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Abstract When processing observational data from glo-

bal navigation satellite systems (GNSS), the carrier phase

measurements are generally assumed to follow a normal

distribution. Although full knowledge of the probability

distribution of the observables is not required for parameter

estimation, for example when using the least-squares

method, the distributional properties of GNSS observations

play a key role in quality control procedures, such as

outlier and cycle-slip detection, in ambiguity resolution, as

well as in the reliability assessment of estimation results. In

addition, when applying GNSS positioning under critical

observation conditions with respect to multipath and

atmospheric effects, the validity of the normal distribution

assumption of GNSS observables certainly comes into

doubt. This paper illustrates the discrepancies between the

normal distribution assumption and reality, based on a

large and representative data set of GPS phase measure-

ments covering a range of factors, including multipath

impact, baseline length, and atmospheric conditions. The

statistical inferences are made using the first through fourth

sample moments, hypothesis tests, and graphical tools such

as histograms and quantile–quantile plots. The results show

clearly that multipath effects, in particular the near-field

component, produce the dominant influence on the distri-

butional characteristics of GNSS observables. Addition-

ally, using surface meteorological data, considerable

correlations between distributional deviations from nor-

mality on the one hand and atmospheric relative humidity

on the other are detected.

Keywords GNSS � Residual analysis � Probability

distribution � Sample moments � Hypothesis tests

Introduction

Global navigation satellite systems (GNSS) like GPS serve

as an efficient and reliable tool for a wide range of geodetic

applications in the industrial, commercial, and cadastral

sectors. The ongoing system modernization and expansion,

as well as new developments in GNSS equipment will

significantly enhance the performance of satellite-based

positioning techniques. However, the rising demands for

more accurate positions and realistic interpretation of the

associated quality measures cannot be solely fulfilled by

hardware improvements, in light of deficiencies in the

mathematical models applied within GNSS data processing.

These mathematical models consist of functional and

stochastic components. Although the functional model

formulating the mathematical relations between observa-

tions and unknown parameters has been investigated in

considerable detail, it nevertheless contains deficiencies in

modeling site-specific effects and atmospheric influences.

In contrast to the highly developed functional model, the

stochastic model characterizing the statistical properties of

GNSS observations is still a controversial research topic. In

fact, the stochastic model is an essential issue in high-

accuracy positioning applications and in the realistic

quality interpretation of estimated parameters, such as

ambiguities (Teunissen et al. 1998; Teunissen 2000), tro-

pospheric delays (Jin and Park 2005; Luo et al. 2008), and

site coordinates (Howind 2005, p. 80, 91; Schön and

Brunner 2008a). The specification of a realistic stochastic

model requires fundamental knowledge about the proba-

bility distribution of the observables.

X. Luo (&) � M. Mayer � B. Heck

Geodetic Institute, Karlsruhe Institute of Technology (KIT),

Englerstr. 7, 76131 Karlsruhe, Germany

e-mail: luo@kit.edu

123

GPS Solut (2011) 15:369–379

DOI 10.1007/s10291-010-0196-2



With respect to ambiguity resolution, probabilistic

inferences concerning the integer ambiguity estimators are

commonly based on the probability distribution of the

original observations. Although many of the results and

properties of ambiguity resolution hold true for a larger

class of distributions than only Gaussian (Teunissen

1999a), for example, elliptically contoured distributions,

the integer rounding, bootstrapping, and least-squares (LS)

ambiguity estimators are unbiased if the probability density

function of the float ambiguity estimators is symmetric, for

instance, a member of the family of multivariate normal

distributions (Teunissen 2002; Verhagen and Teunissen

2006). In the context of quality control like outlier and

cycle-slip detection, statistical tests performed during

GNSS data processing directly rely on the statistical dis-

tributions of the observables (Teunissen 1998). The cycle-

slip validation procedure presented in Kim and Langley

(2001) makes use of the normal distribution assumption of

triple differences to characterize the probability distribu-

tion of the discrimination test statistic. Hence, in the

interest of accurate ambiguity resolution and reliable data

quality assessment, a realistic verification of the normality-

based statistical model of GNSS observations is

indispensable.

The contributions to verify the probability distribution

of GNSS observables can be distinguished according to the

investigated measures, i.e., either residuals resulting from

GNSS data processing or original observations. Using LS

residuals at one-second rate, Tiberius and Borre (1999)

analyzed the distribution of GPS code and phase observa-

tions from a zero, a short (3 m), and an average baseline

(13 km) in the field. Evaluating the first through fourth

sample moments and applying different statistical hypoth-

esis tests on the empirical distribution function, the normal

distribution assumption seemed to be reasonable for the

data from the zero and short baselines. However, devia-

tions from normality arose for the 13 km baseline and were

attributed to multipath effects and unmodeled differential

atmospheric delays. Based on the theory of directional

statistics (Mardia and Jupp 1999), Cai et al. (2007) applied

the von Mises distribution to describe the distributional

properties of the fractional parts of GPS phase double

differences. For the data collected from short baselines

(2–3 km), the von Mises distribution showed considerably

better fitting results in comparison with the Gaussian

distribution.

Within the above-mentioned verification studies, zero

and short baselines were used in order to mitigate the

influences of multipath and differential atmospheric delays.

However, under practical circumstances where longer

baselines (C30 km) are processed and the impact of these

error sources cannot be sufficiently reduced, the real

probability distribution of the observables deviates from

the assumed normality. These deviations at the observation

level can be retrieved in the residuals resulting from the LS

evaluation. This paper illustrates the discrepancies between

the Gaussian distribution assumption and reality using

representative 1 Hz GPS phase residuals resulting from

processing baselines ranging between 30 and 200 km under

variable atmospheric conditions. Applying methods from

both descriptive and inferential statistics, distributional

analyses are performed by means of sample moments,

probability plots, and hypothesis tests. The following two

sections provide a brief summary of the sample moments

and the employed normal distribution tests. Afterward,

incorporating surface meteorological data, a case study of

statistical inferences is presented. Finally, some concluding

remarks provide an outlook on future research work.

Sample moments

The analysis of sample moments does not consider the

probability density in detail but only from the perspective

of some of its characteristics. For a one-dimensional real-

valued random variable X with n independent realizations

x1; . . .; xn, the r-th central sample moment is given by

mr ¼
1

n

Xn

i¼1

ðxi � m1Þr; r� 2 ð1Þ

where m1 denotes the sample mean representing an un-

biased estimator for the mean l defined as the expectation

of X with l ¼ EðXÞ. In the case of r = 2, replacing the

denominator n by n - 1 in Eq. 1 due to the unknown l, an

unbiased estimator s2 for the variance r2 of X given by

r2 ¼ EððX � lÞ2Þ can be obtained. Although the normal

distribution is completely characterized by l and r2, the

third and fourth standardized moments, i.e., skewness

(S) and kurtosis (K), allow the asymmetry and peakedness

of the probability density function to be investigated. If

S [ 0 (S \ 0), then the bulk of the distribution is concen-

trated on the left (right) part of the probability density

function, while a normal distribution has a skewness of

zero (S = 0), implying a symmetric distribution. Kurtosis

measures the degree of peakedness of the probability

density of a real-valued random variable. A distribution

with a sharp peak around the mean is termed leptokurtic

(K [ 3), a lower peak around the mean with wider tails is

referred to as platykurtic (K \ 3), and the normal distri-

bution is called mesokurtic (K = 3). In distribution anal-

ysis, the consideration of higher-order moments is

necessary, because no probability distribution could be

legitimately described as Gaussian normal unless both

skewness and excess kurtosis (K - 3) are equal to zero

(Fiori and Zenga 2009).

370 GPS Solut (2011) 15:369–379

123



If X is normally distributed with X�Nðl; r2Þ, the

confidence intervals for the sample moments can be ana-

lytically derived or asymptotically approximated (Snedecor

and Cochran 1989, p. 79; Niemeier 2002, p. 72). Table 1

gives an overview of the first through fourth central sample

moments with the corresponding distributions and confi-

dence intervals, where zp denotes the p-quantile of the

standard normal distribution, v2
p; f is the p-quantile of the

chi-square distribution with f degrees of freedom (f = n - 1),

and a is the significance level corresponding to the prob-

ability of committing a type I error. The estimators g1 and

g2 for skewness and kurtosis are biased. Additionally, the

normal distributions of g1 and g2 represent asymptotical

approximations. For a more detailed discussion on the

sample moments, the reader is referred to textbooks on

statistics, such as Wuensch (2005).

Hypothesis tests for normal distribution

A total of five well-known statistical hypothesis tests for

normal distribution are employed within this study. The

null hypothesis H0 specifies that the independent samples

x1; . . .; xn represent n realizations of a normally distributed

random variable X with mean l and variance r2. In the case

of unknown values of l and r2, the sample statistics m1 and

s2 can be used within the test procedure (Table 1). Under

this circumstance, H0 is referred to as a composite

hypothesis. The following text describes the core charac-

teristics, as well as the relative strengths and weaknesses,

of the applied hypothesis tests.

The Jarque–Bera (JB) test statistic (Jarque and Bera

1980) provides a goodness-of-fit measure of departures

from a normal distribution using the sample skewness and

kurtosis (Table 1). As is well known, the sample moments

are very sensitive to outliers. Thus, the JB test statistic is

sensitive to blunders and extreme observations. Using a

robust measure of variance, Gel and Gastwirth (2008)

suggested an advanced JB test which is more resistant to

outliers and provides equal or higher statistical power than

the standard JB test. Furthermore, the chi-square

approximation of the JB test statistic is poorly valid for

small sample sizes. This leads to a large rate of wrong

rejections of H0 (type I error). In the MATLAB� Statistics

ToolboxTM (MST), a table of critical values computed

using a Monte Carlo simulation is applied for n \ 2000.

The Kolmogorov–Smirnov (KS) test statistic is a single

distance measure defined as the supremum of the absolute

difference between the empirical and theoretical cumula-

tive distribution functions (CDF) (Chakravarti et al. 1967,

p. 392). For small sample sizes (n B 20), the critical values

for the KS test statistic are tabulated in Miller (1956). If

n [ 20, the critical values can be derived using the quantile

values of the Kolmogorov distribution given in Teusch

(2006, p. 104) or by the analytical approximation imple-

mented in MST. The KS test can only be applied to con-

tinuous distributions, and the distribution to be tested must

be completely specified. In the case of unknown charac-

teristic parameters such as the mean and variance, the

Lilliefors (LF) test is preferred. This test uses exactly the

same test statistic as the KS test, but more appropriate

critical values computed using a Monte Carlo simulation

for instance. More detailed information on the LF test can

be found in Lilliefors (1967) and in Abdi and Molin (2007,

p. 540).

The chi-square (CS) goodness-of-fit test verifies whether

the frequency distribution of an observed sample is

consistent with the expected theoretical one (Lehmann and

Romano 2005, p. 590). The CS test statistic follows

asymptotically a chi-square distribution with (m - u)

degrees of freedom, where m denotes the number of bins

and u the number of unknown characteristic parameters

plus one (e.g., u = 3 for a normal distribution). The CS test

can be applied to both discrete and continuous distribu-

tions. However, the CS test statistic is sensitive to the

choice of bins. According to Reißmann (1976, p. 359),

m between 10 and 15 with a bin width of approximately

s/2, where s is the sample standard deviation, seems to be

reasonable in practice. Furthermore, the expected counts in

each bin should not be less than 5. Therefore, the CS test

requires a sufficiently large sample size for reliable test

results.

Table 1 Overview of the first through fourth central sample moments with the corresponding distributions and confidence intervals

Sample moment Definition Distribution Confidence interval

Mean
m1 ¼ 1

n

Pn

i¼1

xi

ffiffi
n
p
ðm1�lÞ

r �Nð0; 1Þ l� rffiffi
n
p z1�a=2; lþ rffiffi

n
p z1�a=2

h i

Variance
s2 ¼ 1

n�1

Pn

i¼1

ðxi � m1Þ2 f � s2

r2� v2
f

r2v2
a=2; f

f ;
r2v2

1�a=2; f

f

� �

Skewness g1 ¼ m3

m
3=2

2
g1�!

D
N 0; 6

n

� �
�

ffiffi
6
n

q
z1�a=2;

ffiffi
6
n

q
z1�a=2

h i

Kurtosis g2 ¼ m4

m2
2 g2�!

D
N 3; 24

n

� �
3�

ffiffiffiffi
24
n

q
z1�a=2; 3þ

ffiffiffiffi
24
n

q
z1�a=2

h i
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The Anderson–Darling (AD) test is based on a

weighted (higher weight to the tails) overall distance

measure between the empirical and theoretical CDF

(Anderson and Darling 1952). For the modified AD test

statistic that is adjusted with respect to sample size, the

critical values for the hypothesis of normality are given in

Stephens (1986, Table 4.9). Although the AD test is

restricted to continuous distributions, Stephens (1974)

found the AD test statistic to be one of the best empirical

CDF statistics for detecting most departures from a nor-

mal distribution. Additionally, the AD test makes use of

the specified distribution in calculating the critical values.

This results in the advantage of allowing more sensitive

tests on the one hand, while on the other, the disadvan-

tage of needing to compute individual critical values for

each kind of distribution to be tested.

All hypothesis tests discussed above are one-sided right-

tailed tests, indicating that the null hypothesis of normality

is rejected if the test statistic is larger than the corre-

sponding critical value. In addition, the JB, KS, LF, and CS

test statistics are available in MST. As an example, for a

sample size of 3600, the critical values at different sig-

nificance levels are shown in Table 2.

Case study

Using representative GPS phase observations with respect

to multipath impact, baseline length, and atmospheric

conditions, this section presents a case study dealing with

the influences of different factors on the probability dis-

tribution of the observables. Due to deficiencies in the

mathematical models, the distributional disturbances at the

observation level can be observed in the residuals resulting

from the GNSS data processing. Taking so-called sidereal

lags into account, the residual database is first homoge-

nized and investigated for outliers. Subsequently, distri-

butional assessments are made by evaluating the sample

moments, by applying normal distribution tests and by

utilizing graphic tools such as histograms and quantile–

quantile (Q-Q) plots for visual inspection.

Database

A total of 21 days of 1 Hz GPS phase measurements from

the SAPOS� (Satellite Positioning Service of the German

State Survey) network in the area of the state of Baden-

Württemberg in the southwest of Germany have been

processed using the Bernese GPS Software 5.0 (Dach et al.

2007) in post-processing mode for the selected baselines

visualized in Fig. 1. According to the results presented in

Knöpfler et al. (2010), the baseline HEDA is the one most

strongly affected by multipath effects, and the longest

baseline RATA is about 200 km long. In Table 3, some

important specifications of the GNSS data processing

carried out in this work are listed.

Surface meteorological data, such as air pressure p,

temperature T, and relative humidity rh, from the available

meteorological stations are used to characterize the near-

ground atmospheric conditions during the processing

Table 2 Critical values for the test statistics discussed in the text at different significance levels (n = 3600)

Hypothesis test Notation MATLAB�

command

Critical value at a Source

1% 5% 10%

Jarque–Bera JB jbtest 9.485 5.972 4.552 Analytical

approximation in MSTKolmogorov–Smirnov KS kstest 0.027 0.023 0.020

Lilliefors LF lillietest 0.018 0.015 0.014

Chi-square (e.g., m = 10) CS chi2gof 18.475 14.067 12.017

Anderson–Darling AD – 1.035 0.752 0.631 Stephens (1986)

Fig. 1 Selected SAPOS� sites (symbol: filled triangle) and the

available meteorological stations (symbol: multiplication sign, filled
right point triangle, plus sign, asterisk, filled circle, filled square) in

the region of investigation with the corresponding relief model

(ETOPO1) of the Earth’s surface (Amante and Eakins 2009)
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period (Figs. 1, 2). The meteorological data provided by

the Deutscher Wetterdienst are free of charge and have a

temporal resolution of 6 h. Considering the time span of

the GNSS data processing (UT: 15–18 h), the p, T, rh

values at 18 h are incorporated into this study. The p values

visualized in Fig. 2 show strong dependencies on the sites’

altitudes, and the T, rh data illustrate highly variable

atmospheric conditions during the 21-day period. In com-

parison with T, greater spatial variability in rh is clearly

visible. Analyzing the corresponding ionospheric index I95

(Wanninger 2004) and using the ionosphere-free linear

combination (L3), the remaining ionospheric effects in the

L3 residuals are negligible. Hence, in the following text,

atmospheric effects are mainly attributed to tropospheric

influences.

The residuals resulting from processing the daily 3-h

GPS data set are related to the same UT time interval.

However, due to the sidereal or geometry-repeat lag of

approximately 3 min 56 s (236 s), the double difference

residuals of a given identical baseline and satellite pair on

different days are obtained under dissimilar satellite

geometries. In order to guarantee the comparability of the

residuals on a daily basis, within this case study the

satellite-specific sidereal lags are empirically determined

by shifting the satellite azimuth and elevation angles

between two consecutive days. Preserving a high repro-

ducibility of a few seconds, the evaluated absolute sidereal

lags vary from satellite to satellite between 240 and 263 s.

For a given satellite pair, the arithmetical mean of the

related sidereal lags is used to specify the time windows, so

that from the 3-h residual database, a total of 285 1 h or

3600-epoch residual time series with almost identical

satellite geometry over the entire 21-day period are

extracted for the subsequent distribution analysis.

As mentioned before, outliers degrade the performance

of statistical inferences. Thus, in the primary stage of the

distribution analysis, outliers in the 1-h residual database

must be detected and appropriately handled. Under the

assumption of independent and identically distributed LS

residuals vi, the studentized double difference residuals

(SDDR; Cook and Weisberg 1982, p. 18) given by

rsðiÞ ¼
vi

r̂0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qvvði; iÞ

p ; i ¼ 1; . . .; n ð2Þ

are homoscedastic with a constant variance of 1 (Howind

2005, p. 39) and follow Pope’s s-distribution (Pope 1976),

where r̂0 denotes the a posteriori standard deviation and

qvvði; iÞ are the diagonal elements in the cofactor matrix of

v. Due to the extremely large degree of freedom induced by

the high redundancy of GNSS data processing in static

mode, Pope’s s-distribution can be well approximated by

Student’s t-distribution, which approaches the standard

normal distribution (Heck 1981). The outlier detection is

performed using the 3-sigma strategy. As a result, 172

SDDR time series possess samples beyond the 3-sigma

region with jrsðiÞj � 3. Based on the fact that the sample

variance is more sensitive to outliers than the sample mean,

the F-test is employed to assess the impact of the detected

3-sigma outliers on the sample variance (Niemeier 2002,

p. 91). Figure 3a illustrates the test results at a = 1%. For

most 1 h SDDR time series, the identified 3-sigma outliers

appear to insignificantly affect the sample variance. For the

case of time series whose sample variances are signifi-

cantly influenced (black dots in Fig. 3a), high correlation

between the F-test statistic (thick gray line) and the number

Table 3 Some important specifications of the GNSS data processing

carried out in this work using the Bernese GPS Software 5.0

Parameter Characteristic

Observations 1 Hz GPS phase double differences

Processing period DOY2007: 161–181, UT: 15–18 h

Observation weighting w = f (SNRa) (Luo et al. 2008)

Elevation cutoff angle 3 degrees

Satellite orbits,

Earth orientation parameters

Precise final IGSb products

Ionospheric model for L5

ambiguity resolution

Precise final CODEc products

Tropospheric a priori model Saastamoinen (Saastamoinen 1973)

Mapping function Niell (dry, wet; Niell 1996)

Time span for tropospheric

parameters

15 min

Ambiguity resolution SIGMA strategy (L5, L3; Dach

et al. 2007, p. 175)

Receiver antenna correction Individual absolute calibration

a SNR Signal-to-Noise Ratio, b IGS International GNSS Service,
c CODE Center for Orbit Determination in Europe
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Fig. 2 Selected surface meteorological parameters at 18 h (UT)

during the period of investigation (see Fig. 1 for the location of the

stations represented by the symbols)
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of 3-sigma outliers (thin black line) is obviously present.

Nearly half of the identified 17 SDDR time series with

significant outliers are related to the longest baseline

RATA. These complete 17 time series (i.e., not only the

identified single 3-sigma outliers) are excluded from the

following distribution analysis, leading a total of 268. In

Fig. 3b, the spatial and temporal distributions of the final

1 h SDDR database are displayed in the form of

histograms.

Distribution analysis using sample moments

Using the formulas given in Table 1 and substituting l = 0

and r2 = 1 for the theoretical mean and variance, the

sample moments and the associated confidence intervals of

SDDR are computed for a = 1%. Regarding the remaining

atmospheric effects in SDDR as random, the baseline-

related average sample moments over the whole period of

investigation are analyzed to highlight the influences of

multipath (MP) and baseline length. Table 4 gives the

baseline-related statistical characteristics for the first

through fourth sample moments, such as arithmetical

mean, standard deviation (STD), and percentage (absolute

number) of the SDDR time series whose sample moments

are located within the corresponding confidence bounds.

In comparison with other baselines, the HEDA and

RATA sample means possess larger biases, which can be

interpreted as being due to unmodeled multipath effects

and the remaining differential atmospheric delays, which,

for long baselines, cannot be sufficiently eliminated by

differencing. Furthermore, the large variations in the

sample moments and the considerable deviations in the

average sample variance from the theoretical value one

indicate the unrealistic nature of assuming independent

GNSS observations, with the largest deviations from the

unit variance found for the shortest baseline AFLO. Being

less critical compared to the sample mean and variance, all

baseline-related averages of the sample skewness and

kurtosis are within the corresponding confidence intervals.

Larger variations in the skewness and kurtosis are detected

in the AFLO and HEDA samples. The AFLO-related mean

kurtosis is slightly larger than three, which indicates a

leptokurtic probability density with a sharper peak and

heavier tails than a normal distribution. Nonetheless, the

null hypothesis of normality cannot be rejected for nearly

half of the data at a = 1%.

Distribution analysis using hypothesis tests

In order to cope with the deficiencies in the mathematical

models applied within GNSS data processing, the normal

distribution tests are employed in the composite hypothesis

case using sample statistics m1 and s2 (Table 1). Consid-

ering the residual database as a whole, Fig. 4a compares

the non-rejection rates of normality at different significance

levels. Due to the inappropriate critical values for the case

of composite hypotheses, the KS test provides obviously

over-optimistic results that can be effectively corrected by

the LF test (Table 2). Additionally, except for the KS test,

the other four statistical tests deliver generally consistent

outputs. Looking at the test decision for each SDDR time

series at a = 1% displayed in Fig. 4b, broad similarities

can also be found. In consequence of the inadequate

results, the KS test is excluded from further discussion in

this work.

Considering aspects of baseline length and multipath

impact, Fig. 5 provides the baseline-related presentation of

the test results at a significance level of a = 1%, where the

absolute number of SDDR data series that cannot be rejected

as normally distributed are displayed. The influence of
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0

20

40

60

80

Baseline

N
o.

 o
f S

D
D

R
 (

to
ta

l:2
68

)

161 163 165 167 169 171 173 175 177 179 181
0

4

8

12

16

20

24

DOY2007: 161-181

(b)

N
o.

 o
f S

D
D

R
 (

to
ta

l:2
68

)

time series with
significant outliers

number of
3-sigma
outliers

Index of analysed SDDR time series with 3-sigma outliers

(a)

Fig. 3 Results of outlier detection (a) and final residual data distribution with respect to baseline and day of year (DOY) (b)
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baseline length on the probability distribution is analyzed by

comparing the AFLO- and SIBI-related results with those of

RATA. For the longer baseline RATA, even more SDDR

data cannot be rejected as normally distributed. This phe-

nomenon may be explained by the relatively weakly corre-

lated GNSS observations due to the large baseline length.

For long baselines, the assumption of independent observ-

ables made in the stochastic model is better fulfilled.

In comparison with the baseline length, the influence of

different multipath effects on the test results is clearly

stronger. Comparing the baselines TAAF and HEDA which

have similar baseline lengths, significant disturbances in the

distributional properties due to increased multipath effects

can be postulated.

Multipath effects, as a major factor limiting GNSS

positioning quality, can be subdivided into far-field and

near-field components. Within the context of probabilistic

distribution, far-field multipath introducing short-periodic

Table 4 Baseline-related statistical characteristics for the first through fourth sample moments of the SDDR time series (a = 1%)

Baseline AFLO SIBI TAAF HEDA RATA All baselines

Length [km] 32.4 42.5 53.7 54.1 203.7

MP impact Weak Weak Weak Strong Weak

Number of SDDR series 44 58 61 58 47 268

Sample mean

Mean 0.02 0.03 0.00 20.05 0.04 0.00

STD 0.36 0.28 0.27 0.27 0.25 0.29

[-0.04, 0.04] 14% (6) 7% (4) 20% (12) 12% (7) 11% (5) 13% (34)

Sample variance

Mean 0.64 0.76 0.81 0.81 0.75 0.76

STD 0.25 0.29 0.30 0.29 0.28 0.29

[0.94, 1.06] 7% (3) 10% (6) 16% (10) 16% (9) 11% (5) 12% (33)

Sample skewness

Mean 0.02 0.02 0.00 -0.01 0.03 0.01

STD 0.32 0.22 0.18 0.32 0.20 0.25

[-0.11, 0.11] 36% (16) 48% (28) 44% (27) 19% (11) 53% (25) 40% (107)

Sample kurtosis

Mean 3.12 2.85 2.90 2.93 2.88 2.93

STD 0.46 0.31 0.26 0.50 0.29 0.38

[2.79, 3.21] 36% (16) 43% (25) 59% (36) 38% (22) 57% (27) 47% (126)

(a)
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(up to half an hour; Seeber 2003, p. 317) and zero mean

effects may primarily affect the distribution form, while

near-field multipath showing long-periodic (up to several

hours; Wübbena et al. 2006) and non-zero mean charac-

teristics could interfere with both location and form

parameters. Applying histograms and Q-Q plots, repre-

sentative examples of SDDR time series are presented in

Fig. 6. The elevation angles of the satellite pair PRN 18, 26

vary between 20� and 30� during the 1 h time span. DOY

170 in 2007, which had the lowest atmospheric variability,

is selected to minimize the influences of differential

atmospheric delays (Fig. 2).

For static receivers, the period (frequency) of multipath

errors is inversely (proportionally) related to the antenna–

reflector distance, i.e., near-field reflections cause slowly

varying errors, whereas distant reflectors create rapidly

oscillating quasi-periodic signals (Georgiadou and Kleus-

berg 1988; Wanninger 2000, p. 23). As Fig. 6a shows, the

HEDA-related SDDR time series exhibits stronger near-

field multipath effects which considerably affect both

location and form of the corresponding histogram. The

deviations from normality of the HEDA-related data and

the validity of normality for the TAAF-related example can

be assessed conveniently based on the corresponding Q-Q

plots. However, obvious quasi-periodic signals with peri-

ods of several minutes are visible in the TAAF-related

SDDR time series (Fig. 6b), indicating the presence of far-

field multipath effects. Compared to zero mean far-field

multipath, near-field multipath tends to play a more

important role in distributional deviations of GNSS

observations.

In order to validate the relationship between distribu-

tional deviations and variable atmospheric conditions,

surface meteorological data are incorporated into this case

study. According to Hopfield (1969), the tropospheric

delay of GNSS signals can be subdivided into a dry and a

complementary wet component. In contrast to the dry delay

term, the wet component is very difficult to handle due to

the high temporal and spatial variability of atmospheric

water vapor. Thus, atmospheric humidity has a large

potential to disturb the probability distribution of the

observables. In Fig. 7, the daily median test statistics are

plotted together with the corresponding mean atmospheric

relative humidity.
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All normal distribution tests applied within this study

are one-sided. Therefore, larger test statistics imply stron-

ger departures from normality. As Fig. 7 illustrates, the

daily median test statistics are obviously positively corre-

lated with the corresponding mean atmospheric relative

humidity (correlation coefficient of approximately 0.5),

which indicates the considerable impact of wet atmosphere

on the probability distribution of GNSS observables. Such

a finding provides a motivation for improved tropospheric

modeling, particularly for the wet delay component, by

using, for example, representative meteorological data with

high temporal and spatial resolution, as well as advanced

mapping functions (Boehm et al. 2006).

Concluding remarks

This paper illustrates the influences of different factors on

the probability distribution of GNSS observables by ana-

lyzing representative studentized double difference resid-

uals (SDDR) of GPS phase observations. The consideration

of satellite-specific sidereal lags and the employment of

variance-based outlier detection guarantees consistency

and high quality in the data. Apart from GNSS residuals,

surface meteorological data are incorporated to character-

ize the prevailing atmospheric conditions. Statistical

inferences are made using sample moments, hypothesis

tests, and probabilistic plots.

The sample mean and variance illustrates considerably

large variations and more significant deviations from nor-

mality than the sample skewness and kurtosis. Applying

hypothesis tests, only approximately 20% of the SDDR

data cannot be rejected as normally distributed at a

significance level of a = 1%. In addition, when incorpo-

rating surface meteorological data, considerable correla-

tions between distributional discrepancies and relative

humidity are detected.

The strong distributional deviations of SDDR from

normality can be attributed to the deficiencies in modeling

multipath effects and differential atmospheric delays, as

well as to the unrealistic assumption of independent

observations. The correlation behavior of GNSS phase

measurements is affected by both multipath effects

(Nahavandchi and Joodaki 2010) and prevailing atmospheric

conditions (Schön and Brunner 2008b). Multipath, in

particular the long-periodic and non-zero mean near-field

component, significantly disturbs the distributional prop-

erties of the observables. Long baselines have the disad-

vantage of non-zero mean SDDR due to the remaining

differential atmospheric delays, but the advantage of

weakly correlated observations because of large separa-

tion distances. Nevertheless, the relatively high standard

deviations in all sample moments and the considerably

large biases in the sample variance indicate the unrealistic

assumption of independence made in the stochastic

model. Within this case study, the residuals are obtained

after the ambiguities are resolved. Teunissen (1999b)

stated that the ambiguity-resolved real-valued parameter

estimators are not Gaussian, even if the data are Gaussian.

This important aspect motivates further statistical infer-

ences based on residuals produced prior to ambiguity

resolution.

Future research work will focus on improving the

mathematical models of GNSS observations to substantiate

the physical causes for distributional deviations illustrated

above. To mitigate site-specific influences, in particular

multipath effects, sidereal filtering and stacking techniques

will be employed (Choi et al. 2004; Larson et al. 2007). In

order to cope with the deficiencies in the stochastic model,

Luo et al. (2010) proposed autoregressive moving average

(ARMA) processes to characterize the temporal correla-

tions of GNSS observations. Within the framework of the

international project GURN (GNSS Upper Rhine Graben

Network), larger data sets will be available for future dis-

tribution analyses. Moreover, high-resolution meteorolog-

ical data will be incorporated into GURN to produce

reliable four-dimensional atmospheric water vapor fields

(Knöpfler et al. 2010).
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of Baden-Württemberg for providing the GNSS data and absolute

antenna calibration values. The German Research Foundation (DFG)

is gratefully acknowledged for supporting the research project

‘‘Improving the stochastic model of GPS observations by modeling

physical correlations’’. We also appreciate very much the professional

comments from two anonymous reviewers as well as the valuable

suggestions from the editorial office.

0
25
50
75

= 0.54

naide
M

T JB

0
33
67
100

rh
 [

%
]

0.01
0.02
0.03
0.04

= 0.43

naide
M

T LF

0
33
67
100

rh
 [

%
]

rh
 [

%
]

rh
 [

%
]

0
33
67

100

= 0.46

naide
M

T
S

C

0
33
67
100

162 164 166 168 170 172 174 176 178 180
0
3
6
9

= 0.43

naide
M

T
D

A

DOY2007: 161-181

162 164 166 168 170 172 174 176 178 180
0
33
67
100

Fig. 7 Comparison of the daily median test statistics (black line) with

the corresponding mean relative humidity values at 18 h (dashed gray
line)

GPS Solut (2011) 15:369–379 377

123



References

Abdi H, Molin P (2007) Lilliefors test of normality. In: Salkind NJ

(ed) Encyclopedia of measurement and statistics, vol 2. Thou-

sand Oaks, CA, USA

Amante C, Eakins BW (2009) ETOPO1 1 Arc-Minute Global Relief

Model: procedures, data sources and analysis. NOAA Technical

Memorandum NESDIS NGDC-24. Boulder, CO, USA

Anderson TW, Darling DA (1952) Asymptotic theory of certain

‘‘goodness-of-fit’’ criteria based on stochastic processes. Ann

Math Stat 23:193–212. doi:10.1214/aoms/1177729437

Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for

GPS and very long baseline interferometry from European Centre

for Medium-Range Weather Forecasts operational analysis data.

J Geophys Res 111:B02406. doi:10.1029/2005JB003629

Cai J, Grafarend E, Hu C (2007) The statistical property of the GNSS

carrier phase observations and its effects on the hypothesis

testing of the related estimators. In: Proceedings of ION GNSS

2007, Fort Worth, TX, USA, Sept 25–28, 2007, pp 331–338

Chakravarti IM, Roy J, Laha RG (1967) Handbook of methods of

applied statistics, vol 1. Wiley, New York

Choi K, Bilich A, Larson KM, Axelrad P (2004) Modified sidereal

filtering: implications for high-rate GPS positioning. Geophys

Res Lett 31:L22608. doi:10.1029/2004GL021621

Cook R, Weisberg S (1982) Residuals and influence in regression.

Chapman and Hall, New York

Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS

Software Version 5.0. Astronomical Institute, University of

Berne, Berne

Fiori AM, Zenga M (2009) Karl Pearson and the origin of kurtosis. Int

Stat Rev 77(1):40–50. doi:10.1111/j.1751-5823.2009.00076.x

Gel YR, Gastwirth JL (2008) A robust modification of the Jarque-

Bera test of normality. Econom Lett 99:30–32. doi:10.1016/

j.econlet.2007.05.022

Georgiadou Y, Kleusberg A (1988) On carrier signal multipath effects

in relative GPS positioning. Man Geod 13:172–179

Heck B (1981) Der Einfluß einzelner Beobachtungen auf das Ergebnis

einer Ausgleichung und die Suche nach Ausreißern in den

Beobachtungen. Allgemeine Vermessungs-Nachrichten (AVN)

88:17–34

Hopfield H (1969) Two-quartic tropospheric refractivity profile for

correcting satellite data. J Geophys Res 74(18):4487–4499. doi:

10.1029/JC074i018p04487

Howind J (2005) Analyse des stochastischen Modells von GPS-
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