
Introduction

The geometric dilution of precision (GDOP) is a geo-
metrically determined factor that describes the effect of
geometry on the relationship between measurement er-
ror and position error. It is used to provide an indication
of the quality of the solution. Some of the GPS receivers
may not be able to process all visible satellites due to
limited number of channels. Consequently, it is some-
times necessary to select the satellite subset that offers
the optimal or acceptable solutions. The optimal satellite
subset is sometimes obtained by minimizing the GDOP
factor.

The most straightforward approach for obtaining
GDOP is to use matrix inversion to all combinations
and select the minimum one. However, the matrix
inversion by computer presents a computational burden

to the navigation computer. For the case of processing
four satellite signals, it has been shown that GDOP is
approximately inversely proportional to the volume of
the tetrahedron formed by four satellites (Kihara and
Okada 1984; Stein 1985). Therefore, it is optimum to
select satellite such that the volume is as large as possi-
ble, which is sometimes called the maximum volume
method. However, it is not universal acceptable since it
does not guarantee optimum selection of satellites.

The neural network (NN) approach provides a
promising and very realistic computational alternative.
The application of NN approach for navigation solution
processing has not been widely explored yet in the GPS
community. Simon and El-Sherief (1995a) initially pro-
posed the NN approach to approximate and classify the
GDOP factors for the benefit of computational effi-
ciency, where it could be seen that a total of 160 floating
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point operations (add, subtract, multiply, or divide) are
required for each 4 · 4 matrix inversion in order to
determine GDOP using the LU-decomposition method.
There are basically two types of strategy employed for
justifying satellite geometry based on GDOP, i.e.,
approximation and classification. Differing from the
GDOP approximator for computing the value to select
the optimal subsets of satellites, the GDOP classifier is
employed for selecting one of the acceptable subsets
(e.g., ones with GDOP factor sufficiently small) of sat-
ellites for navigation use. In Simon and El-Sherief’s re-
search, the back-propagation neural network (BPNN)
and optimal interpolative (OI) Net, respectively, were
employed for performing the function approximation
and group classification, respectively. The NNs were
used to learn the functional relationships between the
entries of a measurement matrix and the eigenvalues of
its inverses, and thus generated GDOP. Extension work
on BPNN based GDOP approximation has been ex-
plored by Jwo and Chin (2002), where they proposed
three other input–output mapping relationships and
evaluated the results based on four types of mapping
topology.

Although the BPNN has been the most popular
learning algorithm throughout all neural network
applications and can be employed as an approximator
as well as a classifier, it usually requires a very long
training time. To overcome the problem of long
training time, three other networks are employed. They
are the OI Net, probabilistic neural network (PNN)
and general regression neural network (GRNN). For
function approximation, the GRNN is employed in
addition to the BPNN; while for group classification,
the OI Net, PNN and GRNN are employed in addition
to the BPNN. This paper is organized as follows. In
the section ‘‘Preliminaries: GDOP and neural net-
works‘‘, the preliminary background on GDOP and
neural networks is briefly reviewed. The NNs employed
in this paper, i.e., BPNN, OI Net, PNN and GRNN,
are introduced in the section ‘‘Neural networks for
approximation and classification’’. The section ‘‘GDOP
approximation and classification using neural net-
works’’ provides the mapping topology for performing
the GDOP function classification and group approxi-
mation. In the section ‘‘Simulation and discussion’’,
simulation examples and discussion of results using
NNs are presented. Conclusions are given in the section
‘‘Conclusions’’.

Preliminaries: GDOP and neural networks

The least squares solution to the linearized GPS
pseudorange equation, z = Hx + v, is given by
(Yalagadda et al. 2000)

x̂ ¼ ðHTHÞ�1HTz; ð1Þ

where the dimension of the geometry matrix H is n · 4
with n ‡ 4. The quality of navigation solution for the
linearized pseudorange equation is obtained by taking
the difference between the estimated and true positions:

~x ¼ ðHTHÞ�1HTv; ð2Þ

where v has zero mean, and so does ~x: The covariance
between the errors in the components of the estimated
position is:

Ef~x~xTg ¼ ðHTHÞ�1HTEfvvTgHðHTHÞ�1;

where E{Æ} is the expected value operator. If all com-
ponents of v are pairwise uncorrelated and have variance
r2, then E{vvT} = r 2

I, and consequently:

Ef~x~xTg ¼ r2ðHTHÞ�1: ð3Þ

The GDOP factor is defined as

GDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðHTHÞ�1
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trace½adjðHTHÞ�
detðHTHÞ

s

: ð4Þ

It is seen that the GDOP factor gives a simple inter-
pretation of how much one unit of measurement error
contributes to the derived position solution error for a
given situation. It determines the magnification factor of
the measurement noise that is translated into the derived
solution.

NNs are trainable, dynamic systems that can estimate
input–output functions and have been applied to a wide
variety of problems since they are model-free estimators,
i.e., without a mathematical model. They have been
studied for more than three decades since Rosenblatt
first applied single-layer perceptrons to pattern classifi-
cation learning in the late 1950s. A NN is a network
structure consisting of a number of nodes connected
through directional links. Each node represents a pro-
cess unit, and the links between nodes specify the casual
relationship between the connected nodes. The learning
rule specifies how these parameters should be updated to
minimise a prescribed error measure, which is a mathe-
matical expression that measures the discrepancy be-
tween the network’s actual output and a desired output.
The importance of a NN includes the way a neuron is
implemented and how their interconnection/topology is
made.

Neural networks for approximation and classification

Brief review on four types of NNs, including BPNN, OI
net, PNN and GRNN, is provided.
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The Back-propagation Neural Network (BPNN)

The BPNN is a feed-forward, multi-layer perceptron
(MLP), supervised learning network, which maps a set
of input vectors to a set of output vectors. The pro-
cedure of finding a gradient vector in a network
structure is generally referred to as back propagation
(BP). The basic principle of the BP is to use the gra-
dient steepest descent method to minimize the cost
function:

E ¼ 1

2

X

n

k¼1
ðdk � ykÞ2; ð5Þ

where n is the number of output variables and dk and yk
represent the kth desired and actual output neurons,
respectively.

The BP topology is made of three layers, one input
layer, one hidden layer, and one output layer. The
BPNN essentially includes: xi-value of the ith input
neuron; hj-output of the jth hidden neuron; wij-inter-
connection weight between the ith input neuron and
the jth hidden neuron; wjk-interconnection weight
between the jth hidden neuron and the kth
output neuron. The adjustment of weights is imple-
mented by

wijðnþ 1Þ ¼ wijðnÞ þ gdjhj þ a½wijðnÞ � wijðn� 1Þ�
ð6aÞ

and

wjkðnþ 1Þ ¼ wjkðnÞ þ gdkyk þ a½wjkðnÞ � wjkðn� 1Þ�;
ð6bÞ

where (n + 1), (n), and (n ) 1) are indices for the next,
present, and previous, respectively, and
g: learning rate
a: momentum
hj: sigmoid function for a hidden neuron:

hj ¼
1

1þ expð�vjÞ
; where vj ¼

X

i

wijxi � hj;

yk: sigmoid function for an output neuron:

yk ¼
1

1þ expð�rkÞ
;

where rk ¼
X

j

wjkhj � hk;

dj: error for a hidden neuron:

dj ¼ hjð1� hjÞ
X

k

wjkdk;

dk: error for an output neuron:

dk ¼ ykð1� ykÞðdk � ykÞ:
The parameters hj and hk represent the bias/threshold

values of the jth hidden neuron and kth output neuron,
respectively. The activation functions of the hidden
layer cand the output layer are typically sigmoid func-
tions:

f ðuÞ ¼ 1

ð1þ e�uÞ ; ð7Þ

where u 2 () ¥, ¥), and f(u) 2 (0, 1). The training
procedure can be found in Jwo and Chin (2002). For a
complete description of the topic, see Widrow and Lehr
(1990), Chester (1993), and Haykin (1999).

The optimal interpolative (OI) net

The OI Net was proposed by DeFigueiredo (1990) using
a generalized Fock space formulation (Defigueiredo
1983). A recursive least squares learning algorithm
called RLS-OI was subsequently introduced by Sin and
DeFigueiredo (1992).

Shown in Fig. 1, the OI net also belongs to a three-
layer feed-forward NN, which has a similar network
structure to that of BPNN. The first layer has m
neurons, one for each component of the input; the
second layer has p (to be determined during training)
neurons; the third layer has n neurons, one for each
component of the output. vij is the weight from ith
input node to the jth internal node, whereas wjk is the
weight from the jth internal node to the kth output
node. The weigh matrix V = [v1 v2ÆÆÆvp] 2<m · p is
obtained directly from the components of the exemp-
lars. The vectors vj, called prototypes, are chosen from
the training set inputs during the learning procedure.
The transfer function in the hidden layer is u (vj, xi),
where (Æ, Æ) denotes the dot product. The matrix
W = [w1 w2 ÆÆÆ wn] 2<p · n is the weight matrix to be
chosen during training. The kth class of output can be
represented as

fkðxiÞ ¼
X

p

j¼1
wjk � uðvj; xiÞ: ð8Þ

Suppose a training set with q sets of input–output
pairs, xi 2 <m (i = 1, 2, ..., q), are given and each of
them maps into one of n classes Ck(k = 1, 2, ..., n). Let
y
i 2 <n be the desired output corresponding to x

i, the
output yi is then defined as

xi 2 Ck ) yi ¼ ½ yi
1 yi

2 � � � yi
n �

T ¼ dj; ð9Þ
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where dj is a n-dimensional vector containing all zeros
except for the jth element, which is one. Therefore,

Y ¼ ½ y1 y2 � � � yq � ¼

y11 y21 � � � yq
1

y12 y22 � � � yq
2

..

. ..
.
� � � ..

.

y1n y2n � � � yq
n

2

6

6

6

4

3

7

7

7

5

2 <n�q;

ð10Þ

where

yi
j ¼ djk ¼

1 if j ¼ k
0 if j 6¼ k

�

; j ¼ 1; 2; . . . ; n ð11Þ

are the Kronecker delta functions. The activation
function at each middle layer neuron is given by
u (s) = exp(s)/q, where q is a learning constant.

Given the matrix G 2 <p · q

G ¼
uðv1; x1Þ � � � uðv1; xqÞ

..

. . .
. ..

.

uðvp; x1Þ � � � uðvp; xqÞ

2

6

4

3

7

5

ð12Þ

the matrix W is determined based on the minimization
principle

min
W

Y�WTG
�

�

�

�

2
; ð13Þ

where ||Æ|| refers to the Euclidean norm of a matrix.
Solution for W is

W ¼ ðGGTÞ�1GYT 2 Rp�n: ð14Þ

A training input is included as a prototype only if it does
not induce ill conditioning in GG

T. This reduces the
number of prototypes, and hence limits the number of

middle layer neurons. The learning procedure is pre-
sented with q exemplars during training, one at each
time. A given exemplar is included in the minimization
problem (Eqs. 13, 14) only if it cannot be correctly
classified by the network which has been trained up to
that point. Those exemplars are included in the vectors zi

(sub-prototypes). Hence, Y and G in Eqs. 10 and 12 are
replaced with

Y ¼ ½ y1 y2 � � � yl �; ð15Þ

G ¼
uðv1; z1Þ � � � uðv1; zlÞ

..

. . .
. ..

.

uðvp; z1Þ � � � uðvp; zlÞ

2

6

4

3

7

5

; ð16Þ

where p £ l £ q is the number of sub-prototypes
chosen from the exemplar inputs. Further discussion on
OI Net can be seen in Defigueiredo (1990), Sin and
Defigueiredo (1992), and Simon and El-Sherief (1995b).

The probabilistic neural network (PNN)

Both PNN and GRNN are variants of radial basis
function network. Introduced by Donald Specht (1988)
as a four-layer, feed-forward, one-pass training algo-
rithm, the PNN is a supervised neural network that can
solve any smooth classification problem given enough
data.

The original PNN structure is a direct NN imple-
mentation of the Parzen or Parzen-like nonparametric
kernel based probability density function (PDF) esti-
mator. It is guaranteed to approach the Bayes’ optimal
decision surface as the number of training samples in-
crease provided the class PDFs are smooth and contin-
uous. By using sums of spherical Gaussian functions
centered at each training vector to estimate the class
PDFs, the PNN is able to make a classification decision
in accordance with the Bayes’ strategy for decision rules
and provide probability and reliability measures for each
classification. The spherical Gaussian radial basis func-
tion can be used to implement the PNN according to

fiðxÞ ¼
1

ð2pÞd=2rd

1

Mi

X

Mi

j¼1
exp �ðx� wijÞTðx� wijÞ

2r2

" #

;

ð17Þ

where i and j indicate the class number and pattern
number, respectively; d is the dimension of the pattern
vector x; r is the smoothing parameter; wij is the training
(or weight) vector from class i (Ci);Mi denotes the total
number of training vectors in class Ci.

As shown in Fig. 2, the four layers of PNN classifier
include the input, pattern, summation, output/decision
layers. The input units do not perform any computation

input layer  internal layer output layer 

(m neurons) (p neurons)   (n neurons) 

1x

2x

3x

mx

)(1
if x

)(2
if x

)( i
nf x

ijv ),(   ϕ jkwix
iy

mpv pnw

11v

pv1

11w

nw1

Fig. 1 Basic architecture of the OI Net
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and simply distributes the input to the neurons in the
pattern layer. The pattern unit and output unit are
shown in more detail in Fig. 3. The pattern units
zij = xÆwij, and a nonlinear operation using an expo-
nential activation function on zij is performed

giðxÞ ¼ exp
zij � 1

r2

� �

ð18Þ

before outputting its activation level to the summation
unit. If both x and wij are normalized to unit length,
Eq. 18 becomes

giðxÞ ¼ exp �ðx� wijÞTðx� wijÞ
2r2

" #

: ð19Þ

The summation layer neurons compute the maximum
likelihood of pattern x being classified into Ci by sum-
marizing and averaging the output of all neurons that
belong to the same class based on Eq. 17. If the a priori
probabilities for each class are the same, and the losses
associated with making an incorrect decision for each
class are the same, the decision layer unit classifies the
pattern vector x in accordance with the Bayes’ decision
rule based on the output of all the summation layer
neurons

ĈðxÞ ¼ argmaxffiðxÞg i ¼ 1; 2; . . . ; n; ð20Þ

where ĈðxÞ denotes the estimated class of the pattern
vector x and n is the total number of classes in the
training samples.

The weights are usually 1 or 0 for each hidden unit. A
weight of 1 is used for the connection going to the
output that the case belongs to, while all other connec-
tions are given weights of 0. The only weights to be
learned are the widths of the units, which are the
smoothing parameters r (the standard deviation for the
Gaussians), which is the only adjustment made for
optimizing the network and is usually chosen by cross
validation.

PNNs have been shown to learn up 2,00,000 times
faster than BPNN (Patra et al. 2002). Since every
training pattern needs to be stored, the features of being
simple and fast come at the expense of larger memory
requirements. This will not be a severe disadvantage if
the PNN is implemented in a parallel hardware structure
where memory is relatively inexpensive.

The general regression neural network (GRNN)

Originally discovered by Donald Specht (1991), the
GRNN is a memory-based network that provides esti-
mates of continuous variables and converges to the
underlying regression surface. The GRNN, also
belonging to a one-pass learning algorithm with a highly
parallel structure, is capable of approximating any
arbitrary function from historical data. The learning
method learns near instantaneously since it simply stores
patterns it has seen before and processes them through a
nonlinear smoothing function to determine the compo-
nent output PDF.

The foundation of GRNN operation is essentially
based on the theory of nonlinear (kernel) regression. As
a one-pass learning algorithm, main advantages of
GRNN are that training only requires a single process-
ing surface, and it is guaranteed to approach the Bayes’
optimal decision boundaries as the number of training
samples increases. The GRNN topology primarily con-
sists of four layers: input, pattern, summation, and
output, as shown in Fig. 4. The basic equation describ-

input units pattern units summation units output/decision units

1x

2x

3x

mx

1C

)(1 xAf

)(1 xBf

nC

Fig. 2 The PNN classifier

(a)

binary output

(b)

)(xAf

C 

)(xBf

1 
)

1
exp()(

2
= ij

i

z
g x

ijijz wx  =

1x

2x

3x

mx

1iw

2iw

3iw

imw

-1 1

1 

-1

Σ

Σ

Fig. 3 The a pattern unit; and b output/decision unit of the PNN
classifier
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ing a GRNN output with m inputs (x 2 <m) and one
output (yi 2 <1) is

yðxÞ ¼
P

i wijhiðxÞ
P

i hiðxÞ
; ð21Þ

where hi (x) represents an arbitrary radial basis function.
The Gaussian radial basis function is usually employed:

hiðxÞ ¼ exp �ðx� xiÞTðx� xiÞ
2r2

" #

; ð22Þ

where the variables are defined as

x: input vector of predictor variables to GRNN;
xi: training vector represented by pattern neuron i;
wij: output related to xi;
r: the smoothing parameter.

If yi are individual real-valued scalars, Eq. 21 is ex-
actly Specht’s GRNN which incorporates each and ev-
ery training vector pair {xi fi yi} into its architecture,
where xi is a single training vector in the input space and
yi is the associated desired scalar output.

GDOP approximation and classification using neural
networks

All input and output variables are normalized in the range
[0, 1] to reduce the training time. The Hecht–Nielson’s
approach for the effectiveness of BP in learning complex,
multidimensional functionswas employed (Simon andEl-
Sherief 1995a), which was based on Kolmogorov’s The-
orem and extended to neural networks. The theorem
states that any functional <m fi <n mapping can be
exactly represented by a three-layer NN with (2m + 1)

middle-layer neurons, assuming that the input compo-
nents are normalized within the range [0, 1]:

fn : ½0; 1�m � <m ! <n: ð23Þ

Since HT H is a 4 · 4 matrix, it has four eigenvalues,
ki (i = 1 ... 4). It is known that the four eigenvalues of
(HT H))1 will be ki

)1. Based on the fact that the trace of a
matrix is equal to the sum of its eigenvalues, Eq. 4 can
be represented as

GDOP ¼ ðk�11 þ k�12 þ k�13 þ k�14 Þ
1=2: ð24Þ

The mapping is performed by defining the four
variables

h1ð~kÞ ¼ k1 þ k2 þ k3 þ k4 ¼ traceðHTHÞ; ð25aÞ

h2ð~kÞ ¼ k21 þ k22 þ k23 þ k24 ¼ trace½ðHTHÞ2�; ð25bÞ

h3ð~kÞ ¼ k31 þ k32 þ k33 þ k34 ¼ trace½ðHTHÞ3�; ð25cÞ

h4ð~kÞ ¼ k1k2k3k4 ¼ detðHTHÞ; ð25dÞ

the ~k�1 can be viewed as a functional <4 fi <4 map-
ping from ~h to ~k�1 (Type 1 mapping), i.e., ~k�1 ¼ fnð~hÞ :

Input: ðx1; x2; x3; x4ÞT ¼ ðh1; h2; h3; h4ÞT;
Output: ðy1; y2; y3; y4ÞT ¼ ðk�11 ; k�12 ; k�13 ; k�14 Þ

T:

Alternatively, the GDOP can be viewed as a functional
<4 fi <1 mapping from~h to GDOP (Type 2 mapping),
i.e., GDOP ¼ fnð~hÞ :

Input: ðx1; x2; x3; x4ÞT ¼ ðh1; h2; h3; h4ÞT;
Output: y ¼ GDOP:

Fig. 4 General GRNN
architecture
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The input–output relationships for the two types of
mappings using NNs are shown in Fig. 5. The
mapping (from ~h to ~k

�1
or from ~h to GDOP) is

highly nonlinear and cannot be determined analytically
but can be precisely approximated by the NN. The
NN in this paper is designed to perform the Type 2
mapping.

The GDOP classifier can be employed for selecting
one of the acceptable subsets. In the present study, the
NN classifier has two types of output based on the
GDOP factors. A threshold value is defined for certain
specific requirement. When the GDOP is smaller than
the threshold, an output vector [1 0] is defined, whereas
when the GDOP is larger than the threshold, an output
vector [0 1] is defined. The input ~h has four input
variables hi, which are normalized to the range [0,1]. The
output has only one variable: 1 or 0. Extension to clas-
sification into three types of output can simply be done
by defining two thresholds and specifying three output
vector: [1 0 0], [0 1 0], and [0 0 1], representing the
small, medium, and large GDOP, respectively. Similarly,
classification into more groups is feasible based on the
same philosophy.

Simulation and discussion

The BPNN and GRNN were employed for function
approximation, while all the four types of networks
(BPNN, OI net, PNN and GRNN) were employed for
group classification based on their network characteris-
tics, as summarized in Table 1.

Simulation was conducted using a Pentium III
733 MHz computer. The computer code was con-
structed by use of the Matlab� 6.1 version software. The
receiver was simulated to be located at the top of the
building of the Department, which has the approximate
position of North 25.15�, East 121.78�, at an altitude of
62 m ([) 3042329.2 4911080.2 2694074.3]T m in WGS-
84 ECEF coordinate) for 24 h duration. The GDOP was
computed every 1 min, and collected in two data files
every other minute, one file for training while the other
for testing purpose. Consequently, there are 720 patterns
for both the training and testing procedures. The solid

dark line in Fig. 6a represents the GDOP solutions by
matrix inversion.

GDOP approximation performance

GDOP function approximation performance using
BPNN and GRNN is presented in this subsection. Fig-
ures 6 and 7 present the performance using BPNN.
Good accuracy can be achieved by using BPNN for
performing the GDOP function approximation (i.e.,
Eq. 24) given enough training time, e.g., 20,000 epochs
of training for convergence in this study. After 20,000
epochs of training, increasing the number of hidden
layer neurons only slightly improves the performance. In
Fig. 6, the GDOP solutions by BPNN approximation
using 10 and 50 hidden-layer neurons are compared to
the one by matrix inversion (using Eq. 5). The GDOP
residual is defined as the difference between the GDOP
value by NN approach and by matrix inversion (denoted
as ‘MI’):GDOPNN) GDOPMI. The root-mean-squared
error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
k¼1 ðyNN � yMIÞ2

n

s

ð26Þ

is used as the error measure for evaluating approxima-
tion performance. The subscripts represent the results
from NN approach and from matrix inversion, respec-
tively. Figure 7 shows the RMSE versus the number of
training iterations. Five numbers of hidden layer neu-
rons (i.e., 10, 20, 30, 40, and 50) have been utilized. It is
seen that the accuracy and the number of hidden layer
neurons do not closely correlated until sufficiently large
number of training iterations have been achieved. For
example, 20,000 iterations of training are required for
the present case.

Figures 8 and 9 demonstrate the GDOP approxima-
tion performance using GRNN. Six numbers of training
patterns (i.e., 720, 360, 180, 90, 45, and 23) have been
used. These numbers were selected based on the fol-
lowing two principles: (1) the numbers are descended by
a 50% decreasing rate starting from 720; (2) all the
training patterns in the smaller group must have also
been included in the larger group. In Fig. 8, GRNN
approximation performance is provided. Figure 8a gives

GDOP )(λ
→→

hHH
T 1λ

→

Type 2 mapping

Type 1 mapping

Fig. 5 The input-output relationships for two types of mappings
using NNs

Table 1 Feasibility on classification and approximation for four
types of NNs

BPNN OI Net PNN GRNN

Approximation Yes No No Yes
Classification Yes Yes Yes Yes
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the results based on GRNN with 23 training patterns
and that based on matrix inversion. The result from
GRNN shows that very good accuracy can be achieved
given that enough training patterns are used, which can
be seen from Fig. 8b. Figure 9 provides a plot showing
the RMSE versus the number of training patterns.
Increasing the number of training patterns also increases
the memory for software implementation and increases
the structure complexity for hardware implementation
and a trade-off in selecting the number of training pat-
terns is required.

GDOP classification performance

Classification performance is presented in this subsec-
tion. When the GDOP threshold is set at 1.5 (This
threshold value is chosen for ensuring a good satellite

subset is obtained since GDOP £ 2 is a good value
in GPS applications. Furthermore, the selection of the
threshold does not closely relate to the training pro-
cedure and performance.), 127 samples among 720 are
smaller than the threshold. The learning rate and
momentum for the BPNN are 0.5 and 0.6, respec-
tively. Five different training iterations are selected,
which are 1,000, 5,000, 10,000, 15,000, and 20,000,
respectively. The rates of correct classification for
different number of training iterations are summarized
in Table 2 and plotted in Fig. 10. As stated before,
one important drawback for the BPNN classification
is the long training time required. Improvement by
increasing the number of hidden layer neurons is not
significant after more than 20 neurons are used. The
convergence speed becomes very slow after 10,000
training iterations. In the present work, even for the
simplest case of 10 hidden layer neurons with 1,000
learning iterations, several minutes to hours (depends
on the algorithms) is required for completing the
training.

The other three NNs to be employed can signifi-
cantly reduce the training time. For the OI Net, the
parameters used include a fitting parameter q = 0.1,
an ill-conditioning threshold c1 = 1e ) 8, and an error
reduction threshold c2 = 1e ) 3. See Simon and El-
Sherief (1995a) and Sin and DeFigueiredo (1992) for
further discussion on selecting the parameters. For the
PNN, the correct classification rates have better
accuracy when r is small, which reaches the peak
value approximately at r = 5e ) 4. Figure 11 presents
the correct classification versus the number of training
patterns using PNN. It is seen that if a sufficiently
large number of training patterns is applied, very good
classification accuracy can be achieved. Since the
GRNN is basically an extended version of the PNN,0 500 1000 1500
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20,000 epochs of training
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the classification performance by GRNN is essentially
same as that by PNN. However, the minimum number
of training patterns required for the PNN to work is
normally less than that for the GRNN. The results on
classification rate and training time for the four NNs
are summarized in Table 3. The accurate classification
rates of OI Net are in the range of 93–99%, with the

training times around 0–3 s (depending the number of
training inputs). The accurate classification rates of
PNN and GRNN are in the range 93–100%, with the
training times no more than 1 s.

Conclusions

The NN-based GDOP approximation and classification
have been successfully conducted. The performances
have been explored and discussed. Two types of NN
approximators (BPNN and GRNN) and four types of
NN classifiers (BPNN, OI Net, PNN, and GRNN),
respectively, were focused on. While it is recognized that
the BPNN has been most popular throughout all neural
applications, it is also well known to have some draw-
backs, especially on slow learning. The other three
NNs employed in this paper can overcome this problem.
From the viewpoint of accuracy, all the networks are
able to provide sufficiently good performance, given
enough time (for BPNN) or enough training data (for
the other three networks). Consequently, selection of the
NNs involves a tradeoff between user’s requirements.
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Table 2 Classification performance using the BPNN

No. of neurons in hidden layer Correct classification rates (%) for varying training iterations

1,000 iterations 5,000 iterations 100,000 iterations 150,000 iterations 200,000 iterations

10 93.89 97.08 99.31 99.31 99.58
20 95.00 99.31 99.17 99.44 99.58
30 95.28 99.31 98.89 99.31 99.31
40 95.14 99.31 99.44 99.44 99.31
50 95.14 99.31 99.17 99.31 99.31
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Table 3 Comparison of
classification rate and training
time based on four types of
NNs

BPNN OI Net PNN GRNN

Correct classification rate 93–100% 93–99% 93–100% 93–100%
Training time Minutes–hours 0–3 s 0–1 s 0–1 s
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