
REVIEW ARTICLE

Artificial neural networks for predicting DGPS carrier phase
and pseudorange correction

Arif Indriyatmoko Æ Taesam Kang Æ Young Jae Lee Æ
Gyu-In Jee Æ Yong Beom Cho Æ Jeongrae Kim

Received: 20 February 2007 / Accepted: 30 January 2008 / Published online: 21 February 2008

� Springer-Verlag 2008

Abstract Artificial neural networks (ANNs) were used to

predict the differential global positioning system (DGPS)

pseudorange and carrier phase correction information.

Autoregressive moving average (ARMA) and autoregres-

sive (AR) models were bounded with neural networks to

provide predictions of the correction. The neural network

was employed to realize time-varying implementation.

Online training for real-time prediction of the carrier phase

enhances the continuity of service of the differential cor-

rection signals and, therefore, improves the positioning

accuracy. When the correction signal from the DGPS was

lost, the artificial neural networks predicted the correction

data with good accuracy for the navigation system during a

limited period. Comparisons of the prediction results using

the two models are given.

Keywords Neural network � DGPS � Carrier phase �
Pseudorange � ARMA � AR

Introduction

Global positioning system (GPS) measurements can be

corrupted by several error sources. These errors are

categorized as biases and random errors, i.e. ionosphere,

troposphere, satellite clock, receiver clock offsets, receiver

noise, and multipath. Differential GPS (DGPS) provides

users with corrections to remove the correlated bias terms

between receivers. Any interruption of the DGPS service

causes a loss of navigation guidance.

This paper focuses on the continuity performance of the

DGPS corrections. The discontinuity of the DGPS navi-

gation service can result from a short-term loss of lock of

the GPS signals at the DGPS reference station or unin-

tentional interruptions of the DGPS correction transfer

caused by hardware or software failure. The service dis-

continuity can be overcome by applying predictions of the

DGPS corrections. Since DGPS correction is a function of

time, it can be modeled and predicted using a neural net-

work (NN).

For a given input vector X, the neural network will

produce an output vector Y = g (X). A neural network can

provide an approximation for any function g of the input

vector X, provided that the network has sufficient nodes.

The approximation can be achieved for any desired degree

of accuracy provided that sufficient hidden units are

available.

Application of neural network to GPS and DGPS

applications has been studied by several researchers. Sang

et al. (1997) applied neural network for predicting DGPS

corrections. The experiment was performed before selec-

tive availability (SA) was turned off, and then the main

component of the correction was for SA error. Jwo et al.

(2004) investigated the neural network prediction for

DGPS pseudo range correction (PRC) under SA off with an

improved mapping design. The main contribution of the

DGPS correction was ionosphere and troposphere delays.

The DGPS correction data were used for auto regressive

moving average (ARMA) neural network input.
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In this study, the residual of DGPS correction, which is

the difference between the current and previous correc-

tions, is also used for the ARMA neural network input in

addition to the DGPS correction data. Auto regressive

(AR) neural network is investigated as well as ARMA

neural network. A comparison of the accuracy and

effective time prediction results between the ARMA and

AR neural networks was carried out. In addition to the

PRC, the carrier phase correction is predicted as well. The

positioning results were compared for the ARMA and AR

models.

There are two categories of neural network architectures

used in dynamic system modeling. One category is feed-

forward artificial neural networks (FANN), including the

multilayer perceptron and the cascaded network architec-

ture, and the other is the radial basis function network

(RBF). FANN was used in this study.

In the following, the artificial neural networks are dis-

cussed in several sections. After a brief review of the

neural networks, the implemented neural network models

are explained. The experimental setup and the results of the

ARMA and AR neural networks are presented, DGPS

positioning results are presented and discussed.

Methodology

This study combines back propagation neural network

(BPNN) with ARMA and AR models. Brief description of

each methodology is as follows.

Backpropagation neural networks

The BPNN has been the most popular method among all

neural network methods: it is a feedforward, multilayer

perceptron (MLP), supervised learning network. The pro-

cedure of finding a gradient vector within the network

structure is referred to as backpropagation (BP) since the

gradient is calculated in the opposite direction to the flow

of the output of each node (Specht 1991). Neural network

training is based on minimizing the error between the

current output and the target vector.

For MLP, the output of one layer becomes the input of

the following layer. The neurons in the first layer receive

external inputs, and the outputs of the neurons in the last

layer are considered the network output. Figure 1 shows an

example of a three-layer neural network. The following

equation describes this operation (Hagan et al. 1996):

amþ1 ¼ f mþ1 Wmþ1am þ bmþ1
� �

for m ¼ 1; 2; :::;M � 1

ð1Þ

where a is the input vector to the layer, b is the noise

vector, W is the weight matrix of each neuron, M is the

number of layers in the network, and f is the activation

function of the neurons. The activation functions of the

hidden layers and the output layer are typically sigmoid

functions with the form (Hagan et al. 1996):

f uð Þ ¼ 1

1þ e�uð Þ ð2Þ

where u = (-?,?) and f(u) [ (0,1).

Autoregressive (AR) model

The identification problem deduces the relationships

between past input data and future data of an unknown time

series or a dynamic system (Ljung 1999). The general

AR(R) formulation for a system is given by the linear

equation (Cholewo and Zurada 1997):

y tð Þ þ
XR

k¼1

aky t � kTð Þ ¼2t ð3Þ

where T is a sampling time and R is the model order of

the AR model. y(t) is a linear combination of the pre-

vious values. [t is white noise with zero mean and

variance r2
2:

Autoregressive moving average (ARMA) model

The general ARMA (R, P) formulation for a system is

given by the linear equation (Ljung 1999):

y tð Þ þ
XR

k¼1

aky t � kTð Þ ¼
XP

k¼0

bku t � kTð Þ ð4Þ

where T is the sampling time, and R and P are the model

order of the ARMA model. y(t) is a linear combination of

the previous values for input u and output y.

Construction of an artificial neural network predictor

This section describes the mathematical models of neural

network predictors combined with ARMA and AR

models.

Autoregressive moving average (ARMA) neural

networks

Based on the ARMA model, a neural network predictor can

be constructed. To predict the DGPS corrections at time

k + 1, denoted as y(t + 1), a series of DGPS corrections

y(t), y(t - 1),…, y(t - R) and the residual of the DGPS

carrier phase correction u(t), u(t - 1), …, u(t - P) can be

used.
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The desired output is computed based on the calculation

used by Kimoto et al. (1990):

yðt þ 1Þ ¼ yðtÞ þ rðtÞ þ eðtÞ ð5Þ

where y(t) represents the DGPS correction at time t, e(t) is

a white noise sequence, and r(t) is the sum of the desired

output rate of change until time t (Kimoto et al. 1990):

rn tð Þ ¼
Xn

i¼1

rðt þ iÞ i ¼ 0; 1; 2; :::; n ð6Þ

where r(t) is the logarithm of the rate of change of the

desired output at time t and t - 1:

rðtÞ ¼ lnðyðtÞ=yðt � 1ÞÞ ð7Þ

Using neural networks, the coefficients of the ARMA

model can be tuned. If the basis sigmoid function is written

as a polynomial function (Chon and Cohen 1997):

pi xð Þ ¼ a0i þ a1ixþ a2ix
2 þ � � � þ anix

n ð8Þ

and

xi ¼
XP

j¼0

wjiu t � jð Þ þ
XR

j¼1

vjiy t � jð Þ ð9Þ

Then, the coefficients of the n-th order ARMA model

are defined as (Chon and Cohen 1997):

ai ¼
XM

s¼1

csa1swis

bi ¼
XM

s¼1

csa1svis

ð10Þ

where ai and bi are the coefficients of the ARMA model.

wis and vis are the weight matrices of i-th input and s-th

perceptron. Figure 2 shows the topology of the imple-

mented ARMA neural network. DGPS correction y and

residual u are the input of the neural network predictor.

Autoregressive (AR) neural networks

The AR neural network predictor is constructed to predict

the DGPS corrections at time k + 1, denoted as y(t + 1),

using a series of DGPS corrections y(t), y(t - 1), ..., y(t -

R) data. R is the model order of the AR model terms. The

desired output of the AR neural network is computed using

the same technique as the ARMA.

Using neural networks, the constants of the AR model can

be tuned. With the basic sigmoid function, the polynomial

function can be expressed as (Chon and Cohen 1997):

pi xð Þ ¼ a0i þ a1ixþ a2ix
2 þ � � � þ anix

n

and

xi ¼
XR

j¼1

wjiy t � jð Þ
ð11Þ

Then, the coefficients of the n-th order AR model are

defined as:

ai ¼
XM

s¼1

csa1swis ð12Þ

where ai is the coefficient of the AR model. The coefficient

will change for every correction data. wis is the weight

matrix of i-th input and s-th perceptron. Then, using the AR

model, the DGPS correction can be predicted. The number

Fig. 1 Three-layer network
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Fig. 2 A three-layer ARMA-neural network topology for DGPS

correction
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of neural network input is dependent on the AR model

chosen. Figure 3 shows the topology of the implemented

AR neural network. DGPS correction y is the input of the

predictor.

Akaike’s information criterion

Akaike’s information criterion (AIC) is a measure of the

goodness of fit of an estimated statistical model. It can be

used to select an optimal model. The criterion may be

minimized for choices of model order to form a tradeoff

between the fit of the model (which lowers the sum of

squared residuals) and the model’s complexity, which is

measured by model order (Bierens 2005).

AIC for the AR(R) model can be given by

AIC ¼ lnðs2
RÞ þ

2R

T
ð13Þ

where R is the number of parameters in the AR model and,

in an AR(R) case, sR
2 is the estimated residual variance, i.e.

sum of squared residuals for model AR(R) over T. That is,

it is the average squared residual for model R. An AR(R)

model versus an AR(R + 1) can be compared using this

criterion for determining an optimal model order.

AIC for ARMA (R, P) model (Voss and Feng 2002) can

be given by

AIC ¼ lnðs2
R;PÞ þ

2ðRþ PÞ
T

ð14Þ

where R + P is the number of parameters in the ARMA

model, and SR,P
2 is the estimated residual variance, i.e. sum

of the squared residuals for model ARMA (R, P) over T.

An ARMA (R, P) model versus an ARMA (R + 1, P + 1)

can be compared using this criterion.

Experiments and results

The experiments on the artificial neural networks were

performed using real data for pseudorange and carrier

phase correction predictions. The reference base station

was located on the roof of the engineering building at

Konkuk University, Seoul, Korea. Two NovAtel OEM 4

GPS receivers were used in the DGPS experimental setup.

The measurement noise standard deviations for each of the

pseudorange observables were assumed to be identical:

rqi = 1m, for i = 1,2, ..., n.

The measurement update rate was 1 s and six GPS

satellites were used in the experiment. The experiment was

conducted in three parts. First, experiments to obtain the

optimal models of the ARMA neural network and AR

neural network predictors were carried out. Second

experiments acquired effective prediction times for the

optimal ARMA neural network and AR neural network

predictors. The final experiment applied the ARMA and

AR neural networks to the DGPS positioning solution.

ARMA neural network experiments

First, the artificial neural network was constructed using

ARMA (2, 1) for pseudorange correction. The network was

trained using the BP algorithm, and it took 3 min to train

the ARMA neural network before it was ready to provide

DGPS corrections. Once the neural network was trained,

the constructed ARMA model was used to predict a time

series with a step length of 6 s. The neural network was

trained to predict DGPS corrections 6 s ahead of the cur-

rent correction. The experiment was performed for satellite

PRN 1, 4, 7, 13, 20, and 24. For satellite PRN 7, the mean

error of the neural network was 0.8056 m. Figure 4 shows

the predicted PRC value of the neural network and the

actual PRC of the DGPS.

Figure 4 shows that the result of the neural networks

prediction is close to the real values. The prediction

accuracy of the neural networks is better than 1 m; how-

ever, there were several jumps in the error values as shown

in Fig. 5. These conditions occur when the geometric

dilution of the precision changes with time due to the rel-

ative motion of the satellites, as shown in Fig. 6.

Figure 7 shows the prediction error time series using

the ARMA (9, 8) model. The root mean square error

(RMSE) prediction accuracy of the ARMA (9, 8) model

was 0.2472 m. The prediction accuracy of the neural

networks using this model was better than in the first

experiment using (3,2) model. Comparing Figs. 5 and 7, it

can be seen that a higher ARMA order reduces the error

level.

Figure 8 shows the RMSE of the pseudorange correction

prediction generated by varying the ARMA order for each
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Fig. 3 A three-layer AR neural network topology for DGPS

correction
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satellite. Eleven ARMA models were used to generate the

pseudorange correction prediction for six satellites. The

RMSE of the prediction decreases with an increasing

ARMA order. This improvement results from the increase

of the number of residual inputs to the model. With more

residual input, the correction accuracy will be improved.

However, accuracy improvement with a higher order

becomes less significant near ARMA (9, 8). Therefore,

ARMA (9, 8) can be chosen as a compromise between the

computational load and accuracy. The prediction accuracy

can be increased by increasing the number of perceptron

and layers of the neural network. However, this will cause

a computational burden and increase the learning time.

Another experiment was also conducted to predict the

DGPS carrier phase correction. The same model used to

predict the C/A PRC was applied to predict the carrier

phase correction. Figure 9 shows the results of the carrier

phase prediction by the neural network with the ARMA (2,

1) for satellite PRN 7. The neural network predictions gave

good accuracy except some peaks.

Figure 10 shows the error time series of the neural

networks prediction using the ARMA (2, 1) order. The

RMSE of the phase prediction was 0.2988 m.

Next experiment was conducted using the neural net-

work with the ARMA (3, 2) model. Figure 11 shows the

error time series of the neural network prediction. This

experiment gave better prediction accuracy: the RMSE of

the prediction was 0.1830 m. The experiments performed

for other satellites gave similar results.

Figure 12 shows the carrier phase prediction RMSE for

six satellites by varying ARMA model order. The experi-

ment was conducted by increasing the ARMA model to

identify the relationship between the prediction accuracy

and the ARMA model order. As like the pseudorange

Fig. 5 Neural network DGPS C/A code correction prediction error

using ARMA (3, 2)

Fig. 6 Geometric dilution of precision time series

Fig. 7 Neural network DGPS C/A code correction prediction error

using ARMA (9, 8)

Fig. 4 Comparison of the DGPS and neural network C/A code

pseudorange correction using ARMA (3, 2)
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correction experiments, the prediction error decreased by

increasing ARMA model order. However, the reduction

error stabilized when the ARMA model reached ARMA (9,

8).

The AIC value defined in the previous section was

calculated in order to find an optimal ARMA model order.

The similar prediction trend as like the prediction error is

obtained for the AIC; when the ARMA model order is

increased, the AIC value decreases and then converges.

Figure 13 shows the AIC value of the six satellites with

an increasing ARMA model order. The AIC value begins

to converge when the ARMA model order reaches ARMA

(9, 8). Increasing the ARMA model order above ARMA (9,

8) does not yield a significant reduction of the AIC value.

From these results, ARMA (9, 8) can be chosen as the

optimal order.

Another experiment was conducted to acquire the

effective time period for the prediction. The time step of

the prediction was 6 s. First, the learning process is

undertaken, and then after the 80th time step, the DGPS

correction signal was cut. ARMA (9, 8) can predict as far

as 20 steps ahead while maintaining good prediction rates.

This time limitation is equal to 2 min because the step time

is 6 s. Figure 14 shows the error comparison of the pre-

diction and real data after the DGPS signal was cut. After

the 20th step, the error begins to grow. Experiments for

other satellites gave similar results.

Autoregressive (AR) neural network experiment

Experiments with the AR models were conducted for six

satellites as in the ARMA models. For the AR neural

network, it takes 4 min of training time before the system

can provide good predictions. Once the neural network isFig. 9 Comparison of the DGPS and neural network carrier phase

correction using ARMA (2, 1)

Fig. 10 Neural network DGPS carrier phase correction prediction

error using ARMA (2, 1)

Fig. 11 Neural network DGPS carrier phase correction prediction

error using ARMA (3, 2)
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trained, the network is ready to provide correction

predictions.

Experiments for the DGPS PRC prediction gave the

similar results as the ARMA experiments. The prediction

error was reduced as the AR neural network order was

increased. Figure 15 shows the comparison of the PRC

prediction and the real data for the AR (8) model.

However, the prediction error remains too large, as

shown in Fig. 16; the maximum prediction error reached

almost 30 m. When the AR model order was increased

to 15, the prediction error was reduced, as shown in

Fig. 17. The maximum prediction error was reduced

below 3 m.

The experiment for the carrier phase correction gave

the similar results as the PRC: increasing the AR model

order reduces the prediction error. Figure 18 shows the

comparison of the carrier phase prediction data using the

model and the observation data with the AR (8) neural

network. The prediction error remains too large, as

shown in Fig. 19.

The next experiment was conducted to obtain the opti-

mal order for the AR model. The AIC was computed by

varying the AR model order. The AR model orders from 8

through to 21 were tested. Figure 20 shows the AIC value

for the PRN satellites for each AR order. It can be seen that

the AIC value decreases as the autoregressive order

increases. However, at one point, the AIC value begins to

increase again. The order that gives the smallest AIC value

for satellites is 15 or 16. The smallest AIC values indicate

that the prediction error is the smallest possible. Thus, the

AR neural network will provide the best prediction result if

the AR order is 15 or 16.

An experiment to analyze the prediction error level

change by varying the AR order was also conducted.

Figure 21 shows the RMSE of the PRC prediction for
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Fig. 13 AIC value of the ARMA model for different ARMA orders

Fig. 14 Prediction effective time for ARMA (9, 8)
Fig. 15 Comparison of the DGPS C/A code correction prediction

using AR (8)
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each satellite when the AR model order increases. It is

clearly shown that the best order is 15 or 16. The RMSE

decreases with an increasing AR order. Then, the RMSE

increases again when the autoregressive order is higher

than 16.

From this data, the AR model order 15 or 16 can be

chosen as the optimal order for AR neural networks. Order

15 can be chosen as the best order since it requires less

computational load than order 16.

An experiment to find out the effective time period of

the prediction was also conducted for the AR neural net-

work. The time step of the prediction was 6 s. After the

learning period, the DGPS correction signal was cut at the

80th time step. Figure 22 shows the comparison of the

prediction and the real data after the DGPS signal was cut.

AR (15) maintains prediction accuracy until 18 steps after

the cut. This is equal to 1 min 48 s. The experiments for

other satellites gave similar results.

Fig. 16 Neural network DGPS C/A code correction prediction error

using AR (8)

Fig. 17 Neural network DGPS C/A code correction prediction error

using AR (15)

Fig. 18 Comparison of DGPS and neural network carrier phase

correction using AR (8)

Fig. 19 Neural network DGPS carrier phase correction prediction

error using AR (8)

4

5

6

7

8

9

10

11

12

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

PRN1
PRN4
PRN7
PRN18
PRN20
PRN24
MEAN

A
IC

 V
al

u
e

AR Order(m)

Fig. 20 AIC values for different AR orders

244 GPS Solut (2008) 12:237–247

123



DGPS positioning experiment

In the previous section, the DGPS correction prediction

errors using ARMA neural network and AR neural network

were analyzed. Now, the DGPS position errors will be

compared with and without the neural networks. For this

experiment, two DGPS positioning systems were devel-

oped. The first system was augmented with the ARMA

neural network predictor [ARMA (9, 8)] and the second

was not augmented with a predictor. After continuous

transmission of DGPS correction signal to the system, the

signal was cut for approximately 1 min. Then, the DGPS

correction signal was connected again. This action was

repeated several times. When the DGPS correction signal

was disconnected, DGPS positioning without the neural

network prediction became stand-alone positioning.

Figure 23 shows the comparison of the two systems.

The 95% (2D RMS) accuracy of the DGPS system without

the neural network prediction was 12.108 m, but the sys-

tem with the prediction was 2.553 m. The positioning

accuracy was significantly improved with the ARMA

prediction system. The ARMA neural network succeeded

in providing continuity of performance for the DGPS

system while maintaining accuracy.

Applying the AR neural network gives the similar result:

Fig. 24 shows the comparison of the system with and

without the AR neural network. When the loss of lock

occurred, the positioning accuracy became poor. However,

for the system with the AR prediction, the position accu-

racy was maintained. Using the AR (15) neural network,

the same results were obtained as in the ARMA (9, 8)

neural network. The 95% (2 DRMS) positioning accuracy

was 2.553 m.

From the experiments, it was found that the ARMA

neural network needs less time for training and has a longer

effective prediction time than the AR neural network. The

Fig. 22 Prediction error effective time for AR (15)

Fig. 23 DGPS positioning error with and without the ARMA neural

network

Fig. 24 DGPS positioning error with and without the AR neural

network
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ARMA neural network requires 3 min for training, while

the AR neural network requires 4 min. In terms of the

effective prediction time, the ARMA neural network can

provide 20 steps ahead while the AR neural network can

only provide 18 steps. However, the positioning accuracy

with the ARMA and AR neural network models are almost

the same: approximately 2.553 m for 95% accuracy.

Conclusions

The ARMA and AR neural networks have been incor-

porated to predict the differential DGPS carrier phase and

pseudorange information. When the carrier phase signal is

temporarily lost for a limited time, the neural network

with the ARMA or AR model predicts the carrier phase

or pseudorange correction data with good accuracy. The

benefits of using the ARMA model include easy imple-

mentation and good accuracy. The ARMA model includes

the residual of the carrier phase in the present and pre-

vious predictions as an input to the neural network

predictor. Neural network experiments with different

ARMA model orders were performed and the results

showed that an increasing ARMA order improved the

prediction accuracy.

For the AR neural networks, increasing the order of the

AR neural network did not always improve the prediction

accuracy. Until a certain order of the AR neural network,

the accuracy is increased; however, the accuracy is

degraded after that order. Akaike’s information criteria

were computed to obtain the best order of the ARMA and

AR neural network predictors. A comparison between the

ARMA and AR neural networks shows that the ARMA

neural network requires less network training time and

gives a longer effective prediction times than the AR neural

network. However, in terms of positioning accuracy, the

ARMA neural network gives the same accuracy as the AR

neural network.

In summary, incorporating neural networks with

ARMA and AR model mechanisms into the DGPS sys-

tem has been demonstrated to provide significant

accuracy improvements when the DGPS signals are

temporarily unavailable. The neural network prediction

mechanism improves the continuity performance of the

DGPS system.
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