galileo code

pseudorange observations is lower than that for the mod-

ernized GPS. In particular, in case of Galileo, we are

expected to have rP1
¼ 0:07 m and rP2

¼ rP3
¼ 0:04 m

(O’Keefe et al. 2005, B. Arbesser-Rastburg, personal

communication).

As a consequence of the STD of these pseudorange

observations, the noise STD of the combinations Y1; Y2; Y3

becomes rY1
¼ 2:6 cm. This means that, in principle, the

presence and the amplitude of cycle slips on L2 and L3 can

be directly detected by using Y2 and Y3, respectively. In the

case of L1, we need also the combination Y4 to identify

slips of one cycle only; since the amplitude estimated by Y1

has an uncertainty of ±1, we can determine the right

number of integer cycles slipped on L1 with the support of

L12 or L13. It is clear that the procedure is much easier in

case of Galileo, provided that this nominal accuracy is

confirmed with real data in the future.

Numerical tests

The capability of the method to detect and repair cycle

slips has been tested in two different situations: simulated

data with cycle slips and real triple-frequency GPS data

with artificial cycle slips.

Simulated data

The performance of the proposed method is assessed by

simulated data first. A time series of 5,000 values is con-

sidered with a known jump equal to (0, -1, -1) at epoch

s ¼ 1; 250. The ionospheric effect is simulated by using

L1 � L2 observations coming from 1-second real GPS data.

The resulting signal in Y1, Y2 and Y3 is shown in Fig. 8. It

can be seen that the discontinuity is quite embedded into

these linear combinations and cannot be detected by time

differentiation (Fig. 9). On the other hand, the jump is

clearly revealed in Y4 thanks to the improved signal-to-

noise ratio (Fig. 10). Figure 11 shows the values of

differencing Y4 in time. The linear combination Y5 is dis-

played in Fig. 12 for the sake of completeness, but it is not

used in the cycle slip epoch detection.
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From the numerical point of view, the results of the tests

(7), (13), (20) are as follows:

• DY1(s) = 30.3 cm [ 41.3 cm

• DY2(s) = 4.4 cm [ 41.4 cm

• DY3(s) = 4.3 cm [ 41.4 cm

• DY4(s) = 5.5 cm [ 1.8 cm

• DY5(s) = 26.0 cm [ 1.7 cm

This means that the jump is detected by Y4 at the correct

epoch s ¼ 1; 250.

Regarding the amplitude estimation, the initial estimates

are d ~N1 ¼ 2; d ~N2 ¼ 0 and d ~N3 ¼ 0 according to (21).

Considering a range of ±2 around these estimates, the

minima of the target functions (24) are as follows:

• min /12ðsÞ½ � ¼ 1:4 cm for ðdn1; dn2Þ ¼ ðþ2;þ2Þ
• min /13ðsÞ½ � ¼ 1:3 cm for ðdn1; dn3Þ ¼ ðþ2;þ2Þ

corresponding to the uncertain case ðdn1; dn2; dn3Þ ¼
ðþ2;þ2;þ2Þ that can be confused with (-2, -1, -1), as

explained in Sect. 3.2 and shown in Fig. 13.

Testing the two alternatives by using the target function

(33), the corresponding values are

• /6ðsÞ ¼ 5:4 cm for ðdn1; dn2; dn3Þ ¼ ðþ2;þ2;þ2Þ
• /6ðsÞ ¼ 3:2 cm for ðdn1; dn2; dn3Þ ¼ ð�2;�1;�1Þ
and therefore the estimated ðdn1; dn2; dn3Þ is modified to

(-2, -1, -1). Recalling that dN̂i ¼ d ~Ni þ dni, the final

estimate of the cycle slip amplitude is ðdN̂1; dN̂2; dN̂3Þ ¼
ð0;�1;�1Þ which corresponds to the true one.

The method has been tested on 1,000 cases by adding

cycles slips at random positions and with random ampli-

tudes. All the cases have been correctly detected.

Real triple-frequency GPS data

In order to evaluate the performance of the method with

real data, artificial jumps have been added to 1-second

triple-frequency GPS data taken from ftp://cddis.gsfc.nasa.

gov/pub/gps/data. In particular, data corresponding to the

day 2011-02-28 taken from the station of WTZZ (Wettzell,

Germany) are considered. Only satellite PRN1 has triple-

frequency GPS data therefore only this satellite is consid-

ered. The noise of the pseudoranges in this data set is close

to the values assumed in our method. This is 16 cm level

for the first one, 17 cm for the second one and 10 cm for

the third one. First, our program was used on this data set

and no cycle slips were detected. Then, some artificial

jumps were added to be sure that the program detects the

correct epoch and estimates the correct amplitude, since the
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Fig. 13 Values of the target function /12ðsÞ for all possible cases of

(dn1, dn2). The cycle slip amplitude in L12 is uncertain, because the

two smallest values of /12ðsÞ are very similar: /12ðsÞ ¼ 1:5 cm for

(dn1, dn2) = (-2, -1), /12ðsÞ ¼ 1:4 cm for (dn1, dn2) = (?2, ?2)
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epoch and the amplitude of the jumps are known a priori.

As it is shown in Table 2, all artificial jumps added in the

data set are correctly detected and estimated.

We would like to mention that 30-second triple-fre-

quency GPS data belonging to the satellite PRN25 and

acquired from station UNB3 (University of New Bruns-

wick, Canada) are also available in the above cited ftp-

server. However, this data set has not been analyzed

because it contains strong variations of pseudorange noise

(Bakker et al. 2011) which are not expected from future

modernized GPS signals.

Conclusions

Tailored linear combinations of GNSS triple-frequency

observations are defined to solve cycle slip detection and

correction in undifferenced GNSS observations. The

method can be applied in real time because it is compu-

tationally easy and requires only comparisons between

values of two consecutive epochs. The method has been

tested on modernized GPS simulated data, showing that all

combinations of simultaneous cycle slips in the three car-

riers can be detected and repaired under the considered

hypothesis. Moreover, in the rare event that a false alarm

happens, i.e., a cycle slip is detected but is not present in

the data, a zero amplitude is always correctly estimated.

Furthermore, the method has been tested on 1-second real

triple-frequency GPS data with levels of pseudorange noise

close to 15 cm for the first and second carrier and close to

10 cm for the third one. All artificial jumps added to real

data have been correctly detected and estimated. As for the

Galileo satellites, the nominal noise level of the code

observations is expected to be lower than that assumed in

our method. Consequently, the procedure will be even

easier, requiring only a smaller number of combinations.

As to future work, the method will be checked with

other programs that deal with the cycle slip problem if

available. Similar linear observation combinations could be

also used to deal with the problem of integer ambiguity

resolution.
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Table 2 Artificial cycle slips in real GPS data

True epoch True amplitude Estimated epoch Jump class Difference in time (m) Estimated amplitude

57 (1, 1, 1) 57 Particular case DY5 = -0.084 (1, 1, 1)

152 (2, 2, 2) 152 Particular case DY5 = -0.159 (2, 2, 2)

332 (1, 0, 1) 332 Small DY4 = 0.291 (1, 0, 1)

392 (0, 0, 1) 392 Small DY4 = 0.248 (0,0,1)

408 (3, 3, 3) 408 Big DY1 = 0.591 (3, 3, 3)

DY2 = 0.752

DY3 = 0.784

408 (3, 3, 2) 408 Big DY1 = 0.591 (3, 3, 2)

DY2 = 0.752

DY3 = 0.520

408 (3, 2, 2) 408 Small DY4 = 0.039 (3, 2, 2)

511 (2, 1, 1) 511 Small DY4 = 0.041 (2, 1, 1)

511 (1, -1, 0) 511 Small DY4 = 0.339 (1, -1, 0)

515 (5, 5, 5) 515 Big DY1 = 0.992 (5, 5, 5)

DY2 = 1.260

DY3 = 1.314

517 (3, 2, 2) 517 Big DY1 = 0.682 (3, 2, 2)

DY2 = 0.600

DY3 = 0.621

517 (1, 3, 2) 517 Big DY1 = 0.302 (1, 3, 2)

DY2 = 0.844

DY3 = 0.621

517 (-1, 0, 0) 517 Small DY4 = 0.041 (-1, 0, 0)

517 (-2, -1, -1) 517 Small DY4 = -0.039 (-2, -1, -1)

517 (0, -1, -1) 517 Small DY4 = -0.042 (0, -1, -1)

The epoch and amplitude of the jump were estimated by the proposed method
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algoritmos para el futuro sistema GNSS multifrecuencia’’ with ref-

erence AYA2008-02948.
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