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Abstract Temporal correlation in network real-time

kinematic (RTK) data exists due to unmodeled multi-

path and atmospheric errors, in combination with slowly

changing satellite constellation. If this correlation is

neglected, the estimated uncertainty of the coordinates

might be too optimistic. In this study, we compute temporal

correlation lengths for network RTK positioning, i.e., the

appropriate time separation between the measurements.

This leads to more realistic coordinate uncertainty esti-

mates, and an appropriate surveying strategy to control the

measurements can be designed. Two methods to estimate

temporal correlation lengths are suggested. Several monitor

stations that utilize correction data from two SWEPOSTM

Network RTK services, a standard service and a project-

adapted service with the mean distance between the ref-

erence stations of approximately 70 and 10–20 km, are

evaluated. The correlation lengths for the standard service

are estimated as 17 min for the horizontal component and

36–37 min for the vertical component. The corresponding

estimates for the project-adapted service are 13–17 and

13–16 min, respectively. According to the F test, the pro-

posed composite first-order Gauss–Markov autocovariance

function shows a significantly better least-squared fit to

data compared to the commonly used one-component first-

order Gauss–Markov model. A second suggested method is

proposed that has the potential of providing robust corre-

lation lengths without the need to fit a model to the com-

puted autocovariance function.

Keywords GNSS � Network RTK � Temporal

correlation � Correlation length

Introduction

Temporal correlation is important when estimating the

uncertainty (GUM 1994) in positioning with network RTK

(real-time kinematic). Temporal correlations appear due to

multipath and antenna effects, atmospheric errors including

ionosphere and troposphere, and slowly changing satellite

constellation. Ignoring temporal correlations can lead to

overly optimistic uncertainty estimation of coordinates, in

particular for a short time of observation.

Howind et al. (1999) present a correlation study for

double differencing and baselines of 46–458 km length and

investigate the reliability of station coordinates considering

temporal correlation. The temporal correlation is described

by a first-order autoregressive process, using correlation

lengths of 5–20 min to fill up the nondiagonal elements of

the variance covariance matrix. They concluded that tem-

poral correlation must be taken into account to obtain

reliable station coordinates, especially for deformation

analysis where coordinate changes of up to 2 cm might

appear otherwise. Tiberius (2001) uses this process to

populate the elements in the variance–covariance matrix to

compute the variance of the mean value. This value is

subsequently compared to the variance of the mean value

based on a diagonal variance–covariance matrix, contain-

ing no temporal correlation. One of the main conclusions is

that the estimated standard deviation of the mean value

becomes too optimistic if the temporal correlation is

neglected. Teunissen and Amiri-Simkooei (2008) present

the least-square variance component estimation method

for estimating the parameters in the GPS stochastic model
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for raw range observables and position coordinates. They

exemplify the estimation of the autocovariance function

and the significance of results by the standard deviation of

the estimated variance components.

Kjørsvik (2002) demonstrates that the autocorrelation

function for network RTK positioning, based on the virtual

reference station (VRS) concept and short baselines of 7

and 12 km, decreases significantly slower than that for

single base RTK positioning. Vollath et al. (2002) and

Emardson et al. (2009) present correlation length estimates

for different error sources, including multipath, ionosphere,

and troposphere, all based on network RTK and the VRS

concept. These estimates are modeled assuming a first-

order Gauss–Markov process. The correlation lengths are

obtained at the normalized autocovariance value of 1/e,

which is a well-known approach for single GNSS error

sources. The ionospheric correlation length is estimated

as 7–17 min and the geometric correlation length as

8–73 min, which includes local effects such as troposphere.

These estimates are based on the time series of 24 h of

VRS data and baselines that are 19–31 km to the closest

reference station, for different parts of the world, including

Germany, USA, Japan, and Australia. Emardson et al.

(2009) estimate the correlation lengths as 4 min for mul-

tipath effects, 17 min for ionospheric effects, and 112 min

for tropospheric effects, based on a 40-km baseline in the

Swedish reference station Network SWEPOSTM.

The main purpose of this study is to quantify the tem-

poral correlation for network RTK positioning by esti-

mating correlation lengths. An important difference with

respect to previous studies is the emphasis on estimating

correlation lengths for position coordinates and not for

single-error sources as in Vollath et al. (2002) and

Emardson et al. (2009). Furthermore, many of the other

studies mentioned above did not directly intend to quantify

and estimate these kinds of correlation lengths. The corre-

lation length estimates in this study are specifically for net-

work RTK rovers and especially for the users of SWEPOS.

The correlation lengths can be used to form appropriate

surveying strategies to control and evaluate the measure-

ments. This will result in more realistic coordinate uncer-

tainty estimates compared to estimates obtained from a

short observation span. Suitable uncertainty levels for a

revisit of a point are presented in Odolinski (2010), com-

puted by the law of error propagation with a confidence

level of at least 95%. As an example, the uncertainty level

for the horizontal component was estimated to ±60 mm

and for the vertical component ±80 mm (ellipsoidal

height). If the deviation for the revisit from the previous

measurement(s) exceeds these uncertainty levels, a further

investigation into gross errors and falsely estimated

integer ambiguities should be conducted. Since the

uncertainty levels are computed based on a diagonal

variance–covariance matrix in the law of error propagation,

with no temporal correlation, the revisit should be per-

formed with an appropriate time separation between the

measurements. Consequently, correlation length estimates

for position coordinates are needed.

Two methods to calculate correlation lengths are sug-

gested. The first method is a composite first-order Gauss–

Markov process modeling the autocovariance function. The

second method utilizes data from the computed autoco-

variance function, and by comparing the variance of the

mean value, with and without temporal correlation, the

correlation length is obtained. The first section introduces

the concepts and methods. The section on results provides

estimates and analysis of the correlation lengths for differ-

ent baselines and identifies the composite first-order Gauss–

Markov process as the choice to model the autocovariance.

Method

The autocovariance function is introduced, and two dif-

ferent methods to estimate correlation lengths are sug-

gested. Whereas the equations are known, some novelty

can be found in the composite first-order Gauss–Markov

autocovariance function. This model contains additional

parameters and has its origin in the well-known one-com-

ponent model. The second suggested method estimates

correlation lengths without the need to fit a model to the

autocovariance function by least squares.

Autocovariance function

A stationary time series has a constant mean value and

variance. The probability density function is in this case

only dependent on the time lag s = t1-t2 and not on the

absolute times t1 and t2. The autocovariance function for a

stationary process is defined as follows:

CyyðsÞ � E yðtÞ � lf g yðt þ sÞ � lf g½ � ð1Þ

where y contains the measured values, t is time, l is the

true mean value approximated by the mean value y of all

measured values, and s is the lag time. Eq. (1) is estimated

as follows:

ĈyyðkÞ ¼
1

N � k

XN�k

i¼1

yi � �y½ � yiþk � �y½ �

ðk ¼ 0; 1; . . .;MÞ and ðM � NÞ
ð2Þ

where k ¼ 0; 1; . . .; M is the number of sampling time

increments with M � N much smaller than the total length

of the time series N, and s = kDt with Dt being the time

interval between the contiguous observations.
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Initially, it is important to correct for low-frequency

trends in the time series. In simple cases, only the mean

value needs to be removed, and in other cases a more

complicated trend removal is necessary. Trends should be

removed with care to avoid introduction of erroneous data

into the time series during the subtraction. The variance of

the least squares estimated autocovariance function, using

equal weights and for the case with a true mean value, is

given by (Teunissen and Amiri-Simkooei 2008):

r2
ĈyyðkÞ ¼

Ĉyyð0Þ2

akðN � kÞ; a0 ¼
1

2
and ak ¼ 1 for k 6¼ 0

� �
ð3Þ

This expression shows that increasing the time lag yields

larger standard deviations for the estimates of the autoco-

variance function (2), which makes sense since less data

are used.

Composite first-order Gauss–Markov process

The correlation length in the following approach is deter-

mined when the autocovariance function (2) reaches

Ĉyyð0Þ=e. If the measurements are separated by this cor-

relation length, some correlations still remain but are

reduced to Ĉyyð0Þ=e � 0:37 � Ĉyyð0Þ, which are conven-

tionally considered independent measurements. One way to

estimate this correlation length is to assume a first-order

Gauss–Markov process with autocovariance function:

CyyðsÞ ¼ ae�s=sc ð4Þ

where a is the amplitude and sc is the correlation length,

and the parameters are estimated by least squares. Eq. (4) is

a well-known model of the autocovariance for several

GNSS error sources such as ionosphere, troposphere, and

multipath (Vollath et al. 2002). However, Eq. (4) is

appropriate for the analysis of one error source at a time,

and GNSS observations contain all error sources combined.

Problems appear particularly for small time lags s when

white noise, multipath errors, and antenna effects are

assumed to dominate. Instead of (4), a composite first-order

Gauss–Markov autocovariance function is proposed:

CyyðsÞ ¼ a0 þ a1e�s=s1 þ a2e�s=s2 ð5Þ

where a1 and the correlation length s1 are assumed to be

associated with multipath errors and antenna effects and a2

and the correlation length s2 are assumed to pertain to the

atmospheric effects, which include ionosphere and tropo-

sphere. Finally, a0 is assumed to model the remaining part

which the other parameters are unable to handle. These

assumptions are based on the varying correlation length

estimated for different error sources (Vollath et al. 2002;

Emardson et al. 2009).

The parameter s2 is henceforth denoted ‘‘correlation

length’’, since atmospheric errors have been estimated to

have the longest correlation length, and all other errors are

at this point assumed to be uncorrelated or close to

uncorrelated. The nonlinear function (5) is fitted to the

estimated autocovariance function (2). The vector of the

function f is defined as

f ðsÞ ¼ a0 þ a1e�s=s1 þ a2e�s=s2 � ĈyyðsÞ ð6Þ

where s = kDt, k = 0, 1, …, M, and Dt = 1 s. The first-

order Taylor series expansion of the function f for row k is

given by

Jk ¼
of ðkÞ
oa0

of ðkÞ
oa1

of ðkÞ
os1

of ðkÞ
oa2

of ðkÞ
os2

� �

¼ 1 e�k=s1
k

s2
1

a1e�k=s1 e�k=s2
k

s2
2

a2e�k=s2

� � ð7Þ

The initial values for the unknown parameters c = [a0,

a1, s1, a2, s2] are obtained by trial and error. The least-

squares solution of the linearized equation system with unit

observational weights is

dc ¼ �ðJT JÞ�1JTf ð8Þ

where cþ dc represents the updated parameters. The

system (8) is iterated until dc & 0. The a posteriori

standard deviation of unit weight is then calculated as

r̂0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eTe
M � m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
eTe

M � 5

r
ð9Þ

In this expression, e represents the residuals, M is the

number of observations or rows in the J matrix, and m is

the number of unknowns, which in this case are the five

unknown parameters a0, a1, s1, a2, and s2. The variance–

covariance matrix of the estimated parameters is

Ĉcc ¼ r̂2
0ðJT JÞ�1 ð10Þ

Equal weights are pragmatically chosen in (8) since

1 month and 1 Hz frequency data are used for the

computation of (2). Consequently, the autocovariance

function (2) at time lag k = M has a high redundancy.

However, the estimates in the autocovariance function

(2) are correlated for some time lags since the same

observations are used for different lags. Nevertheless,

equal weighting should give realistic a0, a1, s1, a2, and

s2 estimates, although probably with somewhat

overoptimistic standard deviations for the estimated

parameters.

Combining ionospheric and tropospheric effects into

one atmospheric effect modeled by a2 and s2 might not be

fully correct. It has been shown that these effects have

significantly different separate correlation lengths.
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According to empirical data, the correlation coefficients

between the parameters obtained from (10) might in some

cases become considerably large. This correlation can be

explained by algebraic correlation in the formulation of the

least-squares solution due to the J matrix (7). On the other

hand, the condition number of the design matrix J is in all

cases sufficiently low to assure a large number of signifi-

cant digits of the estimated parameters. If another first-

order Gauss–Markov process term is added into (5) to

separately model the ionospheric and tropospheric effects,

which in reality would be desirable, it would result in even

higher correlation between the parameters. The conse-

quence could be an overparameterization leading to inter-

pretation and numerical problems when estimating the

parameters.

The correlation between the parameters in (5) leads to

the realization that it is not necessarily true that all atmo-

spheric effects are being absorbed by a2 and s2 but can

partly be absorbed by a0, a1, and s1 as well and vice versa.

Nevertheless, the correlation lengths can still be regarded

as an appropriate time separation to obtain uncorrelated

measurements for revisits with network RTK. The com-

posite first-order Gauss–Markov autocovariance function

(5) will henceforth be denoted ‘‘composite model’’, and the

one-component first-order Gauss–Markov autocovariance

function (4) will be denoted ‘‘one-component model’’.

The variance of the mean value and the number

of effective observations

We introduce another robust technique for estimating

correlation lengths and compare it with the previous

approach. A similar exposition can be found in Tiberius

(2001), but with the purpose of showing the differences

between the variance of the mean value obtained by

neglecting or considering temporal correlation and not to

specifically estimate correlation lengths.

The number of ‘‘effective observations’’ equals the

number of uncorrelated measurements. This number can be

used to estimate the correlation lengths between measure-

ments. Consider a large number of measurements, for

example n ¼ 3600 measurements with 1-s interval. With a

correlation length of 10 min, only n� ¼ 6 measurements

out of 3,600 are effective observations. This means that

only 6 out of 3,600 measurements are uncorrelated

measurements.

The variance–covariance matrix is given by the auto-

covariance function (1) as

Qij ¼ CyyðsijÞ ¼ Cyyðji� jjÞ ði; j ¼ 0; 1; . . .; nÞ ð11Þ

where sij is the time lag between measurement i and j. The

variance of the mean value is then given by the law of error

propagation as

r2
�x ¼

1

n2

Xn

i¼1

Xn

j¼1

Qij ð12Þ

If the measurements are uncorrelated, then Qij = 0 for

i = j and Qii = r2. The variance of the mean value for the

case without correlations is then defined as

r2
�x0
¼ 1

n2

Xn

i¼1

Qii ¼
1

n2
nr2 ¼ r2

n
ð13Þ

If the variance r2 of the measurements and the mean

value are known or realistically estimated, the number of

effective observations can be calculated. Eq. (12) is set

equal to (13), giving

r2

n�
¼ r2

�x ¼
1

n2

Xn

i¼1

Xn

j¼1

Qij

n� ¼
r2

r2
�x

¼ r2

1
n2

Pn

i¼1

Pn

j¼1

Qij

¼ n2r2

Pn

i¼1

Pn

j¼1

Qij

ð14Þ

The ratio of n to n�, multiplied by Dt, gives

X ¼ nDt

n�
ð15Þ

the correlation length X. The correlation length can finally

be compared to s2 obtained from the composite model (5).

Rover data from the SWEPOS Network

SWEPOS is a permanent GNSS reference station network

in Sweden. We used data from three monitor stations

(Vetlanda, Nol, and Marieholm) reconfigured as perma-

nent rovers. These monitor stations are all located in the

southern part of Sweden and receive correction data from

two SWEPOS Network RTK (VRS) services, the standard

service (NRTK) and a project-adapted service (PRTK),

with the mean distance between the reference stations of

approximately 70 and 10–20 km, respectively (Fig. 1). By

continuously logging RTK positions as latitude, longitude,

and ellipsoidal height with 1 Hz frequency, the stations

are used to evaluate the expected quality of the network

RTK positioning. Vetlanda is a monitor station for the

standard service (NRTK) located 26 km from the closest

reference station. It receives the VRS corrections as a

regular user, while Nol and Marieholm (PRTK) are

located 7 and 3 km from the closest reference station and

receive corrections for a fixed and pre-determined VRS

position. The latitudes and longitudes were transformed to

northing, easting in the SWEREF 99 reference frame, and

finally compared with 4 weeks of data used as true

benchmarks and computed with the Bernese software v

5.0.
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Results

Estimates and analyses of the correlation lengths for dif-

ferent baselines are presented, and justification is provided

in support of modeling the autocovariance with the com-

posite model. Correlation lengths are then estimated by the

second method and compared.

One-component model versus composite model

We first verify that the composite model (5) provides a

significantly better least-squared fit to data compared to a

one-component model (4). We begin with removing the

mean value of each coordinate component prior to the

calculation of the autocovariance function (2). The one-

component model (4) is then assumed for Vetlanda. Using

data for July 2009, the results for the height component

are seen in Fig. 2. The blue line is the estimated autoco-

variance function (2), whereas the red line denotes the

estimated one-component model (4). The parameter sc is

marked as a red dot. The standard deviation of unit weight

r̂0 is calculated by (9), using m = 2 for the two unknowns

a and sc. As stated earlier, problems appear particularly for

small time lags in the area of the green circle where white

noise, multipath errors, and antenna effects are dominating.

Figures 3, 4, and 5 represent the height, northing, and

easting components of station Vetlanda and the composite

model (5). The autocovariance function (2) is denoted in

blue, whereas the red line denotes the composite model (5)

estimated according to (6–8). The parameter s1 is marked

as a red dot and is assumed to show the correlation length

for multipath errors and antenna effects. The red triangle

indicates the assumed correlation length s2 for atmospheric

effects. Consequently, s2 is the time lag for which the

measurements are assumed to be uncorrelated or close to

uncorrelated, because when both the ionospheric and tro-

pospheric effects are uncorrelated, no other temporal cor-

relation is assumed to remain. The standard deviations

for a0, a1, s1, a2, and s2 are the square root of the diagonal

elements of the variance–covariance matrix (10). The

standard deviation of unit weight is calculated by (9) with

five unknowns.

Inspection of Figs. 2 and 3 and the respective standard

deviation of unit weight reveal that the composite model

(5) has a smaller sum of squared residuals than the one-

component model (4). This is expected since additional

parameters in a model usually tend to decrease the sum of

the squared residuals. In order to investigate the signifi-

cance of this improvement, the standard deviation of unit

weight for (4) and (5) is provided for all monitor stations

Fig. 1 Location of the monitor stations Vetlanda (NRTK), Nol, and

Marieholm (PRTK)
Fig. 2 Autocovariance function (2) and a least-squares one-compo-

nent model (4) for the height component. Data refer to station

Vetlanda and July 2009

Fig. 3 Autocovariance function (2) and least-squares composite

model (5) for the height component. Data refer to Vetlanda and July

2009
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and the height component in Table 1. The data are Vet-

landa (July through September), Marieholm (April and

May), and Nol (April and May).

The second and fourth columns represent the number of

degrees of freedom for the two models, which is seen to be

2,995 or greater for all cases; hence, the noticeable dif-

ferences in the standard deviation of unit weight are indeed

significant. This can easily be verified by the F test

(Bjerhammar 1973):

F ¼
eT

2
e2�eT

5
e5

p2�p1

� �

eT
5
e5

f5

¼
eT

2
e2�eT

5
e5

5�2

� �

eT
5
e5

M�5

ð16Þ

where e2 and p1 are the residuals and number of parameters

for the one-component model (4), and e5 and p2 are the

respective values for the composite model. The degree of

freedom for the composite model is f5. The null hypothesis

is that the composite model does not provide a significantly

better least-squared fit to data, with distribution Fp2-p1, f5.

The F ratio is compared to an upper critical value in a one-

side tailed table of the F-distribution, and even for a sig-

nificance level at 1%, the composite model (5) exceeds this

tabular value by far. Consequently, the null hypothesis is

rejected, and it can be concluded that (5) shows a signifi-

cantly better least-squared fit to data than (4).

Correlation length estimates

Inspecting Figs. 3, 4, and 5 again we see that the correla-

tion length s2 is estimated as 16–18 min for the horizontal

component and 33 min for the vertical component. The

autocovariance function (2) in these figures might be

expected to be noisy. However, when comparing to 24 h of

data of July 1, 2009, for Vetlanda and height component (Fig. 6), it can be concluded that the high redundancy

resulting from 1 month of 1 Hz data is responsible for the

less noisy appearance.

This conclusion is further supported by the estimated

standard deviation (3) of the autocovariance function in

Tables 2 and 3 for k = 1 and M s, where the small values

are explained by the high redundancy of data N. For a

smaller data set, say 24 h, the standard deviations would be

larger. Note that Eq. (3) is for the case with a true mean

value used in the calculation of (2); nevertheless, the high

redundancy of data probably mitigates this issue.

The horizontal component is in Table 3 given by the

mean value of northing and easting. Also, note that the

varying sizes of N are explained by time gaps in the data

due to re-initialization and removal of gross errors. How-

ever, these time gaps have been accounted for in the

computation of the autocovariance function (2) and the

related standard deviations (3).

Table 4 presents a summary of the correlation length s2

estimates for Vetlanda based on 3 months of data from July

Fig. 4 Autocovariance function (2) and a least-squares composite

model (5) for the northing component. Data refer to Vetlanda and July

2009

Fig. 5 Autocovariance function (2) and a least-squares composite

model (5) for the easting component. Data refer to Vetlanda and July

2009

Table 1 The standard deviation of unit weight and degree of freedom

for height and the one-component (4) and composite model (5)

Station/time One-component Composite

r̂0(mm2) M-2 r̂0(mm2) M-5

Vetlanda/July 6.93 8,998 2.13 8,995

Vetlanda/Aug 8.95 7,798 2.46 7,795

Vetlanda/Sep 6.10 7,198 1.63 7,195

Nol/April 3.47 4,198 0.76 4,195

Nol/May 4.71 4,198 0.98 4,195

Marieholm/April 2.20 3,598 0.56 3,595

Marieholm/May 2.66 2,998 0.37 2,995

Correlation length estimates
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through September 2009, assuming a composite model (5).

The horizontal correlation length s2 is given as the mean

value of s2 for northing and easting. The standard devia-

tions from (10) for s2 and the horizontal component are

estimated as a combined value between northing and

easting. Table 5 shows the respective results for stations

Nol and Marieholm, based on monthly data from April and

May 2009.

As seen in Tables 4 and 5, the magnitude of the corre-

lation length s2 differs a few minutes from month to month.

This is more obvious in Table 4 for the height component of

Vetlanda where the value for August differs from that of July

and September by 9 min. Imprecise tropospheric modeling

caused by different environments at the reference stations

and the receiver might cause these effects. Hence, an anal-

ysis of the humidity at the weather station Målilla located

close to Vetlanda was performed. No significant difference

between July and September was found for the humidity.

This correlation length difference could also be

explained by geomagnetic storms affecting the ionosphere.

Geomagnetic storms are measured by a kp index provided

from NOAA observatories for stations mostly located in

North America and one at Hartland, UK. Three days were

found to have quite active geomagnetic storms in August,

http://www.swpc.noaa.gov/ftpmenu/warehouse/2009.html

where geomagnetic field activity ranged from quiet to

major storm levels for August 30. A mean value of s2 for

the height component and for these 3 days was estimated

as 56.3 min, with rs2 = 0.22 min and r̂0 = 3.0 mm2. It

was thus concluded that the geomagnetic storms indeed

seem to affect the correlation length for August. In July and

September, only minor indications of sun activity were

found for 2 days, and consequently, these days were not

further investigated.

Number of effective observations

This approach, based on (11–15), provides correlation

lengths without the need to fit a model to the computed

autocovariance function as in (5). Additionally, the

approach can provide information as to whether or not the

estimated value s2 is reasonable.

In order to compute the number of effective observa-

tions, the autocovariance function (2) is used, which sub-

sequently yields the correlation lengths X via (11–15). For

these computations, we use k up to M listed in Tables 2

and 3. Also, the same monitor stations as in the previous

approach are used. The results are given in Tables 6 and 7.

Note again that all values for the horizontal component are

given by the mean value of northing and easting. The

monthly data were also divided into daily data, yielding

one Xi for each day i. Thus, a standard deviation estimate

of X could be computed by computing the RMS around the

‘‘true’’ monthly based value of X divided by the square root

of the number of days according to

rX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Xi�Xð Þ2
n

n

vuuut
ð17Þ

where Xi is the correlation length based on M and 24 h of

data for each day i, n is the total number of days for

1 month, and X is the correlation length based on 1 month

of data.

Fig. 6 Autocovariance function (2) and a least-squares composite

model (5) for the height component. Data for Vetlanda and July 1,

2009

Table 2 Standard deviation of the autocovariance function (3) for all monitor stations, height component, and k = 1 and M s

Station/time N M Ĉyyð0Þ (mm2) rĈyyð1Þ(mm2) rĈyyðMÞ(mm2)

Vetlanda/July 2,025,868 9,000 384.3 0.27230 0.30747

Vetlanda/Aug 2,178,566 7,800 458.9 0.31250 0.33450

Vetlanda/Sep 2,016,945 7,200 275.5 0.19560 0.21575

Nol/April 2,188,851 4,200 83.8 0.05716 0.06083

Nol/May 2,204,497 4,200 107.5 0.07299 0.07742

Marieholm/April 2,119,917 3,600 64.9 0.04507 0.04825

Marieholm/May 2,237,374 3,000 73.6 0.04961 0.05323
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Table 7 shows that the correlation length X for the

vertical component is close to the horizontal component

for the project-adapted service. The densification of the

network to 10–20 km between the reference stations for

this service decreases the correlation length X for the

vertical component, compared with Table 6, due to more

effective ionospheric and tropospheric modeling over short

baselines.

Conclusions

Two methods indicated by Eqs. (5) and (11–15) have been

suggested for estimating correlation lengths for network

RTK positioning. The composite first-order Gauss–Markov

model (5) provided a significantly better least-squared fit to

data compared to the normally used one-component first-

order Gauss–Markov model (4) (Figs. 2, 3; Table 1). The

F ratio (16) exceeds a one-sided tabular value from the

F-distribution by far for a significance level at 1%, and it

can thus be concluded that the composite model shows

good capability to model the autocovariance function for

network RTK positioning. Additionally, the approach in

(11–15) has shown the potential of providing robust cor-

relation lengths without the need to fit a model to the

computed autocovariance function. This is of great benefit

for smaller data sets, e.g., 24-h data sets, since the standard

deviation (3) of the autocovariance function worsens for

less data and consequently may lead to difficulties in

reaching convergence of the least-squares iteration (6–8).

The correlation lengths estimated in this study are

expected to be updated and recomputed when more mon-

itoring stations are installed in other parts of Sweden,

providing more data with different environmental and

spatial characteristics. Future analyses should include dif-

ferent parts of the ionospheric cycle and different weather

conditions. Additionally, the correlation lengths differ with

latitudes because ionospheric activities differ; the southern

part of Sweden is less affected than the northern part. The

ionosphere also shows seasonal variations with higher sun

Table 3 Standard deviation of the autocovariance function (3) for all monitor stations, horizontal component, and k = 1 and M s

Station/time N M Ĉyyð0Þ (mm2) rĈyyð1Þ(mm2) rĈyyðMÞ(mm2)

Vetlanda/July 2,025,868 3,600 65.8 0.04665 0.05233

Vetlanda/Aug 2,178,566 3,600 61.8 0.04204 0.04471

Vetlanda/Sep 2,016,945 3,600 46.7 0.03317 0.03636

Nol/April 2,188,851 4,200 19.4 0.01325 0.01410

Nol/May 2,204,497 3,600 24.6 0.01670 0.01789

Marieholm/April 2,119,917 3,600 14.3 0.00989 0.01058

Marieholm/May 2,237,374 3,600 15.7 0.01054 0.01133

Table 4 Correlation length s2 estimates and standard deviations for

Vetlanda based on data from July through September 2009

Station/time Horizontal Vertical

s2 (min) rs2 (min) s2 (min) rs2 (min)

Vetlanda/July 16.8 0.054 32.6 0.040

Vetlanda/Aug 18.8 0.083 41.4 0.065

Vetlanda/Sep 16.7 0.139 32.6 0.065

Mean: 17.4 35.5

Table 5 Correlation length s2 estimates and standard deviations for

Nol and Marieholm based on data from April and May 2009

Station/time Horizontal Vertical

s2 (min) rs2 (min) s2 (min) rs2 (min)

Nol/April 20.5 0.23 21.9 0.24

Nol/May 17.7 0.28 18.0 0.18

Marieholm/April 14.5 0.29 12.4 0.23

Marieholm/May 13.9 0.22 11.0 0.083

Mean: 16.7 15.8

Table 6 Correlation length X estimates and standard deviations for

Vetlanda based on data from July through September 2009

Station/time Horizontal Vertical

X (min) rX (min) X (min) rX (min)

Vetlanda/July 17.9 0.69 36.7 2.44

Vetlanda/Aug 17.5 0.73 44.0 3.06

Vetlanda/Sep 14.4 0.97 30.1 2.76

Mean: 16.6 36.9

Table 7 Correlation length X estimates and standard deviations for

Nol and Marieholm based on data from April and May 2009

Station/time Horizontal Vertical

X (min) rX (min) X (min) rX (min)

Nol/April 13.5 0.65 14.5 0.87

Nol/May 12.3 0.56 14.2 0.91

Marieholm/April 12.2 0.99 10.0 0.84

Marieholm/May 14.1 0.96 11.7 0.73

Mean: 13.0 12.6
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activity during the Swedish winter months. Therefore, it is

necessary to collect and evaluate data during the winter

time and in the northern parts of Sweden.
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