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Abstract Since its introduction in 1993, the
LAMBDA method has found widespread use across
the world. The method has been employed in many
geodetic and navigation applications, with lots of
satisfied users. Independent tests show that it is
considered the best method for integer carrier phase
ambiguity resolution available. But every now and
then we still notice some misunderstandings con-
cerning the principles and potential of the method.
In this contribution we will briefly summarize the
principles underlying the LAMBDA method, go into
some of the frequently asked questions on the
LAMBDA method and try to clarify some of the
existing misunderstandings.

Background

Global navigation satellite system (GNSS) ambiguity res-
olution is the process of effectively accounting for the
integer nature of the unknown cycle ambiguities of dou-
ble-difference (DD) carrier phase data. The (sole) purpose
of ambiguity resolution is to use the integer ambiguity
constraints as a means of improving significantly on the
precision of the remaining model parameters, such as
baseline coordinates and/or atmospheric delays.

For the purpose of ambiguity resolution, GNSS data pro-
cessing is usually carried out in three steps, as shown in
Fig. 1. In the first step no distinction is made between
ambiguities and other parameters. The parameter
estimation problem is solved without taking into account
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the special integer nature of the ambiguities. The result so
obtained is often referred to as the ‘float solution’. The
parameters are usually estimated using a standard least-
squares (LSQ) algorithm, or in case of moving receivers, a
Kalman-filter.

Up to then the fact that the ambiguities are of integer
nature is not yet exploited. Two extra steps are necessary
to incorporate this information. In the second step, the
float solution of the ambiguities is used to estimate the
integer ambiguity values. A numerical example is given in
Fig. 2. It is this step for which the LAMBDA method has
been developed.

Finally, in the third step, the computed integer ambiguities
are used to improve the first-step solution for the
remaining parameters, like baseline coordinates and/or
atmospheric delays. These parameters are recomputed,
again in a least-squares sense, but this time with the am-
biguities constrained to the integer values as obtained
from the second step. This final result is referred to as the
‘fixed’ solution and it generally inherits a much higher
precision than the previously obtained ‘float solution’.

Question 1. How do | compute baseline coordinates

using the LAMBDA-method?
The LAMBDA method on its own is not meant to compute
baseline coordinates. Instead, it is a single, important step
in the process of determining very precise coordinates
and/or other parameters of interest from raw GNSS
observations. As stated above, a three-step procedure has
to be applied. First you have to compute the float solution.
Any suitable method can be used here, for example an
ordinary least-squares, or in recursion a Kalman filter
approach. Next the LAMBDA method can be used to
determine the integer values for the ambiguities. The
LAMBDA method takes the estimated float solution d,
together with its variance-covariance matrix Q; as input,
and delivers estimated integer ambiguities d. Finally, again
using your own favourite algorithm, the eventual fixed
solution can be computed, using the values output by the
LAMBDA method.
The LAMBDA algorithm is an autonomous module for the
middle arrow in Fig. 1. As such it can easily be embedded
in any of the existing GPS baseline/network software
packages. In fact, it has been implemented in a number of
commercially available software packages, for instance
SKI-Pro by Leica Geosystems.
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Fig. 1
Procedure to solve a problem in which some of the parameters are
known to be integer, like double-difference combinations of
ambiguities in the case of GNSS carrier phase observations. y
represents the vector of carrier phase observations and optionally
pseudo-range code observations, Q, represents the variance-covari-
ance matrix of these observations, a represents the vector of unknown
integer carrier phase ambiguities, b represents the vector of unknown
baseline coordinates, atmospheric delays and possibly other param-
eters, the matrices A and B relate the observations y to the unknowns
a and b, and are referred to as ‘design matrices’. d and b are the float
estimates for a and b, Q; and Q; are the corresponding variance-
covariance matrices. Q,; represents the covariances between 4 and b.
a represents the integer estimate of the carrier phase ambiguities.
Finally, b represents the fixed solution, with Qj its variance-
covariance matrix

Estimation principle

In data processing one should distinguish between the
estimation principle and the implementation in an algo-
rithm. The estimation principle is the theoretical mandate
that prescribes how estimation values for unknown
parameters shall be obtained from observed data values.
Over more than 200 years the least-squares principle has
been in use. It tells that the (weighted) sum of squared
residuals is to be minimized. It is a very versatile criterion
to obtain a solution that presents a best fit to observed
data. A typical example is fitting a regression line through
a ‘cloud’ of points in a two-dimensional graph (see Fig. 3);
the two real-valued parameters to be determined are the
offset and slope of the line.

The outcome, the least-squares estimate, generally consists
of real-valued numbers for all of the desired parameters.
Recently, in Teunissen (1993), least-squares theory has
been extended to deal also with integer parameters. The
resulting integer estimator, analogously to the ‘ordinary’

Fig. 2
Numerical example of the integer least-squares estimator; notice that
the result (a) is not equal to the float solution (d) rounded to the
nearest integers. The transformation matrix Z” is discussed in the
implementation section of this paper
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least-squares estimator, has distinct and well-defined
optimality properties.

Question 2. Is the LAMBDA method the best

method around for ambiguity resolution?
The LAMBDA method is a strict implementation of the
integer least-squares principle. How you rank the LAMB-
DA method therefore depends on your appreciation of the
optimality property of integer least-squares. This principle
qualifies as ‘best’ as it offers the highest probability of
coming up with the correct integer values for the ambi-
guities. ‘Best’ is measured by a probability, and is thereby
a statistical property.
In order to understand this, one has to be familiar with the
fact that ambiguity estimators are stochastic quantities,
simply because they are determined from noisy data. Only
in the hypothetical case of perfect observations without
any noise or errors would the float solution always yield
the correct integer ambiguity values. In reality, however,
this is not the case. Any uncertainty in the observations
will propagate and manifest itself as uncertainty in the
integer ambiguity values.
Figure 4 shows a repeated single-frequency experiment
based on a geometry-free GNSS model. The figure illus-
trates empirically how uncertainty in the data (left)
propagates into the ambiguity float estimate (middle) and
finally into the integer ambiguity estimate (right). The
correct integer for the ambiguity is value 4 in this case,
but, as one can see from the graph at right, also other
integer values are frequently obtained. A more extensive
discussion of this can be found in Joosten and Tiberius
(2000).
This concept is formalized in a probabilistic measure, re-
ferred to as the ambiguity success-rate. The success-rate is
a number between 0 and 1, or 0 and 100%, and it expresses
the chance, or probability, that the whole set of integer
ambiguities is correctly estimated. This ambiguity success-
rate depends on three contributing factors: the observation
equations (functional model), the precision of the ob-
servables (the stochastic model) and the chosen principle
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Fig. 3
One physical parameter (length) depends on another (temperature)
and the relationship is known or assumed to be linear. By means of
least-squares a regression line is fitted through a set of observed
values

of integer estimation. Changes in any one of these will
affect the success-rate. The first two contributing factors
reflect the strength of the data model and they are given
once the measurement setup is known. As to the principle
of integer estimation, one has a variety of options avail-
able, but integer least-squares maximizes this success-rate,
and can thus be qualified as ‘best’ (see Teunissen 1999a,
1999b).

Question 3. | thought the LAMBDA method is the

best method available, but still | get wrong results,

how is this possible, and what can | do about it?
The LAMBDA method provides the highest probability of
estimating the integer ambiguities correctly, and as such is
indeed the best possible method available. But ‘best’ does
still not imply perfect, i.e. a 100% success-rate. As long as
our data are subject to noise, the success-rate will never
achieve the full 100%. It is still possible to get wrong re-
sults. Some possible causes for this are:

¢ Quality of data: the less precise (the more noisy) the
measurements are, the less precise the resulting (float)
estimates will be.

>

Fig. 4
Using single-frequency pseudo-range and carrier phase data, the
phase ambiguity of the geometry-free GPS model is estimated in 1,800
single epoch experiments at a 1-s interval. The histogram at left shows
the residuals of the (double-difference) pseudo-range measurements.
Repeating the experiment yields slightly different outcomes each time;
the noise is at the decimetre level. The histogram in the middle
concerns the float ambiguity. It is primarily the noise in the pseudo-
range which is reflected in the noise of the float ambiguity, and as the
L1 wavelength is about 2 dm, the corresponding uncertainty in the
float ambiguity is at the cycle level. In both the graph at the left and in
the middle, the formal Gaussian probability distribution is also
shown. Finally, the integer ambiguity was computed for each
experiment (just by nearest integer rounding, in this simple case with
just one ambiguity), and yields the ‘histogram’ at right. In this case
the integer ambiguity is estimated correctly (value 4) in only 43% of
the experiments
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e Amount of data (observations/measurements): not en-
ough data have been collected to estimate the unknown
parameters with sufficient accuracy. More data would
yield more precise (float) estimates. Going back to
Fig. 4, the average of all 1,800 pseudo-range residuals in
Fig. 4 has a much better precision than each of the
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individual observations. This average is pretty close to
0.00 m, and when using this average to estimate the
ambiguity as integer, the success-rate would be much
closer to 100%.

e Strength of model: data are fused into parameter esti-
mates according to a certain (functional) relationship
that is assumed to exist between observations and un-
known parameters. The weaker the relationship repre-
sented by the model, the less precise the resulting (float)
estimates will be.

The success-rate depends on the strength of the (mathe-
matical) model. A simple bridge across a river constructed
from just a few trees is not to be taken by a 40-tonne truck.
Don’t ask for the unachievable. Don’t expect a 99.99%
success-rate at a permanently moving rover with five sat-
ellites over a 100 km baseline with a cheap, single-
frequency engine. When the rover receiver is in permanent
motion, new position coordinate unknowns have to be
introduced every epoch and this weakens the mathemati-
cal model. On long distances (differential) atmospheric
delays start to play a role, and they are to be accounted for.
As an example, Fig. 5 shows the impact of using dual-
frequency data instead of single-frequency data on ambi-
guity resolution. For visualization purposes the fail-rate is
shown instead of the success-rate. The fail-rate represents
the probability of estimating the wrong integer values for
the carrier phase ambiguities, and thus equals 1 (one)
minus the success-rate. The example is based on the GPS
satellite configuration as of 1 January 2002, as seen in
Delft. The figure clearly shows the advantage of using dual-
frequency data. In case of dual-frequency data the fail-rate
very rarely reaches a level of 0.01 (or 1%), whereas in the
single-frequency case the fail-rate is above 0.1 (or 10%) for
most of the day. This clearly shows that instantaneous
ambiguity resolution even over short baselines with a
single-frequency receiver is unlikely to be successful.

Fig. 5
Ambiguity fail-rates in case of single- (left) and dual- (right)
frequency data, geometry-based, single epoch, short baseline over a
full 24 h period. The ‘fail-rate’ is the probability of wrong integer
ambiguity estimation, and thus equals 1 minus the success-rate

Implementation

An estimation principle, as for instance least-squares,
provides a mathematical formulation that tells how esti-
mation values are to be obtained from observed data. This
formula can commonly be evaluated in different ways. The
formula ‘14+3*5” is equivalent to ‘14+15’, first evaluating
the multiplication, but also to ‘14+5+5+5’, evaluating the
addition three times.

Solving a linear system of equations N x=r for unknown
vector x, with square and full rank matrix N and given
vector r, can be done by computing the matrix inverse.
Multiplication of the right hand side r yields the solution
x=N-1r. A much more elegant (and efficient) algorithm is
provided by Gaussian elimination. The system N x=r is
handled by solving, in two steps, an equivalent triangular
system by forward and back substitution, with triangular
matrices L and U, as N=L U. Similarly to Gaussian elimi-
nation to solve a general linear system of equations for
unknown real-valued parameters, the LAMBDA method is
an efficient implementation to solve integer least-squares
problems.

Unfortunately, the integer least-squares principle does not
present us with a formula for the integer estimate as an
explicit function of the observed pseudo-range and carrier
phase measurements. The (integer) least-squares norm,
sometimes referred to as the cost-function, that needs to
be minimized has an implicit formulation and reads

main(& —a)" Qla—a)

with 4 the float estimate and Q; the corresponding vari-
ance-covariance matrix. The minimization is solved by a
search over grid points a, each representing an ambiguity
vector with all integer values, in an ellipsoidal region in the
ambiguity parameter space (Fig. 6). The vector found is
the integer least-squares estimate 4.

In practice, the estimated (float) ambiguities are highly
correlated and the ellipsoidal region stretches over a
considerable range of cycles. A search for integer vectors
inside this region can be terribly inefficient. To improve
the computational efficiency of the search, the float am-
biguities are transformed, whereby the elongated ellipsoid
turns into a sphere-like search space. The search is
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Fig. 6
Two-dimensional example of ellipsoidal search region in ambiguity
parameter space. The boundary of the ellipse represents locations a
that all have equal norm

executed and the eventual result is transformed back. The
LAMBDA method includes both steps, the transformation
and the actual search (see e.g. Joosten and Tiberius 2000).
It should be noted that the transformation is not required
by the (theoretical) estimation principle; it is only to
achieve a considerable gain in speed in the computation
process. Counting the exact amount of money in a big bag
of coins is more efficient once you first sort the different
pieces, instead of taking them piece by piece and adding
their value to the overall running sum. The eventual out-
comes of the transformation, search and back-transfor-
mation together, and of just the search alone, are identical,
but for the latter approach a ‘little’ more patience has to be
exercised.

Question 4. Lots of people are always talking

about ‘wide-laning’, how is this different

from the LAMBDA method?
Both the LAMBDA method and ‘wide-laning’ techniques
aim at creating linear combinations of ambiguities that
have better precision and are less correlated than the
original ambiguities. The way this goal is achieved,
however, is different. Where wide-laning makes use of
certain predefined linear combinations, the LAMBDA
method creates linear combinations based on the mea-
surement precision and the structure of the (mathemat-
ical) model employed, for instance the receiver-satellite
geometry.
As an example, Fig. 7 shows the decorrelating transfor-
mation matrix Z” for a case with a single epoch of dual-
frequency GPS data to seven satellites. Consequently, there
are 12 ambiguities to be estimated. For example, in the
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Example of a decorrelating transformation matrix Z” that brings
original ambiguities a into decorrelated ambiguities z, according to
z=Z"a. This example is based on a single epoch of dual-frequency
GPS data to seven satellites on a short baseline. Consequently there
are six L1 double-difference ambiguities, followed by six L2 double-

difference ambiguities in the same order. Zero entries in the matrix Z*

have been left blank

last-but-one row, one finds a ‘1’ for the L1 ambiguity and a
‘-1’ for the corresponding L2 ambiguity, or vice versa, like
the traditional wide-lane combination. But here the total
transformed ambiguity is eventually a combination of five
wide-lane combinations across satellites. Other, similar,
combinations occur in the transformation matrix Z*. A
linear combination can be formed across frequencies and
across satellites, thus exploiting the actual satellite-
receiver geometry in order to achieve a better decorrela-
tion than could be achieved by traditional wide-lane
combinations.

In short: wide-laning is just one special (and usually
suboptimal) case of the LAMBDA Z-transformation of
ambiguities.

Question 5. | heard/believe LAMBDA is not suitable

for [my application], is this true?
No, this is not true. The LAMBDA method can intrin-
sically handle any integer estimation problem, as long as
you can provide a float solution for your problem. In
other words, as long as you can manage to solve the first
step of the procedure outlined in Fig. 1, the LAMBDA
method is suitable for solving the second step of this
procedure, independent of your application. This im-
plies, for example, that the LAMBDA method will also be
suitable for future triple-frequency systems like mod-
ernized GPS and the envisioned European Galileo. In
fact, the use of the LAMBDA method is not even re-
stricted to satellite navigation, as it is currently being
used to solve the problem of phase-unwrapping as
encountered in the field of INSAR [Interferometric
Synthetic Aperture Radar, see Hanssen et al. (2001)].
LAMBDA is suitable for any problem in which all or part
of the unknown parameters in the model are of an in-
teger nature. Maybe there will exist applications even in
fields like chemistry or biology.

GPS Solutions (2002) 6:109-114
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Question 6. With the future introduction of
modernized triple-frequency GPS and/or Galileo,
do we need to invent a new method of carrier
ambiguity resolution?
No, on the contrary. Compared with present dual-fre-
quency GPS, ambiguity success-rates will go up, when
more signals and more satellites become available (see e.g.
Eissfeller et al. 2001). Just provide a float solution, integral
of both the GPS and Galileo ambiguities, and feed it to
LAMBDA to produce the optimal integer estimate for
them. LAMBDA is ready for it, and will still be the best
method around for ambiguity resolution when perfor-
mance of the method is measured in terms of success-
rates.

LAMBDA method: information
and feedback

Question 7. | have an idea to improve the LAMBDA

method, are you interested?
Of course we would be interested, as there is always a
possibility for improvements. However, before you claim
to have improved the LAMBDA method, or to have found
a better way of solving the integer ambiguity estimation
problem, make sure you actually did. By improving the
mathematical model, by, for example, finding a great way
of dealing with multipath or atmospheric disturbances,
you will find that the performance of your integer ambi-
guity resolution module will increase. This might suggest
you have improved the LAMBDA method, or even found a
better way of solving the integer ambiguity estimation
problem. In such case, you would not have improved the
integer resolution module itself, but you would have
served it with higher quality input. Although this certainly
would be very valuable, it would not be an improvement of
the LAMBDA method.

Question 8. | have received the LAMBDA software,

but it seems to be incomplete, what is wrong?
If you have received the software directly from the
Mathematical Geodesy and Positioning Group of the Delft
University of Technology, it will be complete. It consists
of several routines, which will perform an integer least-
squares estimation using a float solution, together with
its quality description in the form of a variance-covari-
ance matrix as input. Computation of this float solution
is not part of the LAMBDA method, as explained with
Fig. 1.

Question 9. | want to know more, where do | get
more information?
First, there is an extensive list of papers available dealing
with the LAMBDA method. The original paper on integer

GPS Solutions (2002) 6:109-114

least-squares and the LAMBDA method (Teunissen 1993)
dates from the early 1990s. An extensive explanation of the
algorithm can be found in De Jonge and Tiberius (1996).
Joosten and Tiberius (2000) is not directly related to the
LAMBDA method, but gives an explanation of the success-
rate and its importance. Also, most of the textbooks
dealing with GPS positioning either mention or explain the
LAMBDA method (e.g. Teunissen and Kleusberg 1998;
Strang and Borre 1997; Hofmann-Wellenhof 1997; Misra
and Enge 2001). On the website of the department of
Mathematical Geodesy and Positioning of the Delft Uni-
versity of Technology, an extensive list of literature is
available, and most papers are also available for download.
The website can be found at the following URL: http://
www.geo.tudelft.nl/mgp. Finally, you can contact the
authors/maintainers of the LAMBDA method via email at
mgp@geo.tudelft.nl, but please make sure your questions
are specific rather than general, and indicate in the
‘subject’ of your email that your question concerns the
LAMBDA method.
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