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Abstract Geometric dilution of precision (GDOP) is

often used for selecting good satellites to meet the desired

positioning precision. An efficient closed-form formula for

GDOP has been developed when exactly four satellites are

used. It has been proved that increasing the number of

satellites for positioning will always reduce the GDOP.

Since most GPS receivers today can receive signals from

more than four satellites, it is desirable to compute GDOP

efficiently for the general case. Previous studies have

partially solved this problem with artificial neural network

(ANN). Though ANN is a powerful function approxima-

tion technique, it needs costly training and the trained

model may not be applicable to data deviating too much

from the training data. Using Newton’s identities from the

theory of symmetric polynomials, this paper presents a

simple closed-form formula for computing GDOP with the

inputs used in previous studies. These inputs include traces

of the measurement matrix and its second and third powers,

and the determinant of the matrix.

Keywords GPS � GDOP � Symmetric polynomials �
Newton’s identities

Introduction

In GPS applications the dilution of precision (GDOP) is

often used to select a subset of satellites from all visible

ones. In order to determine the position of a receiver,

pseudoranges from n (C4) satellites must be used at the

same time. By linearizing the pseudorange equation with

Taylor’s series expansion at the approximate (or nominal)

receiver position, the relationship between pseudorange

difference (Dqi) and positioning difference (Dxi) can be

summarized as follows (Jwo 2001):
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which is written in a compact form as

z ¼ Hxþ v ð2Þ

The n 9 4 matrix H is formed with direction cosines ei1,

ei2, and ei3 from the receiver to the ith satellite, and v

denotes a random noise with an expected value of 0. The

difference between the estimated and true receiver

positions is given by

~x ¼ ðHTHÞ�1HTv ð3Þ

where HT denotes the transpose of H, and M = HTH,

called the measurement matrix, is a 4 9 4 matrix no matter

how large n is. It can be shown that the measurement

matrix is symmetric and nonnegative, and thus it has four

nonnegative eigenvalues (Hoffman and Kunze 1961).

Assuming EfvvTg ¼ r2I; then Ef~x~xTg ¼ r2ðHTHÞ�1:

The GDOP factor is defined as the square root of the

trace of the inverse measurement matrix

GDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðM�1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace½adjðMÞ�

detðMÞ

s
ð4Þ

Because GDOP provides a simple interpretation of how

much positioning precision can be diluted by a unit of
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measurement error, it is desirable to choose the

combination of satellites in a satellite constellation with

GDOP as small as possible. Yarlagadda et al. (2000)

showed that increasing the number of satellites will always

reduce the GDOP. Thus, it makes sense for a receiver to

use all its available channels to receive signals from visible

satellites. Suppose that a receiver has five channels to

receive signals from nine visible satellites, then a total of

9!/(4!5!) = 126 GDOPs need to be computed in order to

decide the best combination of satellites. This can present

challenges to some real time GPS applications.

By using cofactors and determinant in Eq. 4, the com-

putation of GDOP does have a closed-form solution in

terms of elements of M, and thus H. However, this approach

is often less efficient than well-designed numerical

algorithms such as the LU decomposition. Using the con-

ventional LU decomposition, it takes a total of 160 floating

point operations (add, subtract, multiply and divide) to

invert a 4 9 4 matrix (Atkinson 1978).

Due to limited resources associated with many handheld

GPS devices, previous studies have tried to compute

GDOP without resorting to the cofactors approach or

matrix inversion. Simon and El-Sherief (1995) used a

function approximation procedure rooted in artificial neural

network (ANN) to compute GDOP. Extensive studies fol-

lowing this track of GDOP computation have been

conducted elsewhere (Jwo and Chin 2002; Jwo and Lai

2003, 2007).

There are a few problems associated with the neural

based solutions to the GDOP computation. First, a model

must be trained with substantial computing resources.

Second, it is well known in the machine learning field that

the resultant model depends critically on the set of training

data. Thus, when the GPS application is moved to a geo-

graphically different area, new training data must be

collected to train a new model.

In this paper, we show that using the same features in

Simon and El-Sherief (1995) or Jwo and Lai (2007), the

GDOP function can be explicitly written down with a very

simple formula. The methodology behind this formula is

Netwon’s identities in the theory of symmetric polynomi-

als. This paper is organized as follows. In the next section,

a literature review of GDOP computation is discussed. This

is followed by the theory of symmetric polynomials and

Netwon’s identities. The closed-form formula is then

derived from Newton’s identities. The paper is ended with

a few concluding remarks.

Literature review

In this section, a brief review of GDOP computation is

presented. This review is focused on a closed-form solution

from Zhu (1992) and the ANN based approach. Other

possible solutions based on machine learning tools are also

discussed.

GDOP estimation

Yarlagadda et al. (2000) reviewed the GDOP metrics with

a goal to estimate bounds of GDOP. For example, when

there are exactly four satellites in the measurement of

pseudorange, then GDOP GDOP�
ffiffiffi
2
p

; and

GDOP� 2

ðdetðMÞÞ1=8
ð5Þ

Another interesting and important result of Yarlagadda

et al. (2000) is, in a satellite constellation, increasing the

number of satellites for positioning tasks will always reduce

the GDOP. Thus, a GPS receiver should use all its available

channels to receive signals from visible satellites. This has

created a practical need to find alternative means other than

the Zhu (1992) closed-form formula, which is valid only for

the four-satellite situation. Most GPS receivers today can

receive signals from more than four satellites.

A closed-form formula for four satellites

By denoting

Eij ¼ ei1ej1 þ ei2ej2 þ ei3ej3 þ 1; 1� i\j� 4 ð6Þ

where ei1, ei2 and ei3 are direction cosines in Eq. 1, and

using the fact that e2
i1 þ e2

i2 þ e2
i3 ¼ 1; Zhu (1992) derived a

closed-form formula for GDOP

GDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ bþ c

aþ bþ 2c

r
ð7Þ

where a, b and c are intermediate variables defined as

follows:

a ¼ ðE12E34 þ E13E24 � E14E23Þ2 � 4ðE12E34E13E24Þ
b ¼ 16� 4ðE2

12 þ E2
13 þ E2

14 þ E2
23 þ E2

24 þ E2
34Þ

c ¼ 2½E12ðE13E23 þ E14E24Þ þ E34ðE13E14 þ E23E24Þ�

Starting from elements of H, it has been determined that

39 multiplications, 34 additions, 1 division and 1 square

root are needed to compute GDOP in Eq. 7. This is less

than half of the operation count needed to invert the

measurement matrix M, let alone that M must be computed

from HTH first. Unfortunately, Zhu’s formula is valid only

when n = 4 in Eq. 1 since it uses a critical equality valid

only for this dimension

traceðHTHÞ�1 ¼ traceðHHTÞ�1 ð8Þ

As Yarlagadda et al. (2000) suggested more satellites

than four can be used to decrease GDOP, efficient GDOP
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computation for any number (C4) of satellites is desirable.

Jwo (2001) has extended Zhu’s work by considering the

situation of three satellites aided by an altimeter.

Neural network based approximations

An ANN mimics the working of a human brain in learning.

A neural cell (neuron) is a fundamental information pro-

cessing unit in ANN. Neurons are connected via synapses

with weights that can be optimized to fit the training data.

Two types of neural based approaches have been proposed

to handle the GDOP problem: approximation and classifi-

cation (Simon and El-Sherief 1995; Jwo and Lai 2007). In

the approximation approach, the GDOP is predicted from a

trained ANN model as a real number. The model is often

assessed with the mean absolute error

MAE ¼ 1

N

XN

i¼1

jyi � tij

where yi and ti are the ANN computed GDOP and target

GDOP respectively, or the root mean square error

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðyi � tiÞ2
vuut

The training time for this kind of function

approximation by ANN is usually long; thus a different

type of ANN is introduced for GDOP computation. The

classification approach uses a threshold to cut the GDOP

range into two classes: acceptable and unacceptable. For

example, if GPS applications accept a GDOP as high as

2.5, then the threshold can be set to 2.5. Therefore, if a set

of satellites yields a GDOP higher than this number, this set

is labeled unacceptable; otherwise, the set is labeled

acceptable. Due to the fact that only a binary decision is

needed in this case, training a classification ANN is very

fast. A classification ANN model is usually assessed with

the precision, recall and accuracy rates that are commonly

used in binary prediction problems (Witten and Frank

2005). The binary classification approach can be extended

to a multi-class classification approach when there is a need

to divide the GDOP range in a finer manner; for example,

two threshold values may be used to label a set of satellites

as excellent, acceptable and unacceptable.

The ANN approach is a supervised learning procedure

and thus there are two phases of operations. In the training

phase, data with known input–output pairings are fed into

the network to learn synaptic weights. The goal of this

learning is to minimize differences between network out-

puts and target outputs. After the network is trained, the

procedure enters the operational phase where inputs can

be fed into the network to compute estimated outputs.

The effectiveness of ANN is founded on an extended

Kolmogorov’s theorem by Hecht-Nielson (1987), which

says that any continuous functional mapping Rm?Rn can

be approximated by a three-layer ANN with (2m ? 1)

neurons in the middle layer.

Simon and El-Sherief (1995) started the ANN approach

for GDOP approximation. In their study, GDOP is con-

sidered as a function of four independent variables as

follows. Since the measurement matrix M = HTH is

symmetric, it has four real valued eigenvalues k1, k2, k3, k4.

Assuming that M is nonsingular, then the GDOP can be

expressed as

GDOP ¼ traceðM�1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�1

1 þ k�1
2 þ k�1

3 þ k�1
4

q
ð9Þ

because eigenvalues of the inverse matrix are inverses of

eigenvalues of the original matrix and the trace of a sym-

metric matrix equals the sum of all its eigenvalues

(Hoffman and Kunze 1961).

In order to estimate GDOP in Eq. 9, Simon and El-

Sherief (1995) adopted a special set of features

h1ðkÞ � k1 þ k2 þ k3 þ k4 ¼ traceðMÞ ð10Þ

h2ðkÞ � k2
1 þ k2

2 þ k2
3 þ k2

4 ¼ traceðM2Þ ð11Þ

h3ðkÞ � k3
1 þ k3

2 þ k3
3 þ k3

4 ¼ traceðM3Þ ð12Þ

h4ðkÞ � k1k2k3k4 ¼ detðMÞ ð13Þ

The last term in each equation is used to compute the

components of h, i.e., h1 = trace(M), h2 = trace(M2),

h3 = trace(M3), and h4 = det(M). These equalities hold

because M and its powers are symmetric matrices

(Hoffman and Kunze 1961). Thus, the researchers

considered a real valued function

f : R4 ! R; h 7! GDOP ð14Þ

to be approximated by ANN. The training data were col-

lected from a GPS receiver located at 5,000 ft above San

Francisco (37.5� latitude, 122� longitude), and the trained

model was tested on a simulated missile trajectory origi-

nating from Vandenberg air force base in California.

Using a back-propagation technique, the function

GDOP = f(h) of Eq. 14 was approximated by an ANN

with nine middle layer neurons. It took the researchers

4 h and 47 min on a VAX machine of 1990s to train a

satisfactory ANN. The RMSE was 1.44%. On the other

hand, an optimal interpolative (OI) net was used to

classify sets of satellites according to a threshold of the

GDOP value. The threshold was set from 2.4 to 3.4 with

an increment of 0.2, and the classification accuracy was

high ([87.4%) in all cases. The training time for this OI

net was about 1 s, which is a 99.994% of savings from

the back-propagation neural network (BPNN) for function

approximation.
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Jwo and Chin (2002) expanded the study of Simon and

El-Sherief (1995) by using three more input–output map-

pings. In addition to the mapping in Eq. 14, called type 3

mapping in Jwo and Chin (2002), the researchers also

considered the following mappings:

h 7! k�1 ¼ ðk�1
1 ; k�1

2 ; k�1
3 ; k�1

4 Þ type1 mappingð Þ

HTH 7! k�1 ¼ ðk�1
1 ; k�1

2 ; k�1
3 ; k�1

4 Þ type2 mappingð Þ

HTH 7! GDOP type4 mappingð Þ

In type 2 and type 4 mappings, the input HTH denotes

elements of the measurement matrix. Since the

measurement matrix is a symmetric 4 9 4 matrix, there

are ten input variables for the type 2 and type 4 mappings.

Incidentally, the middle layer had 21 neurons according to

Hecht-Nielson (1987), and the resultant network was much

more complicated than the one for the other two scalar

valued mappings. Only BPNN was explored in Jwo and

Chin (2002) to approximate the four continuous mappings

from R4 (using h) or R10 (using HTH) to R1 (using GDOP)

or R4 (using k-1). The training and testing data were

gathered with a receiver placed on the top of the building

of the author’s institute (25.15� latitude, 121.78� longitude

and 62 m altitude). For the purpose of a direct GDOP

approximation, it was found that the type 3 mapping had an

error mean of -0.0022 and a SD of 0.0236, and the type 4

mapping had an error mean of -0.0127 and a SD of

0.0174. Both results were considered very good by the

researchers, but the type 4 mapping needed much more

time to learn the patterns due to its complicated structure.

On the other hand, Jwo and Lai (2003) considered the

type 3 mapping with different types of ANN to classify sets

of satellites. A GDOP threshold of 2.5 was assumed, and

three types of ANN were considered, namely, BPNN, OI

nets and probabilistic neural nets (PNN). It was found that

PNN had provided the best performance in terms of clas-

sification accuracy and training efficiency.

Similarly, Jwo and Lai (2007) considered the type 3

mapping with different neural nets to approximate or

classify the GDOP function. The general regression neural

networks (GRNN) and BPNN were used to approximate

the function and both types of ANN were found to be

feasible in this task. All four neural nets (BPNN, OI net,

PNN and GRNN) were found to provide satisfactory results

for GDOP classification.

Other possible solutions for GDOP computation

Phillips (1984) proposed to select the four satellites with a

maximum volume of tetrahedron formed by the tips of the

unit vectors from the receiver to the satellites, i.e., vertices

with the direction cosines (ei1, ei2, ei3), i = 1, 2, 3, 4. This

is because GDOP is approximately proportional to the

inverse of this volume. However, this maximum volume

method may not select desired satellites with the minimum

GDOP. There are also other machine learning techniques

that can be used to learn the GDOP function as ANN

above. These will be briefly discussed in the following.

Support vector regression

An ANN uses the empirical risk minimization (ERM)

principle to learn patterns. On the other hand, support

vector regression (SVR) proposed by Vapnik (Cristianini

and Shawe-Taylor 2000) uses the structural risk minimi-

zation (SRM) principle to train a model. ERM minimizes

risks resulting from the training data only; thus it may

overfit a model. On the other hand, SRM incorporates the

model complexity into a learning process and may avoid

the overfitting problem encountered in many supervised

learning algorithms. Support vector based techniques have

been used to solve many scientific and engineering prob-

lems; therefore, the type 3 mapping of Jwo and Chin (2002)

may be learnt with a SVR procedure.

Genetic programming

Genetic programming (GP), a biologically inspired

machine learning technique, may help in finding the size

and shape of a regression model (Koza 1992). GP uses

evolutionary principles to evolve better individuals in

successive generations. An individual in GP is a program

tree with input variables such as h1, h2, h3, and h4 above or

a random constant as leaf nodes and operators such as

addition, subtraction, multiplication, and division, etc., as

internal nodes. This program tree is evaluated for evolu-

tionary purpose against a test environment. In the GDOP

application, a test environment is formed by the input–

output pairings of the training data. The purpose of GP is to

find a program tree (i.e. a formula relating the input vari-

ables to the output variable) such that the discrepancy

between computed outputs and target outputs is minimized.

Like the ANN approach, a GP-based symbolic regression

can be used to learn the GDOP function.

Symmetric polynomials

A symmetric polynomial is a polynomial p(X1, X2,…, Xn)

in n variables such that when any two variables are inter-

changed, the polynomial remains the same. This can be

more precisely defined as follows:

pðXrð1Þ;Xrð2Þ; . . .;XrðnÞÞ ¼ pðX1;X2; . . .;XnÞ ð15Þ

where r is any permutation of the sequence 1, 2,…, n.

Symmetric polynomials have many applications in
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combinatorics, group representation, and quantum theory

among others. There are many types of symmetric poly-

nomials, of which two are of special interest to this study,

namely the power sum symmetric polynomials and ele-

mentary symmetric polynomials.

Power sum symmetric polynomials

The power sum symmetric polynomial of degree k in

variables X1, X2,…, Xn is the sum of all kth powers of the

variables

pkðX1;X2; . . .;XnÞ ¼ Xk
1 þ Xk

2 þ � � � þ Xk
n ð16Þ

The power sum symmetric polynomials form a type of

building blocks for symmetric polynomials in the sense

that every symmetric polynomial with rational coefficients

may be expressed as a sum and difference of products of

power sum symmetric polynomials with rational

coefficients (Macdonald 1995). For example, the

symmetric polynomial pðX1;X2Þ ¼ X2
1X2 þ X1X2

2 þ X1X2

can be expressed as

pðX1;X2Þ ¼
1

2
p3

1 �
1

2
p1p2 þ

1

2
p2

1 �
1

2
p2

where pk is defined in Eq. 16 with n = 2.

Elementary symmetric polynomials

Elementary symmetric polynomials form another type of

building blocks in the theory of symmetric polynomials.

An elementary symmetric polynomial of a positive degree

k B n in variables X1, X2,…, Xn is defined as follows:

ekðX1;X2; . . .;XnÞ ¼
X

1� j1\j2\���\jk� n

Xj1Xj2; . . .;Xjk ð17Þ

For example, the third degree elementary symmetric

polynomial in four variables can be explicitly written down

as

e3ðX1;X2;X3;X4Þ ¼ X1X2X3 þ X1X2X4 þ X1X3X4

þ X2X3X4 ð18Þ

When k [ n, it is convenient to define ek(X1, X2,…,

Xn) = 0. The 0th degree elementary symmetric

polynomial is defined by e0(X1, X2,…, Xn) = 1. It can be

proved that every symmetric polynomial, including power

sum symmetric polynomials, can be expressed as the sum

and product of constant and elementary symmetric

polynomials (Macdonald 1995). On the other hand, since

an elementary symmetric polynomial has rational

coefficients 1, it can be expressed by the power sum

symmetric polynomials. The close relationship between

these two types of symmetric polynomials is further

explained by Newton’s identities.

Newton’s identities

Newtown’s identities are also called Newton–Girard for-

mulae. These identities were found by Isaac Newton and

Albert Girard in 1600s independently, and they relate

power sum symmetric polynomials to elementary sym-

metric polynomials as follows:

kekðX1; . . .;XnÞ ¼
Xk

i¼1

ð�1Þi�1ek�iðX1; . . .;XnÞpkðX1; . . .;XnÞ

ð19Þ

The formulae are valid for any integer k C 1. Each

identity of a special k can be verified by direct algebraic

manipulations, while the validity of all identities needs a

proof. A simple proof using formal power series

expansion can be found in Berlekamp (1968). Mead

(1992) provides another simple and natural proof of

Newton’s identities.

The closed-form formula for GDOP

Studies in Simon and El-Sherief (1995), Jwo and Lai

(2003) and Jwo and Lai (2007) pointed out that the type 1

mapping h 7! k�1 or type 3 mapping h 7! GDOP is highly

nonlinear and cannot be determined analytically. Thus,

ANN has been employed to approximate these mappings.

The type 1 mapping remains to be studied in the future.

The other three types of mapping will be analyzed in the

following. A simple closed-form formula for the type 3

mapping can be derived from Newton’s identities.

The type 2 mapping: HTH 7! k�1

Since the measurement matrix M = HTH is a 4 9 4

matrix, the characteristic polynomial

pðkÞ ¼ detðkI�MÞ ¼ 0

is a fourth degree polynomial in k. There is a closed-form

solution to a general fourth degree polynomial, though this

quartic formula is not as popular or well-known as the

quadratic formula for second degree polynomial equations.

Lodovico Ferrari discovered this quartic formula in 1540s

by using finitely many radicals (i.e. nth root) and arithmetic

operations on the coefficients of a fourth degree polyno-

mial. Therefore, ki
-1 can be computed analytically by using

a finite number of radicals and arithmetic operations on

elements of M. Indeed, n = 4 is the highest degree of a

polynomial equation that has a general solution formula

using only radicals and arithmetic. The third degree poly-

nomial equation was solved by Niccolo Tartaglia. Using

Galois theory, it can be shown that a general polynomial
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equation of degree greater than 4 is not solvable in radicals

and arithmetic (Goldstein 1973). That is, there is no general

solution formula using only finitely many radicals and

arithmetic operations for a polynomial equation with

degree higher than 4.

The type 3 and type 4 mappings:

h 7! GDOP, HTH 7!GDOP

Fortunately, in terms of GDOP computation, embedded

symmetry in the formula has avoided many messy com-

putations in the quartic formula of Ferrari. A simple

algebraic manipulation of GDOP shows that

GDOP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3 þ k1k2k4 þ k1k3k4 þ k2k3k4

k1k2k3k4

s
ð20Þ

The denominator inside the radical is h4(k), and the

numerator is the third degree elementary symmetric

polynomial of Eq. 18. Using Netwon’s identities

successively for k = 3, 2 and 1, it follows that

e3 ¼
1

3

1

2
ðp2

1 � p2Þp1 � p1p2 þ p3

� �

Since h1(k), h2(k) and h3(k) are first, second and third

degree power sums of the eigenvalues, a close-form

formula for computing GDOP is given by

GDOP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5h3

1 � 1:5h1h2 þ h3

3h4

s
ð21Þ

Because each hi(k)can be computed from elements of

the measurement matrix, Eq. 21 also provides an exact

formula for the type 4 mapping HTH 7!GDOP in Jwo and

Chin (2002). The work in Simon and El-Sherief (1995) or

Jwo and Lai (2007) has tried to approximate the formula in

Eq. 21 by using various kinds of ANN. This formula is a

simple combination of hi(k); thus it may be found by GP

described above. However, due to the specific coefficients

involved, it will take GP substantial efforts to find this

formula. A flowchart for the proposed GDOP computation

is depicted in Fig. 1.

An example using the proposed formula to compute

GDOP is now illustrated. Suppose five satellites are

available to a receiver with the direction cosines as follows:

H ¼

0:408248 0:816497 0:408248 1

0:666667 0:333333 0:666667 1

�0:408248 0:816497 0:408248 1

0:816497 �0:408248 0:408248 1

0:408248 �0:816497 0:408248 1

0
BBBB@

1
CCCCA

The measurement matrix M = HTH is computed as a

4 9 4 matrix and given in the following.

M ¼

1:61111 �0:444444 0:944445 1:89141

�0:444444 2:27778 0:388889 0:741582

0:944445 0:388889 1:11111 2:29966

1:89141 0:741582 2:29966 5

0
BB@

1
CCA

Computing the traces of M, M2, and M3 yields h1 = 10,

h2 = 55.3316 and h3 = 357.319. The determinant of M

gives h4 = 0.281962, and according to Eq. 21, GDOP for

this set of satellites is 5.68569.

Operation count and discussions

When there are exactly four satellites to compute GDOP,

Zhu’s formula (1992) provides the best computational

efficiency. On the other hand, when there are more than

four satellites to consider, one must first compute the

matrix product HTH to get the measurement matrix. This

effort will not be considered in the following task of

comparing operation count. The type 1 and type 3 map-

pings of Jwo and Chin (2002) require an intermediate step

to compute hi’s from Eqs. 10–13. These computations need

144 floating operations divided as follows: three sums for

h1, 40 multiplications and 33 sums for h2, 16 multiplica-

tions and 15 sums for h3, and 23 multiplications and 14

sums for h4. The determinant is computed by using the

Gaussian elimination method (Atkinson 1978).

The presented formula

The presented formula in Eq. 21 needs six sums, two mul-

tiplications and one square root operation. Thus, the total

operation count to compute GDOP from elements of M is

152 floating point operations and one radical operation.

Form the measurement matrix M = HTH

from H of direction cosines

Compute traces of M, M2 and M3 to get

h1, h2 and h3

Compute det(M) by using the Gaussian

elimination method to get h4

Compute GDOP from h1, h2, h3 and h4 by

using equation (21) 

Fig. 1 GDOP computation using the proposed formula
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The conventional LU decomposition for matrix inversion

Using the conventional LU decomposition to invert the

measurement matrix requires 160 floating point operations

(Atkinson 1978). Additionally, three sums are required to

compute the trace of the inverse matrix, thus it takes a total

of 163 floating point operations and one radical operation

to compute GDOP, should this approach is adopted.

The ANN approach

For the ANN approach in Simon and El-Sherief (1995) or

Jwo and Lai (2007), if type 3 mapping is used, then it needs

a total of 144 floating point operations to compute inter-

mediate variables. Additionally, with a BPNN structure of

4 9 9 9 1, it needs more than 100 floating point opera-

tions to compute weighted sums and 10 exponential

operations to compute the sigmoid function during the

operational phase. On the other hand, if type 4 mapping is

used, there is no need to compute the intermediate vari-

ables. However, a bigger network structure must be used to

incorporate ten input variables now. Suppose a BPNN

structure of 10 9 21 9 1 is used, it will need more than

400 floating point operations to compute weighted sums

and 22 exponential operations to compute the sigmoid

function during the operational phase. The operation counts

for different approaches are summarized in Table 1.

Conclusions

GPS applications use pseudoranges to locate the position of

a receiver. The positioning accuracy is affected by mea-

surement error amplified by GDOP. It is desirable to select

a set of satellites with GDOP as small as possible. In real

time GPS applications, fast computation of GDOP is nee-

ded to get the best performance from the system. Extensive

studies using machine learning techniques have been con-

ducted previously (Simon and El-Sherief 1995; Jwo and

Lai 2003, 2007). Though these studies have shown that

ANN provided a feasible means to solve the GDOP com-

putation problem, there are a few questions left to be

answered. First of all, machine learning techniques require

computational resources to train a model, which needs to

be retrained when substantially different geographic data

are used. Second, machine learning techniques offer only

approximations to the target values.

This study provides yet another method to compute

GDOP without the labor associated with most machine

learning techniques. Using Newton’s identities in the the-

ory of symmetric polynomials, a simple closed-form

formula for GDOP was derived with the four features used

previously (Simon and El-Sherief 1995; Jwo and Lai

2007). The comparison of operation count in Table 1

shows that this formula beats the direct matrix inversion

method and neural based approaches in operational phase.

In contrast to the conventional approach, the closed-

form formula does not need any training efforts, and nor

does it incur any approximation error. The formula is a

function of four real valued variables: traces of the mea-

surement matrix M, M2 and M3, and the determinant of M.

Using the embedded symmetry in the definition of GDOP

and the theory of symmetric polynomials, a simple closed-

form formula for GDOP has been derived. In addition to its

practical applications in GDOP computation, the formula

may also provide a means to estimate GDOP bounds in

future studies.
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