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Abstract Stand-alone, unaided, single frequency, single

epoch attitude determination is the most challenging case

of GNSS compass processing. For land vehicle applica-

tions, the baseline approximately lies in the plane of the

local geodetic horizon. This provides an important con-

straint that can be exploited to directly aid the ambiguity

resolution process. We fully integrate the constraint into

the observation equations, which are transformed orthog-

onally. Our method can acquire the high-quality float

solution by means of a heading search strategy. The fixed

solution is obtained by weighted constrained integer least

squares for each possible heading. The correct solution is

identified by three consecutive steps: Kolmogorov–Smir-

nov test, heading verification, and global minimizer of the

fixed ambiguity objective function. The analysis focuses on

single frequency, single epoch land vehicle attitude deter-

mination using low-end GPS receivers with very low pre-

cision of carrier phase and code measurements. The error

analysis is given for choosing a proper baseline length in

practical application. Experimental results demonstrate that

this scheme can improve the ambiguity success rate for

very short baseline.

Keywords GPS � Attitude determination � Integer

ambiguity resolution � Constrained integer least squares

Introduction

GPS-based attitude determination is a rich field of current

studies, with a wide variety of challenging applications on

land, sea, air, and space. Carrier phase integer ambiguity

resolution is the key to fast and high-precision attitude

determination. Once this has been done successfully, the

carrier phase data will act as very precise pseudorange

data, thus making very precise attitude determination

possible.

Recent attitude determination methods make use of the

LAMBDA method (Lin et al. 2004; Monikes et al. 2005;

Hide et al. 2007; Wang et al. 2009), as this method is

known to be efficient and optimal (Teunissen 1995, 1999;

Verhagen 2004). Continuous carrier phases at enough

epochs should be observed to obtain an accurate float

solution. However, due to the loss of lock and noise dis-

turbance, cycle slips often occur in the land vehicle

application. Any incorrect reparation of cycle slips will

affect all subsequent observations. Attitude determination

in single epoch is insensitive to cycle slips, because this

technique uses only the fractional value of carrier phase

measurement. Also, single frequency GPS receivers are

widely used because of lower cost. Therefore, the chal-

lenge is to perform successful and efficient integer ambi-

guity resolution for the unaided, single frequency, single

epoch case (Teunissen 2010a).

However, single frequency, single epoch ambiguity

resolution is generally not possible with LAMBDA, unless

the number of tracked satellites is high and the code pre-

cision is very good (Teunissen 2010a). In fact, the standard

LAMBDA method has been developed for unconstrained

and/or linearly constrained GNSS models; it is therefore

not necessarily optimal for the GNSS attitude determina-

tion problem, for which often the baseline length is known
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as well (Teunissen et al. 2010b). In order to integrate the

nonlinear baseline constraint into the ambiguity objective

function, the constrained (C-) LAMBDA method has been

presented for any GNSS compass model (Teunissen 2006).

The C-LAMBDA method is first applied for single epoch,

single frequency attitude determination applications in

Buist (2007). This method leads to a strong reduction in the

time to fix (Giorgi and Teunissen 2009).The constrained

integer least-squares theory has been described in detail in

Teunissen (2010a).

By the GNSS model strength theory, high GPS ambi-

guity success rates require very high carrier phase and code

measurement precision for the single frequency single

epoch case (Teunissen 2010a). Because the carrier phase

and code measurement precision are both very low for

low-end GPS receivers, the success rates are too low for

practical applications. In this contribution, we focus on

single frequency single epoch land vehicle attitude deter-

mination using low-end GPS receivers. For land vehicle

applications, the baseline vector approximately lies in the

plane of the local geodetic horizon. With this constraint,

our method improves the quality of the float solution,

thus it has a high success rate for land vehicle attitude

determination.

We first introduce briefly the GPS attitude determination

and GNSS compass model. Next, we describe the single

frequency, single epoch attitude determination using dou-

ble-differenced (DD) phase and code. We then describe our

method for single frequency, single epoch land vehicle

attitude determination and discuss the empirical success

rates and average computing time obtained from static and

dynamic experiments. Comparisons with the DD method

are also included.

Attitude determination and GNSS compass model

For land vehicle applications, a two-antenna system can be

used to provide observability of the heading and pitch. If

the baseline vector is parameterized with respect to the

local North-East-Up frame, the heading H and pitch P

can be computed from the baseline coordinates bN, bE,

and bU as

H ¼ arctan
bE

bN
; P ¼ arctan

bU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
N þ b2

E

p ð1Þ

For single baseline, the GNSS model is given by the linear

observation equations (Teunissen 1997):

E Yð Þ ¼ Aaþ Bb; D Yð Þ ¼ QY ; a 2 Zn; b 2 R3 ð2Þ

where Y is the given GNSS data vector, and a and b are the

ambiguity vector and baseline vector of order n and 3,

respectively. E(�) and D(�) denote the expectation and

dispersion operators, respectively, and A and B are the

given design matrices that link the data vector to the

unknown parameters. The variance matrix of Y is given by

the positive definite matrix QY. After observing enough

epochs, the float solution â and its variance–covariance

matrix Qâ can be obtained by the least-squares method.

Thus, integer ambiguity estimation reduces to be solving an

optimal quadratic equation:

min â� ak k2
Qâ
; a 2 Zn ð3Þ

This problem can be solved by the LAMBDA method

with high efficiency. Assuming that a is known, the

least-squares solution for b can be written as (Teunissen

2006)

b̂ að Þ ¼ BT Q�1
Y B

� ��1
BT Q�1

Y Y � Aað Þ ð4Þ

The variance–covariance matrix is given by

Qb̂ að Þ ¼ BT Q�1
Y B

� ��1 ð5Þ

If the baseline length is assumed to be constant, the

resulting model reads as

E Yð Þ ¼ Aaþ Bb; D Yð Þ ¼ QY ; a 2 Zn; b 2 R3; bk k ¼ l

ð6Þ

where l denotes the known baseline length. Then, the

integer least-squares principle with quadratic equality

constraints is used to formulate the following cost

function (Park and Teunissen 2009)

min
a2Zn

â� ak k2
Qâ
þ min

b2R3; bk k¼l
b̂ að Þ � b
�

�

�

�

�

�

2

Qb̂ að Þ

� �

ð7Þ

In order to do proper justice to the priori information, the

nonlinear baseline constraint should be considered as

observable, thus a more realistic extended GNSS

compass model is presented (Teunissen 2010a):

E Yð Þ ¼ Aaþ Bb; D Yð Þ ¼ QY ; a 2 Zn

EðlÞ ¼ bk k; D lð Þ ¼ r2
l ; b 2 R3

ð8Þ

The nonlinear baseline constraint receives a proper

weighting in its minimization as

min
a2Zn

â� ak k2
Qâ
þmin

b2R3
H a; bð Þ

� �

with

H a; bð Þ ¼ b̂ að Þ � b
�

�

�

�

�

�

2

Qb̂ að Þ

þr�2
l l� bk kð Þ2 ð9Þ

This minimization problem can be resolved with the

weighted constrained (WC-) LAMBDA method, which has

been described in detail in Teunissen (2010a).
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Double-differenced method for single frequency

and single epoch

For two nearby antennas A and B, the single-differenced

carrier phase observation equation can be expressed as

k1 /i þ Ni
� �

¼ ri þ c dtA � dtBð Þ þ vi ð10Þ

where k1 is the wavelength of L1 carrier; ri is the single-

differenced geometric range of two receivers for satellite i;

/i and Ni denote the single-differenced fractional phase

and integer ambiguity, respectively; vi denotes the single-

differenced observable noise; dtA and dtB are clock biases

of receiver A and B; c is the velocity of light.

Since the altitude of a satellite is about 20,200 km above

sea level and the baseline length for land vehicle attitude

determination is only several meters, the lines of sight

(LOS) of two antennas to the same satellite are approxi-

mately parallel. Thus, ri can be treated as the projection of

the baseline vector b in the direction of LOS and expressed

as si�b where si is the unit vector heading to the GPS

satellite i (Misra and Enge 2006). The double-differenced

equations are attained through another difference between

two single-differenced equations that are referring to

satellite i and satellite j, respectively, so the double-dif-

ferenced equations are given by

k1 /ij þ Nij
� �

¼ si � s j
� �

� bþ vij: ð11Þ

For m = n ? 1 satellites in view, there are n independent

double-differenced phase measurement equations, and

without loss of generality, we have chosen satellite 1 as

the ‘‘reference’’ satellite. With r2
/ being the variance of the

observed phase, all of the equations can be expressed in

compact vector and matrix notation as

y/
D ¼ H �I½ � b

ND

� 	

þ v/
D; v/

D�N 0; 2r2
/Q


 �

ð12Þ

where

y/
D ¼

/21

/31

..

.

/m1

2

6

6

6

6

4

3

7

7

7

7

5

; ND ¼

N21

N31

..

.

Nm1

2

6

6

6

6

4

3

7

7

7

7

5

; v/
D ¼

v21

v31

..

.

vm1

2

6

6

6

6

4

3

7

7

7

7

5

;

H ¼ 1

k1

s2ð ÞT� s1ð ÞT

s3ð ÞT� s1ð ÞT

..

.

smð ÞT� s1ð ÞT

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð13Þ

In this model, the matrix Q has 2s on the main diagonal

and 1s in all off-diagonal positions due to the double

differencing (Misra and Enge 2006). However, because of

rank deficiency, the float solution cannot be determined by

(12). This can be solved with the combination of carrier

phase and code observations. Similarly, with r2
q being the

variance of code, all the code equations can be expressed as

yq
D ¼ H � bþ l

q
D; l

q
D�N 0; 2r2

qQ

 �

ð14Þ

Note that both phase and code are expressed in units of

cycles. Then, the combination expression of carrier phase

and code equations is given by

y/
D

yq
D

� 	

¼ H �I
H 0

� 	

b
ND

� 	

þ v/
D

lq
D

� 	

ð15Þ

This expression can be considered as the GNSS model if

each term is expressed as follows:

Y ¼ y/
D

yq
D

� 	

; A ¼ �I
0

� 	

; B ¼ H
H

� 	

;

QY ¼
2r2

/Q

2r2
qQ

" # ð16Þ

For attitude determination, the difficulty of estimating the

integer ambiguities depends very much on the strength of the

underlying model. If the measurement precision of carrier

phase and code are both very low, the model strength is too

weak to obtain the correct integer solution for the single

frequency and single epoch case. In order to quantify this,

simulation experiments were carried out by means of the

method used in Teunissen et al. (2010b). We focus on the

low-end receivers; thus, we assumed different noise levels,

ranging from 0.015 to 0.1 cycles for the undifferenced phase

data and from 1.5 to 10 cycles for the undifferenced code

data. For each simulation scenario, a set of 5000 Gaussian

distributed data vectors was generated. Table 1 shows the

1.6 m baseline, WC-LAMBDA, single frequency, single

epoch (SF/SE) success rates. The ambiguity success rates of

actual data are generally lower than the given digits because

they are often disturbed by multipath.

New method for single frequency and single epoch

The phase and code noise levels of low-end receivers are

too large to achieve very high success rates. However, for

land vehicle applications, the baseline approximately lies

in the plane of the local geodetic horizon. This constraint

can also be exploited to aid the ambiguity resolution pro-

cess. Our method is based on an orthogonal transformation

of single differences, which is a numerically stable

approach (Chang and Paige 2003). Here, the main steps are

re-derived and then our scheme is described in detail. For

m = n ? 1 satellites in view, the single-differenced phase

measurement equations can be expressed as
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y/
S ¼ E � b� NS þ ebþ v/

S ; v/
S �N 0; 2r2

/Im


 �

ð17Þ

where e ¼ 1; 1; . . .; 1ð ÞT of order m and b ¼ c � dtAð
�dtBÞ=k1 and

y/
S ¼

/1

/2

..

.

/m

2

6

6

6

6

4

3

7

7

7

7

5

; NS ¼

N1

N2

..

.

Nm

2

6

6

6

6

4

3

7

7

7

7

5

; v/
S ¼

v1

v2

..

.

vm

2

6

6

6

6

4

3

7

7

7

7

5

;

E ¼ 1

k1

s1ð ÞT

s2ð ÞT

..

.

smð ÞT

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð18Þ

Let P 2 Rm�m be an orthogonal transformation such that

Pe ¼
ffiffiffiffi

m
p

e1 and the Householder transformation is used to

form P as follows,

P ¼ I � 2uuT

uT u
; u � e1 �

1
ffiffiffiffi

m
p e

where e1 ¼ 1; 0; . . .; 0ð ÞT¼ 1 0ð ÞT
ð19Þ

By simple algebraic operations, we obtain for this matrix

P ¼
1
ffiffiffi

m
p �eT

ffiffiffi

m
p

�e
ffiffiffi

m
p Im�1 � �e��eT

m�
ffiffiffi

m
p

" #

� p1
�P

� 	

where �P ¼ �e
ffiffiffi

m
p Im�1 � �e��eT

m�
ffiffiffi

m
p

h i

�e ¼ 1; 1; . . .; 1ð ÞT

ð20Þ

Note that the order of �e is n.

In order to eliminate the clock bias, applying P to (17),

we obtain the initial orthogonal transformation of (17):

p1y/
S

�Py/
S

" #

¼ p1E
�PE

� 	

b� p1NS
�PNS

� 	

þ 1

0

� 	

ffiffiffiffi

m
p

bþ p1v/
S

�Pv/
S

" #

ð21Þ

Note that only the first equation involves the clock bias

term, the remaining part can be written as

�Py/
S ¼ �PEb� �PNS þ �Pv/

S ð22Þ

We have not used double differencing, but the double-

differenced integer ambiguity vector can also be obtained

by the following algebraic operations. Define the matrices

F and J as follows:

F � Im�1 �
�e�eT

m�
ffiffiffiffi

m
p ; J � ��e Im�1½ � ð23Þ

where F is nonsingular. From (23), it is easy to verify

that �P ¼ FJ. Note that the double-differenced integer

ambiguity vector can be expressed as

ND ¼ N2 � N1;N3 � N1; . . .;Nm � N1
� �T ð24Þ

Thus, the following formulation can be deduced

�PNS ¼ FJNS ¼ FND ð25Þ

Replacing �PNS in (22) by (25), we obtain

�Py/
S ¼ �PEb� FND þ �Pv/

S ;
�Pv/

S �N 0; 2r2
/In


 �

ð26Þ

where the double-differenced integer ambiguity vector

exists. The transformed noise vector still follows the same

distribution because orthogonal transformation will not

change the statistical properties of white noise (Chang and

Paige 2003). The new model (26) can be expressed as

GNSS model with the following notations:

Y ¼ �Py/
S ; B ¼ �PE; A ¼ �F; QY ¼ 2r2

/In ð27Þ

With (4), the least-squares solution can be written as

b̂ NDð Þ ¼ BT Q�1
Y B

� ��1
BT Q�1

Y Y þ FNDð Þ;
Qb̂ NDð Þ ¼ BT Q�1

Y B
� ��1 ð28Þ

The notation b̂ NDð Þ is used to show the dependence on ND

and emphasize that we consider b̂ �ð Þ a function. In order to

solve (9), the ambiguity float solution and its variance–

covariance matrix should also be obtained. Next, we will

achieve this by a heading search strategy.

In local coordinate frame with origin at the main

antenna A, si ¼ si
N ; s

i
E; s

i
U

� �T
consists the three coordinates

of the LOS unit vector of satellite i; ai is the elevation angle

of satellite i; the vector d is the projection of si on the plane

Table 1 Simulation-based SF/SE success rates for WC-LAMBDA for different measurement precision and different number of tracked satellites

(rl = 0.02 m)

r/ [cycles]

rq [cycles]

0.015 0.025 0.05 0.075 0.1

1.5 2.5 5 7.5 10

N = 5 50.4% 23.7% 3.5% 1.6% 1.0%

N = 6 86.1% 57.7% 27.3% 4.3% 2.2%

N = 7 98.4% 86.8% 42.1% 10.5% 2.8%

N = 8 99.7% 97.5% 58.3% 18.8% 5.9%
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of the geodetic horizon at station A; the plane S is defined

by si and d. ci is the angle between vector b and si; xi is the

angle between vector b and the vector d; the plane Q is

defined by b and d; hc is the dihedral angle between plane S

and plane Q. The detail relationships are given by Fig. 1.

We can construct the following equality:

cos ci ¼ cos ai cos xi þ sin ai sin xi cos hc ð29Þ

In the following, w is the heading angle of vector b and bi

is the azimuth angle of satellite i. For land vehicles, b

approximately lies in the plane of the local geodetic

horizon; thus, we have xi & w - bi and hr & p/2. Then,

it follows that

cos ci � cos ai cos w� bið Þ ð30Þ

where

bi ¼ arctan
si

E

si
N

; cos ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

si
Eð Þ

2þ si
Nð Þ

2
q

ð31Þ

With si � b ¼ bj j cos ci, Eb of (26) can be given by

Eb ¼ bj j
k1

cos a1 cos w� b1ð Þ
cos a2 cos w� b2ð Þ

..

.

cos am cos w� bmð Þ

2

6

6

6

4

3

7

7

7

5

ð32Þ

The true heading angle exists in the interval of [0, 2p), and

if the interval is divided into K parts equally, each part

denotes the subinterval [wk, wk?1) where

wk ¼ k
2p
K
; k ¼ 0; 1; 2; . . .;K � 1 ð33Þ

There must be some wk that is closest to the true heading

angle w, and the bias of the closest wk is smaller than p/K;

thus, the partition accuracy is p/K. Larger K can result in

higher accuracy. Now, we assume that proper K is

determined and then we will construct a vector hk as

follows:

hk ¼
l

k1

cos a1 cos wk � b1ð Þ
cos a2 cos wk � b2ð Þ

..

.

cos am cos wk � bmð Þ

2

6

6

6

4

3

7

7

7

5

ð34Þ

Then, subtract �Phk from both sides of (26) gives

�P y/
S � hk


 �

¼ �FND þ �P Eb� hkð Þ þ �Pv/
S ð35Þ

We can write an equivalent form as

�P y/
S � hk


 �

¼ �FND þ �Pwk ð36Þ

where wk ¼ pk þ v/
S with pk = (Eb - hk). If rl is very

small, then the baseline length |b| is nearly equal to l, pk can

be expressed as the following approximation:

pk �
�2l

k1

cos a1 sin
wþwk�2b1

2


 �

sin
w�wk

2


 �

..

.

cos am sin
wþwk�2bm

2


 �

sin
w�wk

2


 �

2

6

6

6

4

3

7

7

7

5

ð37Þ

Hence, if wk is close enough to the true heading angle w,

we can treat the noise term of (36) as approximately

normal. It is given as

�Pwk ! N 0; 2r2
/In


 �

with wk ! w ð38Þ

Thus, the float solution can be obtained as follows:

N̂D ¼ �F�1�P y/
S � hk


 �

ð39Þ

With the law of variance–covariance propagation, the

ambiguity variance matrix is given by

QN̂D
¼ 2r2

/ FT F
� ��1 ð40Þ

We can treat �P yu
S � hk

� �

as a new set of observations that

are only related to ambiguities. With (28), (39), and (40),

the minimization of (9) can be resolved with WC-

LAMBDA (Teunissen 2010a).The fixed solution can gen-

erally be obtained in this case.

If wk is far from the true heading angle w, then the

noise term cannot be treated as normal and the data vector

Y will mismatch the GNSS model above. Thus, if the

mismatched data are used as input, bad results will be

given as output. In other words, we will obtain incorrect

integer ambiguity vectors and baseline vectors in these

cases.

No matter whether data Y matches the model, the float

solution N̂k and QN̂k
can be computed with (39) and (40).

For each wk, an integer ambiguity vector N
^

k and a baseline

B

A

d

b

si

i

i

S

Q

i

Fig. 1 Baseline vector and the LOS unit vector of satellite i
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vector b
^

k that are assumed ‘‘optimal’’ are given by global

integer minimizer of ambiguity objective function

N
^

k ¼ arg min
Nk2Zn

F Nkð Þ; b
^

k ¼ arg min
b2R3

G N
^

k; bk


 �

ð41Þ

with the ambiguity objective function F(Nk) and the

conditional baseline objective function G(Nk, bk) given as

F Nkð Þ ¼ N̂k � Nk

�

�

�

�

2

QN̂k

þ min
bk2R3

G Nk; bkð Þ

G Nk; bkð Þ ¼ b̂ Nkð Þ � bk

�

�

�

�

�

�

2

Qb̂ Nkð Þ
þ r�2

l l� bkk kð Þ2 ð42Þ

In fact, most of the ‘‘optimal’’ integer ambiguity candidates

are incorrect because they are obtained using the

mismatched data. Only one is correct, which is given by

one or several wks that are close enough to the true heading

angle. In this process, we obtained the fixed N
^

k, b
^

k and the

minimum F N
^

k


 �

. We should also compute the heading Hk

that is used for the subsequent validation process. Next, we

put each k into the set X1:

X1 ¼ k 2 Zj0	 k	K � 1f g ð43Þ

In order to identify the most likely correct candidate, we

need the validation procedure. The following algorithm is

thus divided in three consecutive steps: Kolmogorov–

Smirnov residual test (K–S test), heading verification, and

global minimizer of the fixed ambiguity objective function.

In the K–S test, we put each candidate back into (26) and

compute the residual term rk as follows:

rk ¼ �Py/
S þ FN

^

k � PEb
^

k ð44Þ

For the correct candidate, the normality of residual term

will remain. The K–S test can be used to compare a sample

with a reference normal probability distribution. The K–S

statistic quantifies a distance between the empirical

distribution function of the sample and the cumulative

distribution function of the reference distribution

(Marsaglia et al. 2003). Here, the null hypothesis for the

K–S test is that rk has a normal distribution N 0; 2r2
/In


 �

.

The alternative hypothesis is that rk does not have that

distribution. If one cannot reject the null hypothesis, the

integer ambiguity vector and the baseline vector may be

correct. There are generally several candidates that accept

the null hypothesis, and we put them into the set X2:

X2 ¼ kjKS rkð Þ ¼ H0; k 2 X1f g ð45Þ

The second step is heading verification. For the wk, which

is very close to w, the heading Hk should not be far from

wk. Thus, if Hk � wkj j is smaller than the threshold Th, the

candidate k will be put into the set X3 for further validation:

X3 ¼ kkHk � wkj j\Th; k 2 X2f g ð46Þ

It is our experience that Th is set to p/K for practical

applications. In above, we have obtained the fixed integer

ambiguity vector N
^

k, which makes the ambiguity objective

function F Nkð Þ reach the minimum F N
^

k


 �

for each wk. In

the third step, we will search for the global minimum of

fixed ambiguity objective function. That is, for each k of

X3, compare F N
^

k


 �

and find out the optimal candidate that

makes F N
^

k


 �

be global minimum. It is given as

k0 ¼ arg min
k2X3

F N
^

k


 �

ð47Þ

Then, we obtain the true ambiguity vector NT, the baseline

vector bT, the heading and pitch angle as follows:

NT ¼ N
^

k0
; bT ¼ b

^

k0
; H ¼ Hk0

; P ¼ Pk0
ð48Þ

The implementation of the proposed scheme can be

summarized as follows:

• Step 1: Determine each wk and then obtain hk from

(34).

• Step 2: Compute the float solution from (39) and (40)

for each wk.

• Step 3: Estimate the fixed solutions N
^

k and b
^

k with

(41).

• Step 4: Obtain the set X1, F N
^

k


 �

and Hk from (43),

(42) and (1), respectively.

• Step 5: Compute the residual term rk with (44) and then

obtain the set X2 by K–S test.

• Step 6: Heading verification for all the candidates in X2

and then obtain the set X3 from (46).

• Step 7: Find the candidate that satisfies (47) and

denoted as k0.

• Step 8: Obtain the heading H and pitch P from (48).

If Step 5 or 6 is removed, the success rates will decrease.

With the two steps, the correct solution can be obtained

with the largest probability. The key of this method is to

make sure that the correct solution must exist in the can-

didates while k is tried from 0 to K - 1. This requires the

float solution to be accurate enough; thus, we can fix it to

the correct solution. In principle, the smaller the compo-

nent value of pk, the smaller its impact on the distribution

of wk and the more accurate is the float solution. In order to

reduce the impact of pk, we should make sure that some wk

is close enough to w; thus, larger K must be used for the

finer partition. If the wk closest to w is denoted as wk0 and

(w - wk0) is close to zero, the largest element of pk has the

following relationship with K:
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pk0ðiÞj jmax�
2l � s
k1

sin
w� wk0

2

� �

� l � s
k1

w� wk0ð Þ\ ls � p
k1K

;

i ¼ 1; 2; . . .;m where s ¼ max cos ai sin w� bið Þj j:
ð49Þ

In general, the absolute values of the other elements are

much smaller than the largest one. Because of the geometry

of satellites, the elevation ai may not be too low for each

satellite and only one or two satellite azimuth angles can

make (w - bi) close to p/2. Hence, if the largest element is

small enough, the other elements of pk can make little

impact on the normality of the model. With (49), choosing

a shorter baseline and a larger K can reduce the impact of

pk0. However, if K is too large, the search procedure will be

too time-consuming. In order to determine a proper K for a

length known short baseline, several experiments with

different K should be performed for comparing the success

rates and performance. Then, the proper K can be chosen

by the expected success rate and the acceptable computa-

tional time.

Figure 2 demonstrates the validation steps at one epoch.

The static baseline is placed on the roof from north to south

and its length is 0.4 m. The K = 72 was chosen; thus, the

bias of the closest wk to the true w is less than 2.5�, and it

will improve the quality of float solution greatly. We

compute Hk for each k, and the results are shown in

subfigure Hk of X1. As is shown, for several wks, which are

close enough, the same heading will be obtained because of

the same fixed ambiguity vector. However, the minimums

of their ambiguity objective functions are different,

because they also depend on the ambiguity float solutions

as in (42), which are not the same. The candidates that

accept the K–S test are shown in subfigure Hk of X2, and

the ones pass the heading verification are given in subfigure

Hk of X3 (Th is set to p/K). Finally, the optimal k is

determined at 36. The heading is 178.7274� and the pitch is

-0.8927�, which are both consistent with the truth.

Experimental results

We have implemented our method and the double-differ-

enced method with Matlab 7.0 and applied them to the real

measurements from two NovAtel 12 channels single fre-

quency C/A code GPS receivers with 1 Hz output. The

type is SUPERSTAR II, with code measurement precision

of 75 cm RMS and the carrier phase measurement preci-

sion of 1 cm RMS (differential channel). The integer

ambiguity estimators of both methods utilize the WC-

LAMBDA method and rl is set to 0.02 m.

Six static experiments with different baseline lengths

were performed, and all the data were collected on the roof.
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Fig. 2 Validation steps and

results for 0.4 m static baseline

(K = 72)
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Table 2 summarizes the experimental success rates for

both methods. DD means the float solution is obtained from

double-differenced method using least-squares principle.

During the experiments, data were collected with a 20

cutoff elevation angle, because the phase and code of low-

elevation satellites may not fit the normal distribution

(Tiberius and Borre 1999). The number of available sat-

ellites equals seven most of the time with a few drops to six

satellites. The average computing time are given in

Table 3. The elapsed times are measured at every epoch

using Matlab functions ‘‘tic’’ and ‘‘toc’’ at a PC with Intel�

Pentium(R) 4 CPU 2.40 GHz and 1,024 MB RAM.

As is shown in Table 2, the success rates of DD method

drop when larger baseline lengths are used. In fact, the

actual data are often disturbed by multipath and multipath

changes as baseline length increases; thus, the success rates

may drop (Park and Teunissen 2009). Another possible

reason is the size of ambiguity space. There are fewer

candidates in the ambiguity search space for the shorter

baseline, which may increase the probability of finding the

correct candidate in the large noise case. In particular, if

the baseline is close to one wavelength, the elements of

ambiguity vector simply equal to zero most of the time.

The success rates of our method are much higher if the

baseline length is less than 2 m. The success rates can be

improved further in some cases if K is set to 144. The

geodetic horizon plane constraint results in quite an

increase in robustness against multipath. However, for

3.024 m baseline, the success rate decreases so strongly

that the one with K = 72 is even lower than that of the DD

method. Because a longer baseline will make the data

mismatch the model, as is shown in (37) and (49), and the

extent of mismatch is too large to provide a success rate

that is higher than the DD method. The value K = 144 can

improve the success rate, and more results are given in

Table 4, which demonstrates that higher success rates can

be achieved by enlarging K. The partition accuracy, which

is given by p/K, can also be improved. It indicates that a

larger K can result in a finer partition, and if it is fine

enough, there must be some wk, which makes wk - w close

enough to zero; thus, the extent of mismatch can be

reduced and a higher success rate can be achieved, see also

(37) and (38).

As is shown in Tables 3 and 4, a longer baseline and a

larger K can both increase the computing time; thus,

K should be carefully defined and a shorter baseline is

recommended for practical applications.

The proposed method has also been tested processing

actual data collected during a dynamic experiment. In this

experiment, a car was equipped with two antennas and the

baseline length is 1.4 m. The car is moving along a narrow

rectangle block about 5 laps and both ends of the rectangle

block are arc-shaped. In the first lap, we drove slowly, and

then we accelerated for testing the performance of algo-

rithm with the higher velocity and acceleration. The posi-

tioning results are shown in Fig. 3 and the attitude results

are shown in Fig. 4 (K is set to 144). In Fig. 4, the lines

approximately vertical to the angle axis represent the

movement along a straight line and the dramatically

changing parts of the curve clearly show the 180� turn of

Table 2 Comparison of ambiguity success rates

Baseline length (m) DD method New method with K = 72 New method with K = 144

0.4 50.8% (933/1837) 91.2% (1676/1837) 90.5% (1663/1837)

0.8 18.4% (329/1791) 87.9% (1574/1791) 93.3% (1671/1791)

0.975 14.0% (404/2894) 92.1% (2665/2894) 95.6% (2767/2894)

1.496 8.78% (225/2562) 94.8% (2428/2562) 98.7% (2528/2562)

1.987 7.03% (168/2390) 93.2% (2228/2390) 92.9% (2220/2390)

3.204 4.85% (101/2081) 1.11% (23/2081) 70.7% (1472/2081)

Table 3 Comparison of average computing time (s)

Baseline

length (m)

DD

method

New method

with K = 72

New method

with K = 144

0.4 0.0207 0.8813 1.7791

0.8 0.0253 0.9185 1.8083

0.975 0.0264 0.9242 1.8195

1.496 0.0298 0.9558 1.8998

1.987 0.0369 0.9965 1.9762

3.204 0.1321 1.1407 2.2724

Table 4 Experimental results of 3.204 m baseline for new method

with different K

K Partition

accuracy (deg)

Success rates Computing

time (s)

72 2.5 1.11% (23/2081) 1.1407

90 2 4.08% (85/2081) 1.4164

120 1.5 46.9% (977/2081) 1.8816

144 1.25 70.7% (1472/2081) 2.2724

180 1 87.6% (1823/2081) 2.8405

240 0.75 91.4% (1902/2081) 3.7898
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the car. Because the block is narrow and the two arcs are

short, the turn is sharp and only takes several seconds. The

PDOP and number of satellites are also given in Fig. 5. In

this experiment, the epochs 224s, 384s, 385s, and 386s

failed.

It is worth to note that the success rate may vary by the

grade of receiver. However, once K is enlarged to a certain

extent, the success rate cannot be improved any further,

since the maximum success rate depends on the precision

of carrier phase measurement.

Conclusions

On the basis of the GNSS compass model, a single fre-

quency and single epoch GPS attitude determination

method for land vehicle applications is presented. This

method aims to perform high success rates using low-end

receivers for which the carrier phase and code precision are

both too low. For land vehicle applications, the baseline

vector approximately lies in the plane of the local geodetic

horizon. With this constraint and applying orthogonal

transformation, we construct a new set of observations that

are only related to the ambiguities. Thus, the high-quality

float solution can be acquired during the heading searching

process. Then, we estimate the integer ambiguities by

weighted constrained integer least-squares theory for each

possible heading. The correct solution is identified and

validated with three consecutive steps: K–S test, heading

verification, and global minimizer of the fixed ambiguity

objective function. Experimental results demonstrate that

our scheme can improve the ambiguity success rate for

very short baseline.
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