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Abstract Kalman filter is the most frequently used

algorithm in navigation applications. A conventional

Kalman filter (CKF) assumes that the statistics of the

system noise are given. As long as the noise charac-

teristics are correctly known, the filter will produce

optimal estimates for system states. However, the system

noise characteristics are not always exactly known,

leading to degradation in filter performance. Under some

extreme conditions, incorrectly specified system noise

characteristics may even cause instability and divergence.

Many researchers have proposed to introduce a fading

factor into the Kalman filtering to keep the filter stable.

Accordingly various adaptive Kalman filters are deve-

loped to estimate the fading factor. However, the

estimation of multiple fading factors is a very compli-

cated, and yet still open problem. A new approach to

adaptive estimation of multiple fading factors in the

Kalman filter for navigation applications is presented in

this paper. The proposed approach is based on the

assumption that, under optimal estimation conditions, the

residuals of the Kalman filter are Gaussian white noises

with a zero mean. The fading factors are computed and

then applied to the predicted covariance matrix, along

with the statistical evaluation of the filter residuals using

a Chi-square test. The approach is tested using both GPS

standalone and integrated GPS/INS navigation systems.

The results show that the proposed approach can signi-

ficantly improve the filter performance and has the

ability to restrain the filtering divergence even when

system noise attributes are inaccurate.
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Introduction

The conventional Kalman filtering (CKF) is an optimal

estimation method that has been widely applied in navi-

gation applications. For a normal operational situation,

the model statistic noise levels are given before the fil-

tering process starts and will maintain unchanged during

the whole recursive process. Such priori statistical

information is commonly determined beforehand using

experiments and certain knowledge about the observation

type. As long as the noise characteristics are correctly

specified, the filter will produce optimal estimates for

unknown system states. However, if the priori statistical

information is inadequate to represent the real statistic

noise levels, the Kalman filter estimation is not optimal

and may cause unreliable results, sometimes even lead-

ing to filtering divergence (Mohamed and Schwarz

1999).

Fading Kalman filtering was proposed to overcome the

shortcomings of the CKF (e.g., Fagin 1964), by assigning a

constant fading factor. But its effect is not always ideal

given an uncertain noise distributions. Accordingly various

adaptive Kalman filters have been developed to estimate

the fading factor (Lee 1988; Yang et al. 2001). An

approach to estimate the fading factors adaptively was
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proposed by Xia and Rao (1994). Then a strong tracking

Kalman filter was proposed and applied in nonlinear

dynamic systems to identify states and parameters (Zhou

and Frank 1996). In the field of surveying and navigation

applications, Hu et al. (2003) presented an approach that

uses an algorithm based on the magnitude of the predicted

residuals to reduce the dynamic modeling errors. Zhang

et al. (2003) used a strong tracking filter in DGPS/MEMS-

IMU/Magnetic compass integrated navigation system for

improving the robustness to the model uncertainties. Hide

et al. (2003) also examined the use of three adaptive fil-

tering techniques, including artificially fading Kalman filter

covariance, the adaptive Kalman filter and multiple model

adaptive estimation for a low-cost INS/GPS integrated

system.

In this paper, we propose an adaptive method to estimate

multiple fading factors in the Kalman filter for navigation

applications. The algorithm makes use of the predicted

residuals. Along with the statistical evaluation of the filter

residuals using a Chi-square test, the fading factors are

computed separately to increase the predicted variance

components of the state vector. Land vehicle tests have

been carried out to compare the performance of this algo-

rithm with a conventional Kalman filter for vehicle

navigation using GPS standalone and integrated GPS/INS

system. The results demonstrate that the proposed algo-

rithms can restrain the filtering divergence when system

noise attributes are not accurate. The new approach is easy

to implement and does not add a heavy computation burden

to the system.

Kalman filter algorithm

Considering a linear dynamic system:

xk ¼ Uk=k�1xk�1 þ wk�1 ð1Þ

zk ¼ Hkxk þ vk ð2Þ

where xk is the state vector at epoch k; /k/k-1 is the state

transition matrix; wk-1 is the system noise; zk is the

observation at epoch k; Hk represents the observation

matrix. The expectation and the covariance matrices of

wk-1 and vk are written as

Eðwk�1Þ ¼ 0

varðwk�1Þ ¼ Qk�1

Eðvk�1Þ ¼ 0

varðvk�1Þ ¼ Rk�1

respectively.

Basically, the Kalman filtering estimation algorithm

comprises two steps, namely prediction and updating with

external measurements. The main Kalman filtering equa-

tions are given below:

Prediction:

x̂k=k�1 ¼ Uk=k�1x̂k�1 ð3Þ

Pk=k�1 ¼ Uk=k�1Pk�1U
T
k=k�1 þ Qk�1 ð4Þ

Updating:

Kk ¼ Pk=k�1HT
k ½HkPk=k�1Hk þ Rk��1 ð5Þ

x̂k ¼ x̂k=k�1 þ Kk½zk � Hkx̂k=k�1� ð6Þ

Pk ¼ ðI � KkHkÞPk=k�1 ð7Þ

where x̂k=k�1 is the predicted state vector; Pk/k-1 is the

variance matrix for x̂k=k�1; Kk is the gain matrix; x̂k is the

estimated states; and Pk is the variance matrix for the

estimated states.

Based on Eqs. (2) and (3), the predicted residual vector

can be expressed as

vk ¼ zk � HkX̂k=k�1 ð8Þ

For a linear dynamic system, when a filter is stable, we

have

vk�Nð0;HkPk=k�1HT
k þ RkÞ ð9Þ

Then

varðvkÞ ¼ HkðUk=k�1Pk�1U
T
k=k�1 þ Qk�1ÞHT

k þ Rk ð10Þ

We can construct a statistic:

ck¼ vT
k HkðUk=k�1Pk�1U

T
k=k�1þQk�1ÞHT

k þRk

h i�1

vk�v2ðmÞ

ð11Þ

where ck has a Chi-square distribution with m degrees of

freedom, and m is the number of state variables which can

be observed.

The testing criteria is

n ¼ ck

e
¼ >1 test fails

\1 test passes

�
ð12Þ

where f is a scale factor for the statistical test, e is the

threshold value according to the Chi-square distribution

table at a given confidential level. If the test tails then the

assumption of multivariate normal distribution (9) is not

valid.

Adaptive estimation of multiple fading factors

in a Kalman filter

The Kalman filtering estimation at epoch k can be

considered as ‘weighted’ adjustment between the new

measurements (observation model) and the predicted ones
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based on the predicted state vector, the dynamic model, and

all previous measurements. If too much ‘‘weight’’ were

given to the dynamic model, the estimation would ignore

the information from new measurements and causes the

divergence of the filtering. To overcome this problem, a

constant fading factor s is assigned,

Pk=k�1 ¼ Uk;k�1ðsPk�1=k�1ÞUT
k;k�1 þ Qk�1; s [ 1 ð13Þ

However, a constant fading factor can not guarantee

optimal filtering. In actual applications, it is very difficult

to determine the correct value of the fading factor.

For the complicated multivariable systems, estimation

performance of the Kalman filter varies for each

variable. It is not enough to use only one fading factor

to multiply the covariance matrices. To overcome the

shortcomings of a single fading factor Kalman filter, a

multiple fading factor Kalman filter is proposed to

increase the predicted variance component for the state

parameters individually. We write

Pk=k�1 ¼ SkUk=k�1Pk�1U
T
k=k�1 þ Qk�1 ð14Þ

Where Sk = diag(s1, s2,… sn) is the matrix of fading

factors.

Unfortunately Eq. (14) may lead to the asymmetry of P.

To avoid this problem, the following new equation is used

to replace Eq. (14)

Pk=k�1 ¼ SkUk=k�1Pk�1U
T
k=k�1ST

k þ Qk�1 ð15Þ

Now considering a new measurement matrix that satisfies

the condition as follows:

�Hk ¼ Km�m Om�ðn�lÞ
� �

m�n
; m� n ð16Þ

where, Km9m = diag(k1, k2,…, km). For many linear sys-

tems in control and estimation field, the condition above

can be satisfied through rearranging the sequence of the

state variables.

It is noted that when the filter is in a steady state pro-

cessing, the predicted residual vector has an attribute as

follows

ck ¼ vT
k ½ �HkðSkUk=k�1Pk�1U

T
k=k�1ST

k þ Qk�1Þ �H
T
k

þ Rk��1vk�v2ðmÞ ð17Þ

Where Sk = diag(s1, s2,… sn) is the matrix of fading

factors.

Given that

Ak ¼ �HkSkUk=k�1Pk�1U
T
k=k�1ST

k
�H

T
k ð18Þ

Bk ¼ �HkQk�1
�H

T
k þ Rk ð19Þ

Jk ¼ Uk=k�1Pk�1U
T
k=k�1 ð20Þ

Then

Ak ¼ �HkSkUk=k�1Pk�1U
T
k=k�1ST

k
�H

T
k

¼ Km�m Om�ðn�mÞ
� �

m�n

S1;m�m Om�ðn�mÞ

Oðn�mÞ�m S2;ðn�mÞ�ðn�mÞ

" #

n�n

�
J11;m�m J12;m�ðn�mÞ

J21;ðn�mÞ�m J22;ðn�mÞ�ðn�mÞ

" #

n�n

�
S1;m�m Om�ðn�mÞ

Oðn�mÞ�m S2;ðn�mÞ�ðn�mÞ

" #

n�n

Km�m

Oðn�mÞ�m

" #

¼ S1;m�m Om�ðn�mÞ
� �

m�n

Km�m Oðn�mÞ�m

Oðn�mÞ�m Oðn�mÞ�ðn�mÞ

" #

n�n

�
J11;m�m J12;m�ðn�mÞ

J21;ðn�mÞ�m J22;ðn�mÞ�ðn�mÞ

" #

n�n

�
Km�m Oðn�mÞ�m

Oðn�mÞ�m Oðn�mÞ�ðn�mÞ

" #

n�n

S1;m�m

Oðn�mÞ�m

" #

n�m

¼ S1;m�m Om�ðn�mÞ
� �

m�n

�
Km�mJ11;m�mKm�m Om�ðn�mÞ

Oðn�mÞ�m Oðn�mÞ�ðn�mÞ

" #

n�n

�
S1;m�m

Oðn�mÞ�m

" #

n�m

¼ S1;m�mKm�mJ11;m�mKm�mS1;m�m

ð21Þ

From the above equation, the following equation can be

derived

aii ¼ s2
i k

2
i jii; ði ¼ 1; 2; . . .;mÞ ð22Þ

where aii(k) and jii(k) are the ith diagonal element of matrix

Ak and Jk respectively.

When a filter is stable, Eq. (9) is true. Each element of

vk satisfies (Da 1994)

ciðkÞ ¼
½viðkÞ�2

aiiðkÞ þ biiðkÞ
�vð1Þ

where bii(k) are the ith diagonal element of matrix Bk.we

can obtain that

½viðkÞ�2

aiiðkÞ þ biiðkÞ
=ei\1 ð23Þ

where vi (k) is the ith element of the vk.

Using inequality (23), the adaptive factors may satisfy

the following condition
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s2
i [

½viðkÞ�2

k2
i jiiðkÞei

� biiðkÞ
jiiðkÞ

; ði ¼ 1; 2; . . .;mÞ ð24Þ

Considering the sign of square root of si
2, if

½viðkÞ�2

k2
i jiiðkÞei

� biiðkÞ
jiiðkÞ

[ 0;

then, one can obtain

si ¼ max 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½viðkÞ�2

k2
i jiiðkÞei

� biiðkÞ
jiiðkÞ

s !
; ði ¼ 1; 2; . . .;mÞ

ð25Þ

If

½viðkÞ�2

k2
i jiiðkÞei

� biiðkÞ
jiiðkÞ

\0;

then

si ¼ 1; ði ¼ 1; 2; . . .;mÞ:

In this approach, only s1, s2,…, sm of matrix Sk in Eq. (14)

can be estimated adaptively. The other elements of the

matrix Sk cannot be estimated adaptively due to their un-

observablilities, each of their values should be chosen as 1.

The multiple fading factor matrix can be written as

Sk ¼ diagðs1; s2; . . .; sm; 1; . . .; 1; . . .; 1Þ

This is because the only prior m state variables can be

observed directly while other state variables cannot be

observed. It is clear that the values of the observable states

can be rectified, whereas the estimation performance of

unobservable states cannot be rectified due to the lack of

sufficient information.

Testing

Two examples from navigation, GPS standalone dynamic

positioning and GPS/INS integrated navigation, are used

to evaluate the performance of the adaptive algorithm

proposed.

GPS dynamic positioning

A data set was collected using Leica 500 on a land vehicle

in 2005. The available measurements are C/A code, P-code

pseudoranges, L1 and L2 carrier phases and Doppler

measurements with 1 Hz output rate.

The highly accurate double-differenced carrier mea-

surements solutions were used as ‘‘reference’’ to compare

with the Kalman filtering results from the code differential

GPS measurements. The constant velocity model for the

Kalman filter was employed. The system dynamic model is

as follows

_x
_v

� �
¼ 0 1

0 0

� �
x
v

� �
þ 0

w

� �

The measurement equations is

z ¼ 1 0½ � x
v

� �
þ n

where the variance for the position measurements was

0.2 m2 and the spectral density for the velocity measure-

ments was chosen to be 0.01, 0.02, 0.05, 0.1 m2/s2,

respectively.

We used the conventional Kalman filter and adaptive

algorithm to estimate the GPS position and velocity. When

using the adaptive filter, according to the Chi-square

distribution table at the given confident level a = 0.99, the

threshold value e is 6.635. The positional errors are shown

in Figs. 1 and 2.

Figure 1 shows the test results of the conventional

Kalman filter. Because we do not know the exact spectral

density for the velocity, we have to guess the noise

covariance when using the CKF to estimate the state

values. In Fig. 1a–d, we plot the result for different values

of the noise covariance. It is can be seen that the dynamic

noise level strongly affects the performance of conven-

tional Kalman filter. We can also notice that the position

errors become smaller when the noise covariance gets

larger.

Under the same conditions, Fig. 2 shows the errors of

position estimation using the proposed algorithm. Com-

paring with the results with Fig. 1, we can see that all the

position errors in Fig. 2 are smaller. The proposed adaptive

algorithm can estimate the position value accurately no

matter what value of system noise covariance is chosen.

Therefore the proposed algorithm is a robust approach and

can effectively deal with state estimation for navigation

applications.

GPS/INS integrated navigation

In GPS/INS integrated navigation application we consider

a basic set of system parameters, the navigation para-

meters, and the accelerometer and gyroscope error states,

X ¼ ½drN ; drE; drD; dVN ; dVE; dVD;WN ;WE;WD;

rbx;rby;rbz;rfx;rfy;rfz; ebx; eby; ebz; efx; efy;

efz; dgN ; dgE; dgD�T

The symbols drN, drE, drD denote the position errors; dvN,

dvE, dvD are the velocity errors; wN, wE, wD are the attitude

errors; rbx, rby, rbz are the accelerometer biases; rbx,

276 GPS Solut (2008) 12:273–279

123



-4

-2

0

2

4

Time (sec)

Time (sec)

P
os

iti
on

 E
rr

or
 (

m
)

a Q=0. 01m2/s2

-4

-2

0

2

4

P
os

iti
on

 E
rr

or
 (

m
)

b Q=0. 02m2/s2

-4

-2

0

2

4

Time (sec)

P
os

iti
on

 E
rr

or
 (

m
)

c Q=0. 05m2/s2

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

-4

-2

0

2

4

Time(sec)

P
os

iti
on

E
rr

or
 (

m
)

d Q=0. 1m2/s2

Fig. 2 The Adaptive algorithm
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rby, rbz are the accelerometer scale factor errors; ebx, eby,

ebz are the gyro drifts. efx, efy, efz are the gyro scale factor

errors; dgx, dgy, dgz represent the gravity uncertainty errors.

The system noise vector is W(t) = [xr bx x r by xr bz xr

fxx r fyxr fzxe bxx e by xe bzx e fxxe fyx e fzxgNxgExgD]T.

The system errors model is presented as:

_XðtÞ ¼ FðtÞXðtÞ þ GðtÞWðtÞ

The measurement model can be expressed as:

ZðtÞ ¼ PINS � PGPS½ � ¼ HðtÞXðtÞ þ VðtÞ
¼ I3�3 O3�21½ �XðtÞ þ VðtÞ

Where Z(t) is the measurement vector; H(t) is the design

matrix; and V(t) is the noise vector.

The test involved two Leica System 530 GPS receivers

and one BEI C-MIGITS II (DQI-NP) INS unit. One GPS

receiver was set up as the static reference station, and the

other one mounted on top of the test vehicle together with

the INS unit. The data were stored on the GPS receiver’s

PCMCIA and a laptop computer for post processing.

Table 1 shows the DQI-NP’s technical data for refer-

ence. These values were used in setting up the Q estimation

in the conventional Kalman filtering process. Using the

same confident level a = 0.99 as in the first application,

the threshold value e is 6.635. Figure 3 shows the ground

track of the test vehicle. Figure 4 shows the position errors

obtained using the conventional Kalman filter. This result

represents the best performance from the CKF using dif-

ferent values of system noise covariance. For the proposed

algorithm, the initial noise levels were identical to those for

the conventional Kalman filter. Figure 5 shows the position

errors of the proposed algorithm.

Table 1 DQI-NP’s technical data

Gyro Accelerometer

Bias 5 deg/h 500 lg

Scale factor 500 ppm 800 ppm

Random walk/white noise 0.035 deg/sqrt(h) 180 lg/sqrt (h)
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Fig. 3 Ground track of the test vehicle
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Fig. 4 Position errors from the CKF
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From Fig. 4 it is seen that the maximum error in latitude

and longitude were 0.4 m. The standard deviations of

positioning errors are 0.0845 m and 0.1358 m for latitude

and longitude respectively. The errors of position estima-

tion are mainly caused by the unmodeled errors. In fact, it

is very difficult to get the exact apriori information of

navigation system, so we have to ‘guess’ the values of

system noise covariance. Due to lack of adaptive estima-

tion ability, the performance of the conventional Kalman

filter is not satisfactorily.

Comparing Figs. 5 and 4, it is clearly demonstrated that

the position errors with the proposed adaptive Kalman

filters are significantly smaller than those of the CKF. For

the proposed algorithm, the positioning errors are 0.0014

and 0.0016 m (standard deviation) for latitude and longi-

tude, respectively. Better results can also be achieved with

the proposed algorithm for the height. Hence the posi-

tioning errors are significantly reduced using the proposed

multiple fading factor Kalman filter.

Conclusion

Inaccuracy in system models may degrade the performance

of the conventional Kalman filter. To overcome these

shortcomings of the Kalman filter, we have introduced a

fading Kalman filtering algorithm. The algorithm uses the

predicted residuals to compute multiple fading factors to

scale the predicted covariance matrix.

The proposed algorithm has been tested using GPS

standalone and GPS/INS integrated system examples. The

comparisons have demonstrated that the proposed algorithm

is much better than the conventional Kalman filter when the

system noise characteristics are not exactly known. The

proposed algorithm is a robust approach and insensitive to

the levels of system noise. The characteristic of the new filter

can overcome the shortcomings of the conventional Kalman

filter as to robust estimation. Compared with the existing

methods, the proposed new approach is easy to implement

and without heavy computation burden.

References

Da R (1994) Failure detection of dynamical systems with the state

Chi-square test. J Guid Control Dyn 17(2):271–277

Fagin SL (1964) Recursive linear regression theory: optimal filter

theory and error analysis. IEEE Int Conv Rec 12:216–240

Hide C, Moore T, Smith M (2003) Adaptive Kalman filtering for low-

cost INS/GPS. J Navig 56:143–152

Hu CW, Chen W, Chen YQ, Liu DJ (2003) Adaptive Kalman filtering

for vehicle navigation. J Glob Position Syst 2(1):42–47

Lee TS (1988) Theory and application of adaptive fading memory

Kalman filters. IEEE Trans Circuits Syst 35(4):474–477

Mohamed H, Schwarz KP (1999) Adaptive Kalman filtering for INS/

GPS. J Geod 73:193–203

Xia Q, Rao M (1994) Adaptive fading Kalman filter with an

application. Automatica 30(8):1333–1338

Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinematic

geodetic positioning. J Geod 75:109–116

Zhang J, Jin ZH, Tian WF (2003) A suboptimal Kalman filter with

fading factors for DGPS/MEMS-IMU/Magnetic compass inte-

grated navigation. IEEE:1229–1234

Zhou DH, Frank PM (1996) Strong tracking filtering of nonlinear

time-varying stochastic systems with colored noise: application

to parameter estimation and empirical robustness analysis. Int J

Control 65(2):295–307

GPS Solut (2008) 12:273–279 279

123


	Adaptive estimation of multiple fading factors �in Kalman filter for navigation applications
	Abstract
	Introduction
	Kalman filter algorithm
	Adaptive estimation of multiple fading factors �in a Kalman filter
	Testing
	GPS dynamic positioning
	GPS/INS integrated navigation

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


