
Vol.:(0123456789)

Review of World Economics (2022) 158:127–179
https://doi.org/10.1007/s10290-021-00429-y

1 3

ORIGINAL PAPER

Modeling complex network patterns in international trade

Peter R. Herman1 

Accepted: 8 July 2021 / Published online: 16 August 2021 
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection 
may apply 2021

Abstract
This paper examines the role of complex network patterns in determining interna-
tional trade. The author proposes two empirical approaches to better identify the 
influences that the full structure of the trade network has on individual bilateral 
flows. The first uses gravity models that incorporate novel network covariates. The 
second uses exponential random graph models (ERGMs) that analyze trade from a 
network perspective. Estimates from both types of models provide strong evidence 
that network dependencies are influential determinants at both the intensive and 
extensive margin. Direct comparisons of the two approaches indicate that each can 
outperform the other at capturing and replicating certain types of network features.  
These results indicate that complex network patterns are an important determinant 
of trade, that gravity models can capture much of this dependency even if not explic-
itly controlled for, and that empirical network models such as ERGMs can be valu-
able tools for better capturing certain network patterns.

Keywords Trade · Networks · Gravity · ERGM · Extensive margin

1 Introduction

Understanding the determinants of trade has long been a significant interest in the 
field of international trade. Most research has focused on the ways in which trade 
between two countries is affected by the individual and bilateral characteristics 

For their comments and suggestions, the author thanks Maria Tito, Zeynep Akgul, David Riker, and 
participants at the American Economic Association meetings (Jan. 2018), Midwest International 
Trade conference (May 2017), and Society for Government Economists conference (May 2017). He 
also thanks Christopher Montgomery and Enrique Valdes for their research assistance.
The views expressed in this paper are strictly those of the author and do not represent the opinions of 
the U.S. International Trade Commission or any of its commissioners.

 * Peter R. Herman 
 Peter.Herman@usitc.gov

1 Office of Economics, U.S. International Trade Commission, Washington, DC, USA

http://orcid.org/0000-0002-8961-9330
http://crossmark.crossref.org/dialog/?doi=10.1007/s10290-021-00429-y&domain=pdf


128 P. R. Herman 

1 3

of those two countries, such as their market sizes and the frictions between them. 
However, this research rarely examines other potential dependencies such as the 
pair’s relationships to third parties, opting instead to summarize these influences 
in the form of price indexes or “multilateral resistances”. Some recent trade litera-
ture has looked at these types of complex trade dependencies through the lens of 
network analysis. By thinking about trade between two countries as a small com-
ponent of a much bigger network, it is possible to identify relationships between 
each bilateral trade flow and other complex network patterns that are typically 
overlooked.

This paper describes two methodologies for modeling complex network patterns 
in international trade. These methodologies provide a way to identify and measure 
the ways in which bilateral trade is dependent on the full structure of the world trade 
network, such as the common third-party partners that countries share or the total 
number of trading relationships they maintain. The first methodology extends stand-
ard gravity models of trade to include network variables that reflect certain types 
of network relationships. The second methodology uses exponential random graph 
models (ERGMs), which are a powerful and flexible empirical tool for studying 
networks, to estimate similar types of relationships. Both models provide insight 
into the ways in which network relationships affect the trade between two coun-
tries. Further, both models have advantages in terms of the types of patterns that 
they are able to capture. In the application considered, the ERGM approach better 
captures the number of non-zero trade partnerships and performs relatively well at 
modeling shared third-party relationships. Meanwhile, the gravity approach is better 
able to capture the number of importing and exporting partners that each country 
maintains. Taken together, these results demonstrate that complex network patterns 
are an important determinant of trade, that gravity models can capture much of this 
dependency even if not explicitly controlled for, and that other network models such 
as ERGMs can be valuable tools for capturing some types of network dependencies.

To illustrate the notion of complex network patterns in international trade, Fig. 1 
depicts the trade flows between the United States (USA), El Salvador (SLV), Trin-
idad and Tobago (TTO), Bolivia (BOL), and Nepal (NPL) in 1999 as a network. 
A link pointing from one country to another indicates that the originating country 
exported to the destination country. Consider the exports from El Salvador to Trini-
dad and Tobago (drawn in red). A typical trade model, such as a gravity equation, 
will model that trade flow as being dependent on certain unilateral characteristics 
of the two countries, such as their GDPs or MFN tariffs (or, more commonly, via 
country fixed effects), and bilateral characteristics, such as the distances between the 
markets or their preferential trade arrangements. However, there are other relation-
ships in the network that might also affect this trade flow. For example, Trinidad and 
Tobago export to El Salvador, implying that their trade is reciprocal. Similarly, both 
countries have multiple other import and export partners, which may create network 
externalities in both markets. Finally, both countries trade with common third par-
ties, such as the United States, which might impact trade though things like supply 
chains or information spillovers. Network relationships are even more prevalent and 
extensive when considering the full world trade network, as is presented in Fig. 2. 
These types of network patterns have a significant impact on trade but are rarely 
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analyzed directly within trade models, resulting in important nuances in how trade 
flows arise being often overlooked.

In recent years, research on the determinants of bilateral trade has largely been 
based on the estimation of gravity trade models. Through this work, authors have 
identified the importance of many types relationships within international trade. 
Much of this research has worked to properly identify the effects of a wide range 
of bilateral dependencies such as distance, common borders, common languages, 
and cultural ties. For example, Rauch (1999)—who actually referred to these types 
of bilateral relationships as network relationships—found broad evidence that they 
have a significant impact on trade. Following this work, many papers have built on 
these findings by providing deeper analysis and alternative measurements for each 
of these bilateral relationships. For example, Brun et al. (2005) and Berthelon and 
Freund (2008) examine the role of geographic distance between countries. Hutchin-
son (2005), Ku and Zussman (2010), Melitz (2008), and Melitz and Toubal (2014) 
study the ways in which countries relate through common language networks. Rauch 
and Trindade (2002), Linders et  al. (2005), Hofstede (1980), and Felbermayr and 
Toubal (2010) analyze the effect of cultural networks on trade.

In addition to modeling bilateral dependencies, most recent gravity research has 
attempted to control for a broad number of other dependencies through the incorpo-
ration of multilateral resistance terms (MRTs). Originally introduced by Anderson 
and van Wincoop (2003), MRTs capture unobserved aspects of countries that affect 
the relative prices of traded goods in each market. Part of the beauty of these terms 
is that they compress an extraordinary number of influences into a single importer 

Fig. 1  Trade flows between the United States (USA), El Salvador (SLV), Trinidad and Tobago (TTO), 
Bolivia (BOL), and Nepal (NPL) in 1999
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and exporter price index for each country. MRTs implicitly reflect aspects of the 
world trade network and many of the dependencies therein. For example, Bernard 
and Moxnes (2018) highlight the link between networks and similar international 
price indexes in their Melitz (2003) inspired network trade model, which is informa-
tive of the influences that are likely present within multilateral resistances. The limi-
tation of using MRTs or price indexes, however, is that this simplification naturally 
abstracts away from their underlying factors. Thus, when estimated empirically 
using standard approaches, little insight can be gained into the nature of potential 
network influences.

In light of this, many recent papers have looked at the structure of the inter-
national trade network in order to gain better insight into the ways that network 
dependencies shape trade patterns.1 Most of this work is primarily focused on iden-
tifying certain patterns in the trade network and not necessarily on how trade is 
dependent on those patterns. For example, work by De Benedictis and Tajoli (2011), 
De Benedictis et al. (2013), and Deguchi et al. (2014) all identify typical network 
features of world trade such as density, clustering, and centrality measures. De Ben-
edictis and Tajoli (2011) compare centrality measures that reflect how well con-
nected nodes are across a variety of countries or regions and identify the countries 
that operate as major trade “hubs”. Among their findings, the authors show that the 
WTO was effective in increasing the density of the trade network (i.e. increasing 
the number of country-pairs trading). De Benedictis et  al. (2013) provide a simi-
lar but deeper analysis of several centrality measures. They find that degree central-
ity, which reflects how well connected a given country is, may be a strong indicator 
of trade surpluses or deficits. Closeness centrality or geodesic distance, which both 
reflect the minimum number of links separating two countries, can measure how 
directly connected a country is to the rest of the world. Finally, eigenvalue central-
ity, which reflects how well connected a country’s partners are, can offer insight into 
the role of indirect relationships among trading partners. Deguchi et al. (2014) fol-
low this line of research on centrality by ranking countries based on their centrality. 
Using this ranking, they observe changes in the positions of countries within the list 
and find, for example, that China has grown to become the highest value trade hub 
while Japan has dropped in ranking over time. These papers and others analyzing 
trade using empirical network methods offer an important perspective on trade that 
is typically not apparent from standard modeling approaches.

Other recent research has looked at relationships between the trade network and 
other types of networks. For example, Fagiolo and Mastrorillo (2013a) find signifi-
cant correlations between the world trade network and immigration networks, which 
is consistent with the earlier but less network-intensive work of Rauch and Trin-
dade (2002). Pan (2018) examines interdependencies between trade and intergov-
ernmental organizations using ERGMs. They find that trade agreement member-
ship is associated with more complex trading relationships but membership in many 
other types of organizations is not. Smith et al. (2019) use micro-level networks of 

1 This growing interest in networks is not unique to international trade. Similar topics have become 
popular throughout economics. Graham (2015) provides a good survey of some of the network analysis 
occurring in other economic fields.
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firm ownership to identify complex relationships between firm behavior and coun-
try-level trade. Each of these papers finds significant evidence that trade networks 
depend on the structure of other networks.

Some papers have gone beyond the statistical analysis of trade patterns and incor-
porated types of network dependencies into models of trade. One such example 
is the work by Chaney (2014). Chaney utilizes a network model to describe how 
firms expand to new export markets by using existing trade partners to match with 
new, more distant partners. If the distance between firms increases the difficulty of 
them matching, firms may use current partners to connect to distant firms in order 
to reduce that barrier and shorten the effective distance to the new firm. Using firm-
level French data, Chaney finds that firms trade to increasingly distant markets at 
an accelerating rate, providing evidence that firms utilize network relationships to 
trade. A second example is the work of Morales et al. (2019), who model a different 
type of network dependency that they refer to as extended gravity. They find that 
bilateral trading relationships between two partners often create spillovers for third 
parties. Firms tend to import from or export to countries that are similar to ones with 
which they have prior experience. Thus, trade between partners is often impacted 
by the network of third-party trade links maintained by each partner. Their empiri-
cal tests suggest that these network dependencies are present and reduce trade costs 
significantly between partners.

Of particular relevance is the work of Dueñas and Fagiolo (2013), who study 
properties of the world trade network through a gravity framework. The authors esti-
mate standard gravity models and use the estimated parameters to predict link for-
mation and generate simulated trade networks. These trade networks are compared 
to observed trade networks in order to determine if gravity models are capable of 
explaining customary topological features of trade networks. They find that gravity 
models are often effective at replicating some aspects of trade networks such as the 
average number of trading partners each country maintains. However, they perform 
poorly at predicting more complex patterns such as clustering unless the presence of 
links is fixed and only the weights are predicted. Much of their difficulty in generat-
ing similar networks stems from a general inability to accurately replicate binary 
link formation.2 My work builds on that of Dueñas and Fagiolo (2013) in several 
ways. It augments standard gravity frameworks by including network-based covari-
ates in an effort to better capture certain network influences. It also compares gravity 
simulated networks to those produced by ERGM models and demonstrates the rela-
tive strengths and weaknesses of both.

Ward et al. (2013) provide what is likely the most direct study of complex net-
work influences in international trade. Similar to the present paper, the authors 
assert that dependencies exist between bilateral trade and the patterns of the entire 
network. However, rather than the ERGM methodology proposed here, they model 
these dependencies using a general bi-linear mixed effects model (GBME) based on 
the work of Hoff (2005). A GBME model studies the structure of a network through 
a process similar to ANOVA. Links between nodes are estimated such that the error 

2 For a similar example of gravity models being used to analyze networks, see Fagiolo and Mastrorillo 
(2013b), which uses gravity models to analyze immigration patterns.
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terms are modeled as being composed of country-level random effects. Using these 
variance decompositions, many types of network dependencies can be identified, 
including reciprocity, sender and receiver effects, and shared third-party effects. 
Ward et al. find that the inclusion of complex network patterns improves the explan-
atory power of the gravity model and results in significantly higher R2 values.

The work in this paper extends this line of research studying complex network 
dependencies in trade. I propose two methodologies for modeling these depend-
encies that each exhibit some advantages. The first uses gravity models in a 
similar vein as Dueñas and Fagiolo (2013). I modify standard gravity models to 
include a collection of variables reflecting aspects of the world trade network. 
This is done for two types of models. The first is a typical gravity model using 
bilateral trade values and a PPML estimation approach. The second examines 
only the presence of trade and not its value, similar to the extensive-margin stage 
of the two-stage gravity model of Helpman et al. (2008) or the analysis of Bald-
win and Harrigan (2011). The first approach more closely follows the work in the 
gravity literature while the second approach is more representative of much of 
the work in the network literature, which often focuses on the presence of trade 
rather than the value. The second approach also compliments a notable weak-
ness of the first, which is that most gravity models of trade values—despite being 
effective at modeling bilateral trade overall—are largely unable to predict zero 
trade occurrences. Both types of gravity models provide evidence that bilateral 
trade patterns are significantly influenced by certain network patterns. I find that 
reciprocity between countries, common third-party trading partners, and the num-
ber of import and export relationships maintained by each country are significant 
determinants of bilateral trade. In most cases, these empirical findings are con-
sistent with many of the theoretical predictions of the past literature.

The second methodology uses an empirical network approach known as an 
exponential random graph model. ERGMs are relatively new to the field of eco-
nomics but have gained some popularity in recent years. For example, both Pan 
(2018) and Smith et al. (2019) used ERGMs to models aspects of trade. ERGMs 
estimate the likelihood of each bilateral trade relationship forming within the net-
work, conditional on the structure of the rest of the network and other factors. 
Parameters relating to the assumed dependencies are estimated using a maximum 
likelihood approach. The estimated model is that which makes the observed trade 
network the most likely network to have formed from among all possible trade 
networks. Compared to other network methodologies, such as the the GBME 
models used by Ward et  al. (2013), ERGMs offer a great deal of flexibility in 
terms of the types of network dependencies that they can include. GBME mod-
els identify network dependencies by decomposing error terms into specific 
functional forms, which necessitate a considerable amount of model structure. 
ERGMs, by comparison, include network dependencies in an additive way, mak-
ing it easier to alter the types of dependencies included in the model. Thus, while 
there may be considerable overlaps in the objectives of the present paper and 
Ward et al. (2013), the work presented here intends to not only provide additional 
affirmation of the importance of network dependencies in international trade but 
also demonstrate alternative methods for studying them. The ERGM estimations 
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provide new evidence that network patterns significantly affect international 
trade. The estimates show that reciprocity and shared third-party trading partners 
are significant determinants of bilateral trade, similar to the results from the grav-
ity models.

In addition to estimating the impacts of network dependencies using both gravity 
models and ERGMs, the models are tested on their ability to reproduce the complex 
network patterns present in actual trade. Estimated models based on both method-
ologies are used to simulate samples of predicted trade networks, similar to what is 
done by Dueñas and Fagiolo (2013). These samples of trade networks are then com-
pared to the actual observed trade network to determine which methodology better 
captures and replicates important types of network patterns. The tests demonstrate 
that both approaches perform better at replicating different aspects of the world 
trade network. In the application considered, the ERGM approach better captures the 
number of trade links in the network and performs relatively well at replicating the 
way countries share third-party partners. The gravity approach better captures the 
number of countries with which each country trades as well as the distance between 
countries in terms of links. These results indicate that (i) ERGMs are a powerful 
tool for analyzing aspects of international trade and (ii) structural gravity models are 
already effective at capturing many complex network patterns. By tying together the 
gravity literature and the empirical network literature through these comparisons, 
this work represents a novel contribution to both.

The ability to properly model complex network patterns in trade is important. 
From an ex post perspective, these patterns are influential determinants of trade 
behavior and integral in understanding bilateral trade. From an ex ante perspective, 
being able to properly model trade networks and, in particular, the extensive margin 
of trade is crucial. For example, there is a growing recent literature using structural 
gravity models to conduct counterfactual analyses of trade policy and other phenom-
enon (c.f. Yotov et al. (2016), Anderson and Yotov (2016), Baier et al. (2019), Kohl 
(2019), and Brakman et al. (2018)). These models typically rely on PPML estima-
tions, which—as discussed above—are unable to adequately model zero trade flows 
and the extensive margin. The network based approaches that I describe could be a 
useful refinement to these methods and provide a means by which to predict non-
trading countries in a counterfactual scenario.

The remainder of the paper proceeds as follows. Section 2 presents the gravity 
approach for modeling network dependencies in trade. Section 3 presents the ERGM 
approach. Section 4 compares both methodologies’ ability to replicate complex net-
work patterns. Section 5 concludes.

2  Network dependency in gravity models

Following the early work of Tinbergen (1962), gravity models have rapidly become 
workhorse tools in international trade. Gravity models gained their modern theoreti-
cal foundations with the work of Anderson and van Wincoop (2003) and Eaton and 
Kortum (2002), who provided demand and supply side structural derivations of the 
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model, respectively. On the demand side, Anderson and van Wincoop’s most nota-
ble contribution was the introduction of MRTs, which capture country-level multi-
lateral factors that impact bilateral trade for each importer and exporter. These terms 
are expressed as price indices that reflect inward and outward aggregate trade costs 
for each importer and exporter, respectively. The canonical Anderson and van Win-
coop (2003) gravity model is given by the following system:

In the model, xijt denotes trade from exporter i to importer j in period t. Trade is a 
function of j’s output ( Yjt ), i’s expenditures ( Ejt ), world output ( Yt ), bilateral trade 
costs ( �ijt ), and the outward and inward multilateral resistances ( �it and Pjt , respec-
tively). A key innovation in Anderson and van Wincoop’s work is that these MRTs 
summarize the wide range of possible multilateral factors into a single index value 
that can be readily constructed or estimated in empirical models. However, the 
downside of this simplification is that the intricacies of the underlying factors are 
lost. It is these types of intricacies that I seek to better illuminate by empirically 
identifying the role of network patterns within the model.

Subsequent work has expanded on these theoretical foundations and demonstrated 
the breadth of micro models that can be used to derive gravity models (Arkolakis 
et al. 2012). In particular, some of this research has tied gravity to network patterns 
in trade. Most notably, both Chaney (2014) and Morales et al. (2019) derive gravity 
models based on network dependencies. These works highlight the intrinsic con-
nections between gravity models and certain network patterns in trade. It is in this 
vein that I present new methods for extending the standard workhorse gravity model 
to include network variables that identify relationships between bilateral trade and 
complex network patterns. Although I forgo presenting a new theoretical gravity 
model, the extensions I propose are consistent with these existing structural models 
and provide new empirical insight into their underlying influences.

I present two approaches for estimating the effects of network patterns in a grav-
ity framework. The first follows a typical modern approach in which trade values are 
analyzed using a Poisson Pseudo Maximum Likelihood (PPML) estimator (Santos 

(1)xijt =
YitEjt

Yt

(
�ijt

Pjt�it

)−�

,

(2)�
−�

it
=
∑

j

(
�ijt

Pjt

)−� Ejt

Yt
,

(3)P−�
jt

=
∑

i

(
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Silva and Tenreyro 2006). The second approach looks only at the extensive margin 
by focusing on the existence of trade between two countries rather than the level. 
This second approach is considered for a few reasons. First, it can be more readily 
compared with the ERGM model described in Sect. 3, which also considers only the 
presence of trade and not the value. Second, the modeling of the extensive margin in 
trade is something that both the standard PPML-based gravity approach, which can-
not predict trade values of zero, and past network and trade research, such as that by 
Dueñas and Fagiolo (2013), have struggled to accurately capture. Third, it provides 
novel insight into aspects of trade that are often overlooked in studies using trade 
flows. For example, Iapadre and Tajoli (2017) note that a relatively small number of 
countries account for the majority of trade value and that treating trade as a binary 
event can help increase the voice of smaller countries.

The extensive margin approach follows the models of Baldwin and Harrigan 
(2011) and Helpman et al. (2008). It estimates the likelihood of trade between two 
countries using a probit model and standard gravity covariates such as distance, 
common borders, and trade agreements. While the Helpman et al. approach to esti-
mating gravity has been shown to be problematic by Santos Silva and Tenreyro 
(2015), its noted limitations are primarily related to the integration of the extensive 
and intensive margin estimations in their two-stage model. I perform only the exten-
sive margin estimation and therefore avoid the empirical limitations that Santos 
Silva and Tenreyro describe.

The two types of gravity models are estimated in order to identify the extent to 
which network attributes influence bilateral trade. In addition to standard gravity 
covariates like distance, common language, and trade agreements, I add three types 
of network covariates. The network covariates reflect different types of network pat-
terns relating to each importer and exporter. The network variables are defined based 
on the presence of trade rather than the value of trade, which I denote by Tijt . If trade 
flows from i to j are non-zero, Tijt = 1 ; if the countries do not trade, Tijt = 0 . The 
first network attribute is an indicator for reciprocal trade. This reciprocal variable 
( RECIPijt ) takes the value of one if the reverse flow from country j to i is present in 
the network ( Tjit = 1 ), meaning that the countries mutually import from and export 
to each other in a given year. The second class of network attributes, consisting of 
two variables, reflects the presence of three-way trade. The first of these variables 
counts the number of transitive trading relations shared by i and j. A transitive rela-
tionship occurs if there exists a country k such that i exports to k, k exports to j, and i 
exports to j. The constructed variable ( TRANijt ) counts the number of countries k for 
which the existence of trade from i to j would complete a transitive triple. Similarly, 
the second three-way variable ( CYLCijt ) counts the number of cyclical relationships, 
which consist of countries k such that i exports to j, j exports to k, and k exports to i.3 
Finally, the third class of network attributes consists of degree measures that reflect 
the number of trade relationships maintained by i and j. Four specific measures are 
considered: the importer in-degree ( IIDjt ), which counts the number of countries 

3 For the sake of parsimony and in following with much of the existing network literature, I focus on 
three-way transitive and cyclical relationships. However, in principle, these terms could be generalized to 
any number of multiparty trade flows.
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from which j imports; the importer out-degree ( IODjt ), which counts the number 
of countries to which j exports; the exporter out-degree ( EODit ), which counts the 
number of countries to which i exports; and the exporter in-degree ( EIDit ), which 
counts the number of countries from which i imports. Table 1  summarizes these 
attributes. A deeper discussion of network patterns is provided  in Sect. 3.1

Because the network variables are based on trade flows, some discussion of 
potential endogeneity issues is warranted. The variables have been constructed in 
a way that for a trade flow xijt from i to j, none of the constructed variables utilize 
information about xijt itself. In the case of reciprocity and three-way trade, the terms 
are equivalent regardless of the value of xijt , as they are based solely on other trade 
flows. The same is true of exporter i’s in-degree and importer j’s out-degree term. 
The remaining terms, exporter out-degree and importer in-degree, are in principle 
impacted by the value of xijt . However, to avoid this endogeneity, I exclude Tijt in 
the construction of these terms at the bilateral level and include j and i subscripts in 
EODijt to IIDijt , respectively. Given these changes, none of the network variables are 
directly dependent on xijt and are consistent with the multilateral information that 
would typically be captured by country-year fixed effects.

Trade data and additional gravity covariates were sourced from the BACI bilat-
eral trade and gravity data sets provided by CEPII (see Gaulier and Zignago (2010) 
and Head et al. (2010), respectively). The sample covers 207 countries for the years 
1995 to 2006. The data used for estimation are expanded to be a square panel so 
that “zeros” are also included for countries that do not trade. The gravity covariates 
used throughout are the standard measures of (log) distance ( ln(DISTij) ), contiguity 
( CNTGij ), common language ( LANGij ), colonial ties ( CLNYij ), and trade agreements 
( RTAijt).

2.1  PPML gravity estimation of trade flows

I begin by estimating the effects of network patterns in a conventional gravity frame-
work. The model follows standard specifications such as those described by Yotov 

Table 1  Network attributes 
used in the gravity estimations 
of trade

This table depicts the definitions of the network variables con-
structed for the network gravity analyses. The term Tij is a binary 
indicator that takes a value of 1 if country i exports to country j in 
year t, thereby denoting the presence of trade

Class Attribute Label Specification

Mutual trade Reciprocal RECIPijt Tjit

Three-way trade Transitive Triple TRANijt

∑
k TiktTkjt

Cyclical Triple CYLCijt

∑
k TjktTkit

Degrees Importer in IIDijt

∑
k≠i Tkjt

Importer out IODit

∑
k Tjkt

Exporter out EODijt

∑
k≠j Tikt

Exporter in EIDit

∑
k Tkit
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et al. (2016) and Head and Mayer (2014). The estimating model takes the following 
form:

As before, xijt denotes exports from country i to country j in year t. The term Dijt 
represents a collection of typical gravity covariates as described above. Following 
the gravity literature, exporter-year and importer-year fixed effects, denoted by �it 
and �jt , respectively, are included to capture multilateral resistances (Hummels 1999; 
Feenstra 2002). These terms control for important structural factors that influence 
the inward and outward prices in each country. However, the inclusion of these fixed 
effects precludes the inclusion of several of the network covariates that are similarly 

(4)xijt = exp{Dijt� + �1RECIPijt + �2TRANijt + �3CYLCijt + �it + �jt} + �ijt.

Table 2  Gravity model estimates of network influences on bilateral trade flows

This table reports the results from a series of gravity specifications estimating the impacts of network 
patterns on bilateral trade. All estimates were obtained using a PPML estimator and all specifications 
included importer-year and exporter-year fixed effects, which are omitted for brevity. Standard errors are 
clustered by country-pair and reported in parentheses
 * p < 0.1 ,  * * p < 0.05 ,  * * * p < 0.01

Covariate Label (1) (2) (3) (4)

Distance ln(DISTij) − 0.672∗∗∗ − 0.672∗∗∗ − 0.674∗∗∗ − 0.671∗∗∗

(0.0330) (0.0331) (0.0333) (0.0331)
Contiguity CNTGij 0.407∗∗∗ 0.408∗∗∗ 0.411∗∗∗ 0.406∗∗∗

(0.0588) (0.0586) (0.0591) (0.0586)
Language LANGij 0.234∗∗∗ 0.234∗∗∗ 0.233∗∗∗ 0.235∗∗∗

(0.0623) (0.0623) (0.0623) (0.0623)
Colony CLNYij 0.147 0.145 0.146 0.145

(0.0950) (0.0945) (0.0947) (0.0946)
Trade agreement RTAijt 0.637∗∗∗ 0.638∗∗∗ 0.636∗∗∗ 0.639∗∗∗

(0.0647) (0.0648) (0.0650) (0.0644)
Reciprocal RECIPijt 1.868∗∗∗ 1.775∗∗∗ 1.874∗∗∗

(0.128) (0.123) (0.127)
Cyclical triple CYLCijt 0.00555∗∗ 0.00224

(0.00283) (0.00213)
Transitive triple TRANijt − 0.00450 − 0.000773

(0.00317) (0.00238)
Dependent variable xijt xijt xijt xijt

Observations 511704 511704 511704 511704
AIC 2.652e+10 2.615e+10 2.618e+10 2.617e+10
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defined at the country-year level. As such, only reciprocity, transitive triples, and 
cyclical triples are included in this model specification. The remaining network 
covariates reflecting the different degrees measures are considered separately in a 
second stage regression, which I describe below. Finally, �ijt is an error term. The 
model is estimated in it’s non-linear form using a PPML estimator, as suggested by 
Santos Silva and Tenreyro (2006). PPML offers two notable advantages. First, it 
allows for the inclusion of zero trade flows. Second, it helps to mitigate heteroske-
dasticity issues that are common in bilateral trade data.4

Table  2 presents the results of the PPML estimation. Column (1) presents a 
baseline specification that includes only the standard gravity controls and country-
year fixed effects. All estimates are consistent with typical estimates such as  those 
presented in the gravity survey of Head and Mayer (2014). The one exception is 
colonial ties, which is not statistically significant in this case. Column (2) adds the 
three network covariates. The reciprocity term has a large, positive, and statistically 
significant impact on trade, suggesting that trade tends to be reciprocal and mutu-
ally reinforcing. A country is likely to export more to countries from which it also 
imports, and vice versa. The estimate indicates that reciprocal trade flows are about 
537 percent higher on average than non-reciprocal flows.5 The cyclical trade term 
is also positive and significant at the 90 percent level, implying that trade in three-
way cycles tends to be larger. Each additional three-country cycle increases bilat-
eral trade by about 0.55 percent. This outcome is consistent with the prominence of 
global supply chains in which products cycle through different stages of production 
in multiple different countries. The estimate for transitive trade is not significant. 
However, the transitive and cyclical measures are highly correlated due to the fact 
that both partially reflect general connectivity to other markets. To better investigate 
these covariates, columns (3) and (4) include each of these variables independently. 
In both cases, the variables are insignificant, suggesting that controlling for transi-
tive patterns is important for identifying the effects of cyclical patterns. Finally, in 
all cases, the inclusion of these network factors has a negligible impact on the esti-
mates of the standard gravity variables, suggesting that these variables are picking 
up new determinants of trade.

In order to identify the effects of exporter and importer degree patterns, I con-
duct a second stage regression that estimates the relationship between the estimated 
country-year fixed effects and the country degree patterns.6 In addition to highlight-
ing the empirical connection between these factors, the fixed effects have structural 
interpretations in the gravity model because they reflect multilateral resistances 
(Fally 2015). Thus, relationships between degree patterns and the fixed effects can 
also be interpreted as relationships with multilateral resistances. The analysis is 

4 The models were estimated using the PPML tools of Larch et al. (2019b), Correia et al. (2019a, b).
5 Calculated as 100 ∗ [exp{1.851} − 1].
6 As an example of this type of second stage gravity approach, Melitz (2008) analyzes the relationships 
between country-fixed effects and linguistic diversity and literacy.
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conducted using the fixed effect estimates from the specification presented in col-
umn (2) of Table 2. Specifically, I estimate the following model:

The term �kt represents either the importer or exporter fixed effects, �̂�jt or �̂�jt , which 
are regressed in separate specifications. For the independent variables, I include sev-
eral factors that are known from the literature to contribute to gravity model fixed 
effects. First, GDP is used to control for market size and output/expenditure, which 
are structural components of the gravity model that are absorbed by the fixed effects. 

(5)
�
kt
=� + �

1
ln(GDP

kt
) + �

2
ln(GDPPC

kt
) + �

3
GATT

kt

+ �
4
ln(REMT

kt
) + �
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+ �

6
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Table 3  Estimates of network influences on gravity model fixed effects

This table reports the results from a series of specifications estimating the impacts of network patterns on 
the estimated exporter ( �̂�kt ) and importer ( ̂𝜈kt ) fixed effects from the gravity model presented in column 
(2) of Table 2. All estimates were obtained using an OLS estimator. Heteroscedasticity-robust standard 
errors are reported in parentheses. ∗ p < 0.1 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

Covariate Label (1) (2) (3) (4) (5) (6)

GDP ln(GDPkt) 1893.0*** 2862.8*** 2800.4*** 1744.3*** 2928.0*** 2889.5***
(160.2) (318.4) (312.8) (199.4) (438.6) (434.3)

GDP per 
capita

ln(GDPPCkt) 81.21 151.9 187.3* 383.8*** 465.5*** 487.4***

(109.5) (109.9) (105.6) (74.22) (86.32) (87.32)
GATT/

WTO
GATTkt − 848.1*** 61.15 − 169.7 − 584.4*** 479.6* 337.4

(214.2) (262.1) (239.0) (198.9) (246.4) (226.5)
Remoteness ln(REMTkt) 2450.0* 4083.2*** 541.3 2516.2*

(1396.3) (1438.8) (1430.0) (1462.7)
Exporter 

out-
degree

EODkt − 77.92*** − 74.31***

(13.50) (13.31)
Exporter in-

degree
EIDkt 29.55*** 30.57***

(6.805) (6.853)
Importer in-

degree
IIDkt 47.78*** 48.41***

(8.480) (8.542)
Importer 

out-
degree

IODkt − 104.4*** − 102.2***

(19.62) (19.38)
Constant � 2358.2 9379.4 −19920.9*** − 12581.7 − 4357.7 − 22413.5***

(10270.9) (10211.3) (2054.4) (10737.7) (10387.7) (3016.2)
Dependent variable �̂�kt �̂�kt �̂�kt �̂�kt �̂�kt �̂�kt

Observa-
tions

2078 2078 2078 2078 2078 2078

Adjusted R 2 0.295 0.320 0.316 0.212 0.244 0.243
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Second, GDP per capita ( GDPPCkt ), GATT/WTO membership ( GATTkt ), and a 
measure of remoteness ( REMTkt ) are included as factors have long been used in 
the literature to proxy for aspects of multilateral resistance.7 Third, the measures 
of inward and outward degrees are included ( IDkt and ODkt , respectively).8 For the 
regressions using importer fixed effects, these terms are IIDkt and IODkt . When 
using exporter fixed effects, they are EIDkt and EODkt . Finally, � is a constant and �kt 
is an error term. The model was estimated using OLS.

Because the dependent variable in the second stage is based on estimates derived 
from the first stage regression, additional care must be taken to account for errors 
introduced from the first stage. Lewis and Linzer (2005) provide a thorough discus-
sion of the potential issues that can arise in these situations. They note that the use 
of estimated dependent variables in the second stage can introduce heteroscedastic-
ity stemming from sampling error in the first stage. This may result in inconsistent 
standard errors in the second stage. As a remedy, Lewis and Linzer (2005) find that 
White’s (1980) heteroscedastic-consistent standard error estimates provide reliable 
and consistent values, although such an approach may be inefficient. I follow this 
approach for the second stage gravity estimates and report heteroscedastic-consist-
ent standard errors.9

The second stage estimates, which are presented in Table  3,  demonstrate that 
that importer and exporter degree pattern have an influence on fixed effect estimates 
and multilateral resistance. Columns (1)–(3) depict the estimates for the exporter 
fixed effects ( �̂�jt ) while columns (4)–(6) depict those for the importer fixed effects 
( ̂𝜈jt ). Columns (1) and (4) provide baseline models that include the standard com-
ponents GDP, GDP per capita, GATT/WTO membership, and remoteness. Recall 
that the fixed effects are increasing in a country’s level of openness to trade so that 
most of the standard terms are of the expected sign. GDP and GDP per capita both 
increase imports and exports in all specifications. However, both remoteness and 
GATT/WTO membership produce some estimates with unexpected signs. Nonethe-
less, these counter intuitive results are consistent with past literature. With regards 
to remoteness, Baldwin and Harrigan (2011) find positive effects of remoteness on 
trade when examining the likelihood of trade at the extensive margin. With regards 
to GATT/WTO membership, past literature has often found that GATT and WTO 
membership has had mixed empirical effects that are sensitive to the econometric 
specification in which they are estimated (c.f. Larch et al. (2019a)).

Columns (2) and (5) introduce the degree terms to the baseline models. The esti-
mates highlight an interesting dynamic between import and export behavior. For the 

8 At the bilateral level, there is some minor variation in the IID and EOD terms for each country because 
a positive flow xijt is excluded in the ijt terms but counted in all other terms in order to mitigate endoge-
neity concerns. For these second stage regressions, I use the maximum value for each country and year, 
which provides a measure without the bilateral exclusions.
9 Baier et al. (2019) follow the same approach in their second stage analysis of trade agreement param-
eter estimates.

7 The remoteness term is constructed as REMTkt = (
∑

l GDPlt∕DISTkl)
−1 , following Head and Mayer 

(2014) and Baldwin and Harrigan (2011).
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exporter fixed effects depicted in column (2), the estimates indicate that export open-
ness tends to be positively related to the number of countries from which it imports 
but is negatively related to the number of countries to which it exports. The esti-
mates for the importer fixed effects in column (5) present a similar picture. Import 
values overall are increasing in the number of sources from which a country imports 
but decreasing in the number of destinations to which it exports. These estimates 
suggest that exporting is based on strong relationships with specific partners rather 
than a large number of weaker partnerships. By comparison, a country’s import val-
ues tend to be be reinforced by the number of sources from which it imports. Finally, 
it is possible that remoteness and degrees are meaningfully related in this context, as 
both seek to measure connectedness, which may impact the estimates. To examine 
this potential overlap, columns (3) and (6) report specifications in which remote-
ness is omitted. The degree estimates are largely unaffected, suggesting that they are 
identifying unique aspects of global connectedness.

2.2  Probit model of the extensive margin

The previous section demonstrates the influences that network patterns have had 
on bilateral trade relationships through the lens of trade values and structural 
gravity estimation. In this section, I consider a second perspective that looks at 
the role of networks in the extensive margin of trade. While the modeling of trade 
as a binary occurrence is less prominent in the literature, it has a particular rel-
evance when focusing on the relationships between network patterns and trade. 
Even though the PPML estimator has grown in popularity due in no small part 
to its ability to include zero trade flows in estimations, PPML gravity models are 
unable to predict actual zeros post estimation. Instead, PPML can only predict 
small trade values where actual trade data shows zero trade flows. For example, 
the standard gravity model presented in Table 2 predicts no literal zeros despite 
the fact that about 50 percent of the trade flows in the sample are zero. Thus, 
new insight into the determinants of zero flows provides valuable complementary 
information. Additionally, examining the extensive margin of trade also connects 
this work with much of the past trade and network research, which has similarly 
focused on the extensive margin of trade.

The analysis is conducted using a gravity probit model that regresses the exist-
ence of trade against the collection of gravity and network covariates used in the 
standard gravity model above. This approach follows the earlier extensive margin 
analyses of Helpman et al. (2008) and Baldwin and Harrigan (2011). Specifically, 
the model takes the following form:

In this case, the dependent variable Tijt denotes the presence of trade rather than the 
value, taking a value of 1 if xijt > 0 and zero otherwise. The other differences in this 
specification are the exporter and importer controls denoted here by the functions 

(6)
Tijt = Dijt� + �1RECIPijt + �2TRANijt + �3CYLCijt + �4EODijt

+ �5EIDit + �6IIDijt + �7IODjt + F(i, t) + H(j, t) + �ijt.
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Table 4  Probit model estimates of network influences on the extensive margin of trade

Covariate Label (1) (2) (3) (4) (5) (6)

Distance ln(DISTij) − 
0.677∗∗∗

− 0.547∗∗∗ − 0.517∗∗∗ − 0.547 − 0.529∗∗∗ − 0.547

(0.0109) (0.0106) (0.0100) (.) (0.0113) (.)
Contiguity CNTGij − 0.203∗ − 0.140 − 0.142 − 0.140 − 0.0756 − 0.140

(0.105) (0.0934) (0.0879) (.) (0.0895) (.)
Language LANGij 0.358∗∗∗ 0.299∗∗∗ 0.291∗∗∗ 0.299 0.173∗∗∗ 0.299

(0.0186) (0.0180) (0.0175) (.) (0.0188) (.)
Colony CLNYij 0.151 0.182∗ 0.160∗ 0.182 0.473∗∗∗ 0.182

(0.109) (0.0981) (0.0925) (.) (0.0975) (.)
Trade 

agreement
RTAijt 0.853∗∗∗ 0.699∗∗∗ 0.659∗∗∗ 0.699 0.787∗∗∗ 0.699

(0.0506) (0.0471) (0.0440) (.) (0.0490) (.)
Reciprocal RECIPijt 0.714∗∗∗ 0.709∗∗∗ 0.714 0.737∗∗∗ 0.714

(0.0110) (0.0108) (.) (0.0123) (.)
Transitive 

triple
TRANijt − 

0.00437∗∗∗
0.00987∗∗∗ − 0.00437 − 

0.00435∗∗∗
− 0.00437

(0.00115) (0.000770) (.) (0.000636) (.)
Cyclical 

triple
CYLCijt 0.0131∗∗∗ 0.00336∗∗∗ 0.0131 − 

0.000580
0.0131

(0.000851) (0.000648) (.) (0.000632) (.)
Importer in-

degree
IIDijt 0.0194∗∗∗ 0.0248∗∗∗ 0.0243∗∗∗ 0.0246∗∗∗

(0.000436) (0.000337) (0.000441) (0.000347)
Importer 

out-
degree

IODjt − 
0.00360∗∗∗

− 
0.00724∗∗∗

− 
0.00350∗∗∗

− 
0.00930∗∗∗

(0.000461) (0.000394) (0.000446) (0.000341)
Exporter 

out-
degree

EODijt 0.0122∗∗∗ 0.0180∗∗∗ 0.0269∗∗∗ 0.0278∗∗∗

(0.000546) (0.000416) (0.000452) (0.000349)

Exporter in-
degree

EIDit − 
0.00155∗∗∗

− 
0.00581∗∗∗

− 
0.00633∗∗∗

− 0.0130∗∗∗

(0.000431) (0.000301) (0.000432) (0.000312)
Exporter 

GDP
ln(GDPit) 0.0895∗∗∗ 0.0931∗∗∗

(0.00540) (0.00544)
Importer 

GDP
ln(GDPjt) 0.0690∗∗∗ 0.0674∗∗∗

(0.00530) (0.00537)
Exp. GDP 

per capita
ln(GDPPCit) 0.0396∗∗∗ 0.0550∗∗∗

(0.00470) (0.00464)
Imp. GDP 

per capita
ln(GDPPCjt) 0.0540∗∗∗ 0.0792∗∗∗

(0.00470) (0.00467)
Exporter 

remote-
ness

ln(REMTit) 0.266∗∗∗ 0.263∗∗∗

(0.0153) (0.0154)

Importer 
remote-
ness

ln(REMTjt) 0.224∗∗∗ 0.238∗∗∗

(0.0150) (0.0151)
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F(i,  t) and H(i,  t), respectively. These terms represent three different vectors of 
control variables that are used across different specifications: exporter-year and 
importer-year fixed effects; exporter, importer, and year fixed effects; and country-
year level controls comprised of GDP, GDP per capita, and the remoteness measure. 
While the country-year fixed effects provide the best controls, they also conflict with 
the network degree terms. Thus, the two alternative controls are used in specifica-
tions that include network degrees. The models were all estimated using a probit 
estimator. However, given the use of extensive fixed effects in some specifications, 
additional linear probability model regressions were used to test the robustness of 
the estimates and are presented in the “Appendix”. In general, the linear probability 
model estimates are consistent with the probit estimates other than a few exceptions 
described below.

Table 4 presents the probit model estimates, which provide a similar picture of 
the significant but nuanced impacts of network patterns on trade. Column (1) pro-
vides a baseline specification that includes the gravity covariates and country-year 
fixed effects but does not include any of the network covariates. The estimates are 
largely consistent with the past literature and exhibit the expected effects on trade. 
Only contiguity, which is negative here, differs from typical gravity estimates but 
is consistent with the extensive margin findings in Helpman et al. (2008). Column 
(2) adds in the reciprocal, transitive triple, and cyclical triple terms while retain-
ing the country-year fixed effects. As in the PPML gravity model, both the recip-
rocal and cyclical triple terms have a positive and significant effect on the exten-
sive margin, implying that reciprocity and cyclicity increase the likelihood that two 
partners trade. Transitive triples have a significant negative impact on the extensive 
margin, suggesting that trade does not tend to form in transitive patterns. Curiously, 
this conflicts with the theoretical expectations of Chaney (2014), which suggest 

Table 4  (continued)

Covariate Label (1) (2) (3) (4) (5) (6)

Constant 2.460∗∗∗ 2.691∗∗∗

(0.215) (0.167)
Dependent 

variable
Tij Tij Tij Tij Tij Tij

Fixed 
effects

it, jt it, jt i, j, t i, j, t None None

Obs. 511292 511292 511704 511704 357918 357918
AIC 291853.2 279938.4 279803.7 280780.6 202718.3 206719.3

This table presents the results from a series of probit models estimating the relationship between the 
presence of trade ( Tij ) between two countries and a collection of covariates. The specifications in col-
umns (1) and (2) included exporter-year (it) and importer-year (jt) fixed effects. The specifications in 
columns (3) and (4) included exporter (i), importer (j), and year (t) fixed effects.The specifications in 
columns (5) and (6) included no fixed effects and instead include related proxies in their place. In all 
cases, the fixed effect estimates are omitted for brevity. Standard errors are clustered by country-pair and 
reported in parentheses. Estimates that were constrained are presented with “(.)” in place of standard 
errors
 * p < 0.1 ,  * * p < 0.05 ,  * * * p < 0.01
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that firms use existing, transitive relationships to expand their exports. However, it 
should be noted that the present analysis uses aggregate trade rather than firm-level 
trade, which may explain these differences at least in part. Additionally, as discussed 
below, this estimate appears to be quite sensitive to the specification and should be 
treated with some caution.

Columns (3) and (4) introduce the exporter and importer degree terms. Because 
the degree terms are defined at the country-year level, the country-year fixed effects 
are forgone and are instead replaced with time-invariant exporter and importer fixed 
effects as well as year fixed effects. Columns (3) and (4) also provide two differ-
ent treatments for the eight covariates included in the specification in column (2). 
The first, which is presented in column (3), re-estimates these covariates. The sec-
ond, which is presented in column (4), constrains these estimates to the values that 
were derived using the more granular set of country-year controls from column (2). 
In most cases, these two approaches produced similar estimates, differing slightly 
in magnitude. The most notable difference is that the transitive triple term is posi-
tive and significant in column (3), and therefore more consistent with the predic-
tions of Chaney (2014). The degree terms in both specifications depict a complex set 
of influences that differ in some ways from those estimated within the value based 
gravity models above. The importer in- and importer out-degrees present the same 
pattern as before. The likelihood of importing from a particular source is increasing 
in the number of sources from which a country imports. Meanwhile, it is decreasing 
in the number of destinations to which an importer exports. By comparison, the pat-
tern for exporters is reversed. The likelihood of a country exporting to a particular 
partner is increasing in the number of its export destinations overall. However, the 
likelihood is decreasing in the number of countries from which it imports. Thus, 
while there was a tendency for firms to export narrowly and import broadly when 
considering trade values, the same does not appear to be true at the extensive mar-
gin. Instead, countries tend to either export broadly and import narrowly, or vice 
versa, seemingly specializing as either well-connected importers or exporters. This 
difference may imply that for importers, the extensive margin and intensive margin 
may look similar, with imports spread relatively evenly across the different sources. 
For exports however, these margins appear fairly different. It may be that having 
many export destinations helps to form new trading relationships in general but that 
most trade value tends to flow from exporters with relatively few destinations.

Columns (5) and (6) present an additional set of specifications that forgo the 
inclusion of country fixed effects in favor of the country controls used in the PPML 
fixed effect regressions: GDP, GDP per capita, and remoteness. Using these control 
terms reintroduces time variation at the country-level but controls for a more narrow 
set of influences. As before, column (5) re-estimates all covariates while column (6) 
constrains several values based on the estimates in column (2). The use of the coun-
try controls in place of fixed effects has only a modest impact on the other estimates. 
The signs of almost all the other covariates are unchanged and the magnitudes differ 
by only a small amount. In particular, the exporter and importer degree patterns are 
the same under these alternative country controls, providing additional evidence of 
their robustness. The most notable difference compared to the other specifications is 



146 P. R. Herman 

1 3

that the estimate for transitive triples in column (5) is negative, further demonstrat-
ing the sensitivity of that estimate to the model specification.

To test the robustness of these findings, I estimate the same specifications using 
a linear probability model. This is motivated by the inclusion of extensive fixed 
effects in several of the specifications, which could result in incidental parameter 
problems for those estimates. The linear probability estimates, which are presented 
in Table 7 in the “Appendix”, are largely consistent in sign with the probit estimates. 
In particular, the patterns of the importer and exporter degree terms are robust to 
linear probability estimation. The most notable exceptions are that contiguity and 
trade agreements become significantly negative in most specifications. Additionally, 
the transitive triple term is less sensitive to the specifications when using the lin-
ear probability model as it is negative across all specifications. By comparison, the 
cyclical triple term shows additional sensitivities as it fluctuates between positive, 
negative, and insignificant across the specifications. Despite these inconsistencies 
between the two estimators, I believe that the probit estimates provide better insight 
as the probit estimator is better suited for estimating the binary outcomes of the 
extensive margin of trade. Further, I see the fact that the estimates for trade agree-
ments are more sensible in the probit specifications as additional support.

Several recent papers examining the extensive margin of trade have used the 
Flex estimator proposed by Santos Silva et  al. (2014). The Flex model represents 
an effective means of estimating the determinants of the extensive margin when the 
margin is defined in terms of the number of different products traded instead of as a 
binary measure. As a robustness exercise, I perform a complementary analysis using 
the Flex estimator and alternative concept of the extensive margin. The details of 
the model and results are presented in the “Appendix”. The Flex model results are 
mostly consistent with those of the probit model.10 In particular, the estimates for 
the network terms agree in sign in all cases and demonstrate that the network influ-
ences are similar for both binary trade and the number of products traded.

Together, the PPML and probit models indicate that the complex patterns in the 
world trade network are influential in ways that are not obvious from a typical grav-
ity model. These findings provide motivation for exploring these dependencies in 
an analytical framework that is specifically designed to model the structure of the 
network. The next section describes such a framework.

3  Exponential random graph models of trade

As demonstrated in the previous section, global trade patterns depend on the struc-
ture of the trade network. A country’s trade decisions are impacted by its position in 
the network and the patterns to which it is a part. The gravity approaches described 
above provide one way to identify and estimate the impact of these types of network 
patterns. This section describes an alternative network approach called ERGM anal-
ysis. This alternative approach provides a modeling framework specially developed 

10 The only notable difference is that contiguity is positive and significant in the Flex models but insig-
nificant in the probit models.
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to explain the formation of complex trade patterns and network dependencies. Thus, 
the modeling of trade networks through such an approach offers a means to estimate 
aspects of the trade network that are not readily identified in a gravity framework.

3.1  Exponential random graph models

A network consists of a collection of nodes and links that indicate relationships 
between these nodes. A significant motivation for the use of networks stems from 
the fact that this broad framework can be used to express a wide variety of economic 
environments in which the pattern by which agents relate to one another has a con-
sequential bearing on behavior. Within the context of international trade, networks 
can be used to describe complex trading relationships in which trading partners 
are represented by nodes in the networks and links can be used to describe a wide 
range of relationships such as trade flows, common languages, and shared borders. 
By studying the structure of these networks, considerable information can be gained 
about the patterns of trade.

A network G can be represented mathematically with relative ease. Let N denote 
the set of nodes in a network and ni ∈ N denote a specific node within that set. 
Nodes are connected by links xij such that xij exists if there is an link extending from 
node ni to node nj . Networks can be unweighted, in which case xij = 1 indicates the 
presence of a link and xij = 0 indicates its absence. They can also be weighted, in 
which case xij specifies not only the existence of a link but its value. Furthermore, 
a network can be either directed, in which case links xij and xji are distinct, or undi-
rected, in which case xij ≡ xji.

In the context of international trade, networks exhibiting a variety of these char-
acteristics are common. For example, the extensive margin of trade could be suffi-
ciently modeled using an unweighted network in which links represent the existence 
of trade between partners. However, a study of the intensive margin of trade would 
require the use of weighted networks in which links describe the actual volume of 
trade between both partners. In both cases, the network would generally need to be 
directed because exports from country i to country j are distinct from the exports 
from j to i. By comparison, a network depicting the presence of a shared common 
border between partners could be described by an undirected network.

It may also be the case that a set of nodes N are related by more than one net-
work. For example, countries are linked through a considerable number of possi-
ble networks, such as trade, common languages, or regional trade agreements. In 
what follows, these different networks will be denoted using alternative variables 
to represent links in each network. For example, the set of links X and Y may be 
used to denote trade flows and common language ties, respectively.

In addition to a range of different types of links that exist between nodes, nodes 
may also feature node-specific characteristics. For each node ni , there may exist 
a corresponding set of traits Qi with typical elements q�

i
 . If the nodes represent 

countries, the set of node traits may include information such as GDP, GDP per 
capita, or WTO membership. One motivation for including node characteristics is 
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that it allows for the study of “social” influences. For example, countries belong-
ing to the World Trade Organization may be expected to trade more with other 
members than with non-members.

Given the unique ability of network structures to convey numerous dimen-
sions of information, they yield themselves to a variety of powerful analytical 
options. ERGMs are one such way in which to study the structure of networks 
by identifying the specific aspects of a network that result in the likely forma-
tion of the networks that are ultimately observed. Beginning with the seminal 
work of Frank and Strauss (1986), ERGMs have become increasingly popular in 
the analysis of networks, predominantly in the areas of psychology, sociology, 
and statistics. More recent work, such as that by Wasserman and Pattison (1996), 
Snijders (2002), Robins et al. (2007), and Lusher et al. (2013), has expanded on 
this framework and created a robust set of analytical tools with which to study 
networks.

The ERGM methodology views a network as a realization of a random vari-
able. Networks are drawn from a distribution of possible networks such that the 
distribution is dependent on certain network attributes that will be described 
in greater detail shortly. Given these attributes and the implied distribution, 
some networks are more likely than others. Statistical inference on a particular 
observed network is possible by estimating the characteristics of the underlying 
distribution that lead to the realization of the observed network. Specifically, the 
distribution parameters that result in the observed network being the most likely 
network to have been formed are sought.

Following the definitions presented in Robins et  al. (2007) and Lusher et  al. 
(2013), an ERGM specifies the probability of a particular network realization g in 
the following way.

The probability is given by an exponential function of parameters � and network 
attributes zi . The network attributes are selected based on the assumed conditional 
dependencies in the model. For example, one such dependency might be mutual ties 
reflecting a reciprocal relationship. In this case, the attribute zrecip would be equal 
to the total number of reciprocal ties in the network. The parameters � indicate the 
relative weight of each network attribute. In the example of reciprocal ties, a large 
positive parameter value would indicate that networks with many reciprocal ties are 
more likely and that the likelihood of an individual link forming is marginally higher 
if it completes a reciprocal relationship. Following the work of Frank and Strauss 
(1986), a homogeneity assumption is generally included with respect to the param-
eters and attributes. Homogeneity assumes that all linking patterns of the same type 
have the same effect. To illustrate, it assumes that the tendency for a reciprocal tie 
to form between two nodes ni and nj is identical to the tendency for a reciprocal tie 
to form between any other pair of nodes. Finally, the function �(�) is a normalizing 
coefficient that insures that the distribution is a proper probability distribution.

(7)Prob(G = g) =
1

�(�)
exp

(
∑

i

�izi(g)

)
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In specifying the model, assumptions about pair-wise dependency must be made. 
These assumptions are incorporated by including network attributes that measure 
the assumed type of dependencies. Wasserman and Pattison (1996) and Lusher et al. 
(2013) provide extensive discussions of typical network attributes used in ERGM 
analysis. I describe a selected few below. In general, these network attributes can be 
arranged into two groups of attribute types: topological attributes and social selec-
tion attributes.

The topological attributes describe specific patterns of links within the network. 
Typical examples include a measure of density, degrees, triangles and triples, or 
reciprocal ties. Density reflects the number of links in the network, relative to the 
number of possible links, and indicates whether the network is generally well con-
nected or sparsely connected. As before, node degree describes the number of nodes 
to which each node is connected and may convey information about the importance 
of certain nodes and other notions of centrality.11 Triangles and triples describe pat-
terns of relationships between three nodes.12 Reciprocal ties indicate pairs of nodes 
that both link to one another, indicating a reciprocal relationship. The use of these 
types of topological attributes allows for the explicit inclusion of many different 
types of network dependence in ERGMs. Within the context of international trade, it 
allows for an explicit description of the ways in which the exports from one partner 
to another are affected by the other trade relationships of countries.

The social selection attributes, by comparison, are based on aspects of the net-
work beyond the pattern of links. It is through these attributes that secondary net-
works or node characteristics can influence the formation of links. Common social 
selection attributes include measures of homophily, sender effects, and receiver 
effects. Homophily refers to the possibility that nodes tend to link to similar nodes 
with a higher likelihood. Sender and receiver effects indicate whether certain uni-
lateral characteristics affect the number of links extending from or to a node, 
respectively. In the context of international trade, social selection attributes can be 
included to model traditional trade determinants such as GDP, common languages, 
preferential trade agreements, or other country specific effects.

A well-specified ERGM is one in which the set of attributes fully accounts for 
the expected dependencies across nodes. One of the benefits of this modeling struc-
ture is there is a considerable amount of flexibility with regard to model construc-
tion. For example, Lusher et al. (2013) and Robins et al. (2007) describe two com-
mon dependency structures. The first is a Bernoulli random graph in which all links 
are assumed to be independent of one another. This assumption represents what is 
essentially the simplest possible structure where link formation is not dependent on 
any other links in the network. The model itself simply specifies the set of attributes 
� as consisting of only a measurement of the number of links in the network. The 
second example is a Markov graph, which incorporates more significant dependency 

11 The network literature often uses an alternative term, k-star, to describe the same type of patterns.
12 A triangle describes a complete undirected relationship between three nodes or a directed relationship 
between three nodes in at least one pattern. Three node directed relationships, like those included in the 
gravity models of the previous section, can follow two possible patterns: transitive triples ( xij , xjk , xik ) or 
cyclical triples ( xij , xjk , xki).
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assumptions. A Markov random graph assumes that a link between two nodes is 
dependent on all links connecting to or from those nodes. The set of attributes for a 
Markov graph typically includes the number of edges, triples or triangles, reciprocal 
ties, and a range of degrees of different values. In addition to these two parameteri-
zations, contemporary ERGM models offer a wide variety of possible attributes that 
can be selected based on the underlying assumptions of dependence within the net-
work being modeled.

A typical objective in ERGM analysis is the empirical estimation of the model, 
which is an effective means by which to draw statistical inference from network 
data. When estimating an ERGM, the process begins with an observed network 
such as the network of trade between countries for a given year. An ERGM is speci-
fied given the assumed dependencies within the model. The objective is to estimate 
parameter values � of the ERGM such that the observed network is the maximally 
likely network to have formed given the distribution of all possible networks. The 
estimated parameters provide information as to the relative importance of each 
attribute in the observed network and indicate the types of network relationships that 
are important.

In what follows, the estimation procedures described will be limited to 
unweighted networks. Similar work on weighted networks is arising in the literature 
(see, for example, Krivitsky (2012) and Desmarais and Cranmer (2012)), but is less 
developed than the literature and procedures for unweighted networks.

Estimation of the parameters is essentially a maximum likelihood problem. The 
desired estimates are those that make the observed network the most likely to be 
observed. One method of estimating these parameters is to use standard maximum 
likelihood techniques on Eq. (7). However, doing so requires the computation of the 
normalizing coefficient �(�) , which is contingent on the sample space consisting of 
all possible networks. This poses a computational problem for even relatively small 
networks where the magnitude of the set of all possible networks is 2|N|∗(|N|−1) for 
directed networks or 2|N|∗(|N|−1)∕2 for undirected networks. As such, standard maxi-
mum likelihood approaches are infeasible for even modestly sized networks.

As an alternative, Strauss and Ikeda (1990) and Wasserman and Pattison (1996) 
describe a modified approach that utilizes a maximum pseudo-likelihood technique. 
The original ERGM specification given by equation (7) can be reformulated as a 
logit model in terms of individual link formation. If xc

ij
 denotes the complement of 

link xij (that is, the set of all other links excluding xij ), g+ij denotes the network g 
with the addition of link xij , and g−ij denotes the network g with link xij removed, 
then a logit function for the ERGM can be written

The logit function models the log odds of individual link formation contingent on 
the rest of the network. By doing so, the normalizing coefficient is eliminated from 
the model making computation easier. Estimation of the logit function using maxi-
mum psuedo-likelihood techniques requires the computation of the change statistic 

(8)ln

(
Pr(xij = 1|xc

ij
)

Pr(xij = 0|xc
ij
)

)
= �

′
[
�(g+ij) − �(g−ij)

]
.
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[
�(g+ij) − �(g−ij)

]
 , which describes how each attribute changes as a specific link is 

added or removed from the network, but is generally feasible. However, while maxi-
mum pseudo-likelihood estimation of this logit function has the advantage of being 
readily computed using standard statistical tools, it suffers from a general concern 
that its estimation results in biased estimates and potentially poor approximations of 
the standard errors (see Robins et al. (2007) and Snijders (2002)). For these reasons, 
maximum pseudo-likelihood estimation has largely been replaced by Monte Carlo 
estimation methods based on (8).

Most recent work on ERGM estimation has utilized Markov Chain Monte Carlo 
(MCMC) maximum likelihood estimation. A brief summary of this process is 
included here but Snijders (2002) and Lusher et  al. (2013) provide more detailed 
descriptions of the methodology. On a basic level, MCMC techniques are used in 
order to generate a sampling distribution of networks that can then be used for sta-
tistical inference. Parameter values are proposed and the MCMC process generates a 
chain of network realizations with the hope that the sequence of networks converges 
to a distribution of networks such that the observed network is centered within the 
distribution and represents the most likely network that could have formed.

The process begins with the selection of initial parameter values �̂�
0
.13 Next, an 

arbitrary network g0 is initialized as a starting point for the simulation process. A 
sequence of networks is generated through a stochastic process in which a single 
link xt

ij
 is selected at random at each step along the sequence. The current network 

gt−1 is altered with respect to this one link such that the link is added if xt−1
ij

= 0 or 
removed if xt−1

ij
= 1 , resulting in a new proposed network g∗ . The two potential ensu-

ing networks g+ij and g−ij are compared and the alteration to xij is accepted if the 
resulting network is sufficiently likely to occur given the previous network. This pro-
cess typically employs a Metropolis-Hastings algorithm in which the proposed net-
work is evaluated according to a Hastings ratio such that the proposed network is 
accepted with probability

The Metropolis Hastings algorithm accepts the proposed network if it is more likely 
than the previous network or—if it is less likely than the previous network—with 
some probability that is decreasing in the likelihood ratio. The Hastings ratio can be 
generated using essentially the same logit model as described above in equation (8) 
and is based on the initial parameter values and the resulting change statistics.

This Markov process governed by the Metropolis Hastings algorithm generates a 
sequence of T-many networks with the intention of creating a sampling distribution. 
This Monte Carlo procedure typically includes a burn-in period following the ini-
tialization of the starting network that omits the first r-many networks generated so 

(9)min

{
1,

Pr�(g
∗)

Pr�(g
n−1)

}
.

13 There are several common methods used for this selection employed by ERGM statistical packages. 
Two frequently used methods are the Geyer-Thompson approach (used by statnet and in the analysis in 
the following section) and the Robbins-Monro algorithm (see Lusher et al. (2013), p. 149–154).
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as to eliminate any memory of the starting network. By generating the sampling dis-
tribution one link at a time, significant autocorrelation tends to arise between subse-
quent networks in the sequence. To mitigate this autocorrelation, MCMC procedures 
typically use thinning methods that only include every sth network in the sampling 
distribution. All other networks contained within the interval of s-many networks 
are excluded. Thus, the ultimate sampling distribution consists of the networks 
{gr, gr+s, gr+2s,… , gT} so that there is limited autocorrelation within the sequence.

Following the Monte Carlo simulation process, the resulting sample of networks 
is compared to the observed network in order to determine if the model and initial 
parameter values are a good fit. If the estimation was successful, the distribution of 
sample networks ought to have attribute distributions centered around the attributes 
present in the observed network. If this holds, the parameter values are those that 
make the observed network the most likely network that could have formed, thereby 
solving the underlying maximum likelihood problem. If, however, the sampling dis-
tribution is not acceptably centered around the observed network, alterations are 
made to the initial parameter values �̂�

0
 and the process is repeated in subsequent 

iterations using updated sets of parameter values ( {�̂�
2
 , �̂�

3
,…} ) until a satisfactory 

set of parameter values is found. Once an accurate set of parameter values is identi-
fied, the goodness of fit is tested by simulating a collection of additional networks 
using the estimated parameters and checking that they are suitably replicating the 
desired features of the observed network. The model and estimated parameter values 
are said to fit well if the networks from the simulated sample share the same char-
acteristics on average as the observed network. For example, the average number of 
links or the distribution of degrees are similar.

If these diagnostic tests are satisfied, the final parameter estimates �̂� may be 
accepted and the estimation procedure is concluded. The estimates can then be used 
to describe dyadic dependencies within the model. The estimates themselves can be 
interpreted in terms of log odds as in equation (8). The log odds of a link xij forming 
depends on its relative position in the network. Suppose, for example, that by form-
ing link xij , the link represents an additional link, a reciprocal tie, and completes a 
cyclical triple. The log-odds of that link forming would be equal to 
��
links

+ ��
reciprocal

+ ��
c−triple

 . In general, the sign and magnitude of each coefficient can 
be used to describe the relative importance of each modeled attribute and respective 
dependency. Positive estimates identify the network relationships that are likely to 
promote link formation while negative coefficients describe those that tend to deter 
link formation. The magnitude of the estimates further specifies the strength of these 
dependencies. Thus, using this information, a more complete understanding of the 
interrelationships in the network can be attained.

In recent years, several popular software packages have emerged that facilitate the 
estimation of a wide range of ERGM specifications. Two of the most popular are stat-
net14 and Pnet15. The work described in the remainder of this paper utilizes the statnet 

14 http:// www. statn et. org/.
15 http:// www. swinb urne. edu. au/ fbl/ resea rch/ trans forma tive- innov ation/ our- resea rch/ MelNet- social- 
netwo rk- group/.

http://www.statnet.org/
http://www.swinburne.edu.au/fbl/research/transformative-innovation/our-research/MelNet-social-network-group/
http://www.swinburne.edu.au/fbl/research/transformative-innovation/our-research/MelNet-social-network-group/


153

1 3

Modeling complex network patterns in international trade  

software. The statnet suite is a package written in R containing a variety of tools for 
analyzing networks (Handcock et al. 2003). In addition to providing powerful ERGM 
estimation procedures, it also includes tools to perform other network oriented tasks 
such as graphing procedures and the generation of network descriptors. For additional 
information on the use of statnet, see Goodreau et al. (2008) and Handcock et al. (2008).

3.2  ERGM estimation of international trade flows

In order to study the properties of the international trade network and its impact on 
trade patterns, I estimate ERGMs using bilateral trade data for the international trade 
networks of 1995 and 2006. The data is the same as that used for the gravity analysis 
described in the previous section. The ERGM methods face some practical limits 
compared to the gravity approaches due to the computational intensity of the estima-
tion procedure. Because of this, two different ERGM specifications are estimated. 
One specification considers the full sample of countries and trade flows in each year 
but faces some limitations in the types of network attributes that can be included. 
The second specification uses a smaller sample with fewer countries, which permits 
the estimation of additional network dependencies. In this second case, the number 
of countries is reduced to a subset of the 50 largest trading countries by total exports 
and imports, which reflects over 90 percent of global trade in 1995 and 2006.16 A 
challenge with reducing countries to the largest traders is that at the aggregate level, 
nearly all of these countries trade with one another, resulting in a network in which 
nearly all possible links are present and there is almost no variation in the network 
structure. To avoid this issue, I consider sectoral trade instead of aggregate trade. 
Specifically, I use trade flows from HS chapter 36 as a case in point, which contains 
explosives, pyrotechnic products, matches, pyrophoric alloys, and certain combus-
tible preparations (hereafter referred to simply as “explosives”). This collection of 
goods was chosen because about 50 percent of possible trade links were present in 
each year, providing a moderately dense, pattern rich trade network to study. How-
ever, the approach could be equally applied other sectors. As a robustness exercise, 
I perform similar analyses using four other sectors. The details of these models are 
presented in the “Appendix” and discussed in Sect. 4. An added advantage of look-
ing at less aggregated sectoral trade is that it more closely relates to much of the 
existing trade network theory, which largely describes firm-level relationships.

The dependency specifications for the full sample and partial sample are based on 
traditional gravity theory and take the following form.

(10)
Full Sample: � = �1zlink + �2zrecip + �3zgdp + �4zdist + �5zlang + �6zcntg + �6zrta + �7zmrt,

16 The sample includes the following countries, listed by ISO code: AUS, AUT, BEL, BRA, CAN, CHE, 
CHL, CHN, CZE, DEU, DNK, DZA, ESP, FIN, FRA, GBR, GRC, HKG, HUN, IDN, IND, IRL, IRN, 
ISR, ITA, JPN, KOR, MEX, MYS, NGA, NLD, NOR, PHL, POL, PRT, ROM, RUS, SAU, SGP, SVK, 
SWE, THA, TUR, UKR, USA, VEN, VNM, and ZAF.
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Under both specifications, the world trade network is assumed to be dependent on 
two topological attributes: the number of links in the network ( zedges ) and recipro-
cal links ( zrecip ). The topological attributes condition the estimation on matching the 
expected number of trading relationships present in the network and the number of 
reciprocal relationships. Computational feasibility limited the inclusion of additional 
topological attributes when using the full sample. The partial sample, however, per-
mitted the inclusion of an additional term, denoted zgwesp , which reflects the geo-
metrically weighted edge-wise shared partner distribution (GWESP). The GWESP 

(11)
Partial Sample: � = �1zlink + �2zrecip + �3zgdp + �4zdist + �5zlang

+ �6zcntg + �6zrta + �7zmrt + �8zgwesp.

Table 5  ERGM estimates of world trade networks

This table presents the results of a series of exponential random graph model (ERGM) estimations for 
the world trade networks in 1995 and 2006. The specifications in columns (1) and (2) use the “full” sam-
ple of aggregate trade between 207 countries. The specifications in columns (3) and (4) use the “partial” 
sample comprised of the top 50 trading countries and explosives (HS chapter 36). Standard errors are 
reported in parentheses
 * p < 0.1 ,  * * p < 0.05 ,  * * * p < 0.01

Covariate Label (1) (2) (3) (4)

Edges zedges −1.444∗∗∗ −0.742∗∗∗ −3.535∗∗∗ −2.282∗∗∗

(0.0004) (0.0004) (0.002) (0.004)
Reciprocal zrecip 2.707∗∗∗ 2.082∗∗∗ −0.373∗∗∗ −9.009e−05

(0.0005) (0.0004) (0.0008) (0.003)
GDP zgdp 1.718×10−6 ∗∗∗ 1.519×10−6 ∗∗∗ 0.326×10−6 ∗∗∗ 0.147×10−6 ∗∗∗

(6.351×10−8) (5.820×10−8) (3.638×10−8) (3.187×10−8)
Distance zdist − 8.292×10−5 

∗∗∗
− 8.517×10−5 

∗∗∗
− 3.967×10−5 

∗∗∗
− 7.135×10−5 

∗∗∗

(1.259×10−6) (1.153×10−6) (4.785×10−6) (5.666×10−6)
Language zlang − 0.031∗∗∗ 0.020∗∗∗ 0.637∗∗∗ 0.794∗∗∗

(0.0005) (0.0005) (0.001) (0.004)
Contiguity zcntg 0.033∗∗∗ 0.229∗∗∗ 1.884∗∗∗ 1.482∗∗∗

(0.0020) (0.003) (0.002) (0.008)
Trade agreement zrta 0.487∗∗∗ 1.297∗∗∗ 0.520∗∗∗ 0.391∗∗∗

(1.448e−03) (0.002) (0.001) (0.003)
Multilateral resistance zmrt 1.829×104 ∗∗∗ 1.385×104 ∗∗∗ 5.774×102 ∗∗∗ 5.792×102 ∗∗∗

(20.91) (10.19) (1.041) (0.149)
Shared partners zgwesp 0.188∗∗∗ 0.060∗∗∗

(0.0002) (0.0001)
Shared partners decay zgwesp 2.728∗∗∗ 4.457∗∗∗

(0.001) (0.003)
Sample Full Full Partial Partial
Year 1995 2006 1995 2006
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distribution is a method of modeling triangle patterns that reflect cases in which two 
trading countries share a common third trading partner. The attribute takes the form 
of a nonlinear distribution that captures the range and proportion of country-pairs 
with different numbers of shared partners. The parameters of the distribution, which 
are estimated, shape the patterns of shared partners across the network.17

The specifications also assume that the trade network is dependent on several 
social selection attributes. Specifically, it is assumed to depend on each country’s 
GDP ( zgdp ), their physical distance ( zdist ), common languages ( zlang ), contiguous bor-
ders ( zcntg ), and preferential trade agreements ( zrta ). The specifications also include 
information on multilateral resistance. The multilateral resistance term zmrt is defined 
as the product of the estimated importer and exporter fixed effects for each pair 
of countries, which should help capture unobserved trade costs within the ERGM 
model. For the fixed effect values, I use the estimates from the specification presented 
in column (1) of Table 2.18 The social selection attributes were selected to mirror a 
standard gravity model. In the case of GDP, the attribute measures whether the GDPs 
of the exporting and importing countries affect their likelihood of trading. If nodes 
with greater GDPs trade at a higher frequency in the observed trade networks, then 
this attribute will exhibit a positive coefficient. The remaining attributes assume that 
the world trade network is dependent on a series of other networks entirely. Similar to 
the work of Pan (2018) and Smith et al. (2019), distance, common language, contigu-
ity, RTAs, and multilateral resistance each represent secondary networks composed 
of the same countries. The model assumes that the world trade network is depend-
ent on these secondary networks such that each coefficient reflects the covariance 
between a link in the trade network between two countries and the presence, absence, 
or weight of a corresponding link in the secondary network.

The ERGM estimation results, which are presented in Table 5,  further demonstrate 
the importance of complex trade patterns in determining bilateral trade. Columns (1) 
and (2) depict the estimates using the full trade networks of 1995 and 2006, respectively. 
Columns (3) and (4) depict those for the partial sample of explosives in 1995 and 2006, 
respectively. The edges term acts as a constant that determines the baseline likelihood of a 
link forming. The negative value of the edges term can be thought of as being reflective of 
baseline trade costs before accounting for other factors like distance, trade agreements, or 
economic size. The reciprocal term, in most cases, is positive, indicating that link forma-
tion is more likely if the countries are already connected by a link in the opposite direc-
tion. This finding is consistent with the estimates in the two gravity models. Curiously, the 
reciprocal term is not significant in the 2006 partial sample network. This suggests that 
mutual trade was not a key feature of that network and may indicate that traders of explo-
sives have shifted towards either importing or exporting those goods but not both.

The social selection attributes largely match the standard findings from the gravity 
literature. The ERGMs find that that countries with large GDPs, that share a border, 
and that belong to a trade agreement are more likely to trade. The one exception is that 

17 Although measures of in- and out-degrees are commonly included in ERGM analysis, no trade net-
work models including these terms produced convergent parameter estimates using these samples.
18 For the ERGMs using only trade in explosives, I use estimates from a version of this specification that 
included only explosives trade.
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the estimate for the common language term is significantly negative for the full sample 
network in 1995, indicating that countries with shared languages were less likely to 
trade within that network. The estimates for the multilateral resistance terms are also 
consistent with expectations from gravity. Recall that in the gravity model from which 
they were derived, bilateral trade is increasing in the size of the fixed effect estimates. 
As such, the estimates effectively represent the general inward and outward draws of 
each importer and exporter, respectively. The ERGM estimates find that the likelihood 
of a link forming is positively correlated with the combined effect of these two forces.

Finally, the GWESP terms included in the partial sample models indicate that the 
likelihood of forming links is monotonically increasing in the number triangles that 
the new link would close. Table 5 reports two estimates for the zgwesp term: an esti-
mate of the effect and an estimate of the decay, which shapes the underlying distri-
bution. For both networks, the main estimate is positive, implying that countries are 
more likely to trade if they share third-party trading partners. Additionally, the posi-
tive estimates for the shape parameter imply that the marginal effect of an additional 
shared partner is increasing in the number of shared partners, which is not surprising 
given that the most significant traders tend to be connected to many markets.19

Across the four models presented in Table 5, there are some notable similarities 
and differences. For the edges term, the effects are much larger for the partial sam-
ple, implying a higher baseline barrier to trade formation. With regards to recipro-
cal trade, the models find that it is a large, positive, and significant determinant for 
the full sample of aggregate trade but not for the partial sample of explosives trade, 
suggesting that the latter is based more on one direction relationships from produc-
ing countries to buying countries. The standard gravity variables present similarly 
nuanced trends. GDP and distance tended to matter more at the aggregate level than 
for explosives while the opposite is true for language and contiguity. The results for 
trade agreements are mixed with the smallest and largest impacts being on 1995 
aggregate trade and 2006 aggregate trade, respectively. This may be explained by 
the rapid formation of new trade agreements during that time. Finally, although the 
estimates for multilateral resistance are larger for the full aggregate samples, these 
are likely due to differences in the scaling of the estimated fixed effects across the 
samples and should not be viewed as a definitive comparison.

The estimated coefficients, which represent log odds, can be used to gener-
ate probabilities of trade formation for each pair of countries. If the log odds 
of a link forming is L, the probability of formation is p = exp(L)∕(1 + exp(L)) . 
To illustrate using the estimates from the full sample in 1995, the log odds 
of a country importing from another country if they share a border, are 500 
miles apart, and the new link would complete a reciprocal relationship is 
−1.444 + 0.033 − 500 ∗ 0.00008 + 2.707 = 1.256 , ignoring some of the other terms 
for simplicity. These odds imply a probability of link formation of about 0.77. Thus, 
it is clear that such conditions are highly conducive to the formation of trading rela-
tionships. To demonstrate the relative importance of reciprocity we can examine the 

19 See Goodreau et al. (2008) for a discussion of how to interpret the GWESP terms.
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effect of removing that characteristic. Were the link not reciprocal, the probability 
of formation would drop to only about 0.19. Thus it is clear that reciprocity had a 
considerable influence on the formation of the international trade network in 1995.

Similar to the gravity models in the previous section, the ERGM models provide 
strong corroborating evidence that complex network patterns and dependencies 
influence trade patterns. Both sets of models provide a different means by which to 
analyze these patterns and tend to find similar relationships within the data. In the 
next section, I test how these models compare when it comes to reproducing the 
complex network patterns of international trade.

4  Comparing gravity models and ERGMs

The previous two sections demonstrate two methods for identifying complex network 
dependencies in the world trade network. This section provides a comparison of these 
methods. To do so, estimates based on both the probit gravity models discussed in 
Sect.  2 and the ERGM models in Sect.  3 are used to simulate collections of trade 
networks. These simulated networks are then compared across several measures of 
goodness of fit, such as the number of shared partners between countries and the 
degree distributions of importers and exporters, in order to determine which model 
is better able to replicate the network patterns present in the actual world trade net-
work. These comparisons demonstrate that both approaches appear to outperform 
one another on different measures, suggesting that both exhibit relative strengths.

Probit models and ERGM models are estimated using a common dataset. The 
data is the same as that used for the partial sample ERGM specifications in Sect. 3. 
As before, the data reflects trade in explosives under HS chapter 36 among the top 
fifty trading countries. The following three equations describe the specifications of 
the three models.20

Two different probit models and one ERGM are considered. All three models are 
restricted to a cross-section for each of the two years of networks—1995 and 2006—
in order to maintain parity in the amount of information supplied to each model. The 

(12)Standard probit: Tij = Dij� + �i + �j + �ij

(13)

Network probit: Tij = 𝛿 + Dij�̄� + 𝛽1RECIPij + 𝛽2TRANij + 𝛽3CYLCij

+ 𝛽4IIDij + 𝛽5IODj + 𝛽6EIDi + 𝛽7EODij

+
∑

k∈i,j

(
𝛾1
k
ln(GDPk) + 𝛾2

k
ln(GDPPCk) + 𝛾3

k
ln(REMTk)

)
+ 𝜖ij

(14)ERGM: Tij = f (zedges, zreciprocal, zgdp, zdist, zlang, zcntg, zrta, zmrt, zgwesp)

20 Intensive margin estimates using the two stage approach described in Sect. 2.1 and the partial samples 
can be found in the “Appendix”.
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first probit model follows the standard gravity specification described in Sect. 2 and 
presented in column (1) of Table 4. This simple model includes the standard vec-
tor of gravity variables ( Dij ), exporter fixed effects ( �j ), and importer fixed effects 
( �i ). The second probit model reflects the network probit specification presented in 
column (6) of Table 4. This specification includes the set of network covariates from 
before and replaces the country fixed effects with proxies and a constant ( � ). Addi-
tionally, the coefficients �̄� , 𝛽1 , 𝛽2 , and 𝛽3 were constrained to the values derived in a 
specification that included country fixed effects, like that depicted in column (2) of 
Table 4. For each of the probit models, a series of regressions were undertaken to 
estimate the coefficients for each of the two models and sample years. The results 
of those estimations are available in Table 9 in the “Appendix”.21 The ERGM speci-
fication is unchanged from the previous section and uses the model estimates from 
columns (3) and (4) of Table 5.

The three models can be used to produce estimated probabilities of link formation 
for each pair of countries. These probabilities can then be can be used to simulate 
trade networks based on each model. In order to compare the three models’ abili-
ties to replicate complex network dependencies, each model is used to simulate a 
sample of 100 trade networks. Using each collection of simulated networks, sam-
ple statistics for several common network patterns are derived from the set of simu-
lated networks. Specifically, the comparison evaluates the number of edges formed 
in the network as well as the distributions of geodesic distances, in-degrees, out-
degrees, and edge-wise shared partners in the simulated networks and compares 
them to those present in the observed trade network. These five types of attributes 
are considered because they cover the major types of network patterns considered in 
the literature. Geodesic distance reflects the minimum distance between two nodes 
in terms of links. It ranges from 1, in which the nodes are directly connected by 
a link, to infinite, in which there is no path of links connecting the two nodes. In-
degree and out-degree both reflect the number of links flowing into or out of a node. 
Their distributions give a measure of whether nodes in the network tend to have high 
degrees, low degrees, a wide range of different degrees, or all very similar degrees, 
for example. Edge-wise shared partners reflect the frequency with which two con-
nected nodes are also connected to the same third-party nodes, similar to the trian-
gle, triple, and GWESP patterns described in previous sections. A high number of 
shared partners indicates that both nodes have many of the same partners while a 
low value indicates that they share few common partners. The distribution of edge-
wise shared partners provides a sense of how these patterns are distributed through-
out the network. The three models and specifications are compared by assessing 
how well each reproduces the real world values and distributions of these five net-
work characteristics.

21 The probit estimates using the partial cross-sections are mostly consistent with the main results in 
Table 4 in terms of signs but not necessarily magnitudes. The notable exceptions are that fewer of the 
estimates are statistically significant in the partial sample, which is expected given the smaller sample 
size. When significant, the main differences are that contiguity has a positive effect, trade agreements 
have a negative effect, exporter in-degree is positive in 1995, and reciprocal trade is positive but insig-
nificant in both years.
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To make the comparisons, which are often across many values in a distribution, 
I use measures of integrated squared errors (ISE) to compare each of the five char-
acteristics.22 The ISE measures quantify the differences between the observed distri-
butions and the simulated distributions. They are defined as M =

∑
h(f (h) − g(h))2 

where f(h) is the attribute value from the observed network, g(h) is the mean value 
from the simulated networks, and h indexes the different attributes in the distribu-
tion.23 For example, in the case of geodesic distance, h reflects each possible dis-
tance from 1 to infinity. In the case of h = 2 , representing cases in which countries 
are two links apart, the observed network of 2006 featured 1,115 such pairs and the 
ERGM simulated networks featured an average of about 1,251 such pairs. Therefore, 
h = two links , f (h) = 1115 , and g(h) = 1251 . Squaring the difference and summing 
with the other geodesic distance lengths gives its ISE measure for the ERGM model. 
The ISE measures for all five types of attributes and all three models are presented 
in Table 6.

The ISE measures indicate that each of the three models performs better than the 
other two at certain attributes and for certain observed networks. For each attribute, 
a smaller value indicates a better fit. The ERGM model substantially outperforms 
the two probit models in terms of the edges characteristic, which reflects the mod-
el’s ability to capture the right number of trading relationships in the network. The 
ERGM models also tends to perform relatively well at replicating the distribution 
of shared partners, providing the best fit in the 1995 network and the second best 

Table 6  Goodness of fit tests measuring the ability of three models to replicate observed trade patterns

This table presents a comparison of three models in terms of their ability to replicate five categories of 
network patterns: the number of edges and the distributions of shared partners, in-degrees, out-degrees, 
and geodesic distances. The reported values reflect the integrated squared errors of the networks simu-
lated by each model relative the patterns present in the actual trade networks of 1995 and 2006. Lower 
values indicate a better fit. Columns (1) and (4) reflect the “standard probit” model of Eq. 12. Columns 
(2) and (5) reflect the “network probit” model of equation 13. Columns (3) and (6) reflect the ERGM 
specification of Eq. 14

1995 2006

Standard 
probit

Network 
probit

ERGM Standard 
probit

Network 
probit

ERGM

Pattern (1) (2) (3) (4) (5) (6)

Edges 1565.78 117.29 38.69 8738.51 5762.33 6.15
Shared partners 2164.40 2271.28 1696.16 9091.70 2887.15 3296.20
In-degrees 29.70 33.55 42.42 47.24 42.52 103.24
Out-degrees 31.89 48.29 61.61 40.62 52.17 54.73
Geodesic distances 16619.57 86366.26 44782.62 21811.52 22594.43 29190.00

22 For example, the distribution of in-degrees is comprised of the number of nodes featuring each possi-
ble number of degrees, which can range from 0 to (|N| − 1) . A full presentation comparing each element 
in these distributions can be found in a the “Appendix”.
23 See Henderson and Parmeter (2015) for additional details on the ISE measure.
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fit in 2006. This is likely influenced by the fact the the ERGM models explicitly 
capture shared partners and third party trade in their specification via the GWESP 
term. The two probit models outperform the ERGM model at reproducing the in- 
and out-degree distributions of the networks, implying that typical gravity models 
using country-level controls do a good job at capturing each country’s proclivity 
to trade with others. The standard probit model outperforms both other models at 
replicating geodesic distance in both networks. The network probit model does not 
consistently outperform the others on any characteristic but often falls between the 
standard probit and ERGM models, suggesting it may be a feasible hybrid approach 
that provides a mix of the strengths of both. Interestingly, the explicit inclusion of 
degree information in the network probit model did not significantly improve its 
ability to replicate the two degree distributions. This suggests that the fixed effects, 
and likely MRTs as an extension, are already effective at capturing these influences.

As additional robustness exercises, I repeat the preceding analysis using four 
additional networks. These networks differ in several dimensions. They reflect mul-
tiple different product types and levels of aggregation: coffee (HS heading 0901), 
an agricultural commodity; cork (HS chapter 45), a group of natural resource prod-
ucts; wool (HS chapter 51), a group of textile products; and cars and other transport 
vehicles (HS heading 8703), a group of complex manufactured products. They also 
represent a range of network densities from 31 percent (cork) to 76 percent (cars). 
For the sake of parsimony, the full presentation of the analysis can be found in the 
“Appendix”.

The four additional comparisons highlight the nuances in the main findings. Most 
notably, they demonstrate that the relative performance of the three approaches 
depends on the network. For wool and cars, the ERGM often outperforms both of 
the probit models in many of the same ways it does with the explosives networks. 
The network probit model also often outperforms the other two with regards to cer-
tain patterns. However, for the cork and coffee networks, the standard probit model 
outperforms the other two in all categories. Based on these findings, there may 
be a relationship between the density of the network and the performance of each 
approach. The two network-intensive approaches—the ERGM and network probit 
model—perform better with the denser of the networks considered. By comparison, 
the standard probit model performs best with the two least dense networks. Finally, 
due to computational challenges, several of the ERGM models could not be esti-
mated with all of the terms listed in Eq. 14. However, the performance of the ERGM 
models does not appear to be severely hampered by the inability to include certain 
terms like the shared partner distribution. The networks for which the ERGM tended 
to perform best were also those that did not include some terms, suggesting that 
the usefulness of ERGMs is not completely tied to the number of terms that are 
included.

Together, the model comparisons suggest two primary findings. First, they dem-
onstrate that there are components of the trade network that may not be captured in 
a gravity model as well as they may be captured by an empirical network approach. 
This finding provides additional motivation for the recent literature focusing on net-
work approaches for analyzing trade. The ERGM is one such model that can pro-
vide some advantages over gravity approaches when modeling certain patterns in 
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Table 7  Linear probability model  estimates of network influences on the extensive margin of trade

Covariate Label (1) (2) (3) (4) (5) (6)

Distance ln(DISTij) −0.120∗∗∗ −0.0865∗∗∗ −0.0863∗∗∗ −0.0865 −0.0942∗∗∗ −0.0865
(0.00193) (0.00172) (0.00170) (.) (0.00182) (.)

Contigu-
ity

CNTGij −0.0397∗∗∗ −0.0315∗∗∗ −0.0316∗∗∗ −0.0315 −0.0229∗∗ −0.0315
(0.0142) (0.00979) (0.00989) (.) (0.00989) (.)

Language LANGij 0.0696∗∗∗ 0.0491∗∗∗ 0.0493∗∗∗ 0.0491 0.0345∗∗∗ 0.0491
(0.00373) (0.00319) (0.00319) (.) (0.00332) (.)

Colony CLNYij 0.0413∗∗∗ 0.0172∗∗ 0.0194∗∗ 0.0172 −0.0270∗∗∗ 0.0172
(0.0135) (0.00865) (0.00897) (.) (0.00679) (.)

Trade 
agree-
ment

RTAijt −0.0956∗∗∗ −0.0420∗∗∗ −0.0439∗∗∗ −0.0420 −0.0288∗∗∗ −0.0420
(0.00765) (0.00541) (0.00531) (.) (0.00537) (.)

Recipro-
cal

RECIPijt 0.313∗∗∗ 0.315∗∗∗ 0.313 0.302∗∗∗ 0.313
(0.00285) (0.00287) (.) (0.00339) (.)

Transitive 
triple

TRANijt −0.00296∗∗∗ −0.00137∗∗∗ −0.00296 −0.00288∗∗∗ −0.00296
(0.000108) (0.000103) (.) (0.000114) (.)

Cyclical 
triple

CYLCijt 0.00135∗∗∗ 0.0000274 0.00135 −0.000534∗∗∗ 0.00135
(0.000101) (0.0000963) (.) (0.000114) (.)

Importer 
in-
degree

IIDijt 0.00438∗∗∗ 0.00509∗∗∗ 0.00527∗∗∗ 0.00536∗∗∗

(0.0000779) (0.0000612) (0.0000866) (0.0000617)

Importer 
out-
degree

IODjt −0.000664∗∗∗ −0.00123∗∗∗ −0.000548∗∗∗ −0.00160∗∗∗

(0.0000822) (0.0000676) (0.0000894) (0.0000622)

Exporter 
out-
degree

EODijt 0.00369∗∗∗ 0.00438∗∗∗ 0.00630∗∗∗ 0.00629∗∗∗

(0.0000896) (0.0000734) (0.0000867) (0.0000625)

Exporter 
in-
degree

EIDit −0.000657∗∗∗ −0.00124∗∗∗ −0.00151∗∗∗ −0.00247∗∗∗

(0.0000729) (0.0000550) (0.0000853) (0.0000618)

Exporter 
GDP

ln(GDPit) 0.00921∗∗∗ 0.00915∗∗∗

(0.000946) (0.000950)
Importer 

GDP
ln(GDPjt) 0.00583∗∗∗ 0.00511∗∗∗

(0.000941) (0.000948)
Exp. GDP 

per 
capita

ln(GDPPCit) −0.000898 −0.000992
(0.000868) (0.000855)

Imp. GDP 
per 
capita

ln(GDPPCjt) 0.00458∗∗∗ 0.00586∗∗∗

(0.000868) (0.000861)

Exporter 
remote-
ness

ln(REMTit) 0.0399∗∗∗ 0.0353∗∗∗

(0.00245) (0.00235)

Importer 
remote-
ness

ln(REMTjt) 0.0425∗∗∗ 0.0398∗∗∗

(0.00260) (0.00249)
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trade. An analysis concerned with these aspects of trade ought to consider such an 
approach. This is particularly true for analyses in which the prediction of zero trade 
is important. Second, the findings also reiterate the power of the gravity model. 
Even though the gravity model consolidates most of the information about the world 
trade network into the MRTs, it is still relatively effective at capturing and replicat-
ing complex network dependencies in many cases. Further, the inclusion of network 
terms in gravity models can improve its performance with respect to certain types of 
patterns. These findings complement much of the recent structural gravity research, 
such as that by Anderson and Yotov (2012) and Fally (2015), which repeatedly dem-
onstrates the power of MRTs and their fixed effect counterparts. Inconveniently, 
there does not appear to be a singularly “best” method for modeling complex net-
work patterns in trade as each method considered here presents strengths and weak-
nesses. However, this underscores the need for a greater focus on the modeling of 
network patterns.

Table 7  (continued)

Covariate Label (1) (2) (3) (4) (5) (6)

Constant 0.973∗∗∗ 0.914∗∗∗

(0.0382) (0.0263)
Depend-

ent vari-
able

Tij Tij Tij Tij Tij Tij

Fixed 
effects

it, jt it, jt i, j, t i, j, t None None

Obs. 511704 511704 511704 511704 357918 357918
AIC 323011.7 264383.6 274992.0 276634.6 194942.8 197435.0

This table presents the results from a series of linear probability models estimating the relationship 
between the presence of trade ( Tij ) between two countries and a collection of covariates. The specifica-
tions in columns (1) and (2) included exporter-year (it) and importer-year (jt) fixed effects. The specifica-
tions in columns (3) and (4) included exporter (i), importer (j), and year (t) fixed effects. The specifica-
tions in columns (5) and (6) included no fixed effects and instead include related proxies in their place. In 
all cases, the fixed effect estimates are omitted for brevity. Standard errors are clustered by country-pair 
and reported in parentheses. Estimates that were constrained are presented with “(.)” in place of standard 
errors
 * p < 0.1 ,  * * p < 0.05 ,  * * * p < 0.01

Table 8  Average number of 
edges produced by each model 
specification

This table presents the number of edges in the observed trade net-
works of 1995 and 2006 as well as the corresponding average num-
ber of edges produced by the three model simulations

Year Observed 
network

Standard probit Network probit ERGM

1995 1031 991.43 1041.83 1037.22
2006 1188 1094.52 1112.09 1185.52



163

1 3

Modeling complex network patterns in international trade  

Table 9  Probit model estimates derived using the partial sample of the top 50 trading countries and 
explosives under HS chapter 36

1995 2006

Covariate Label (1) (2) (3) (4) (5) (6)

Distance ln(DISTij) − 
0.975∗∗∗

− 
1.037∗∗∗

− 1.037 − 
1.069∗∗∗

− 
1.079∗∗∗

− 1.079

(0.0896) (0.1000) (.) (0.0864) (0.0986) (.)
Contiguity CNTGij 0.748∗∗ 0.803∗∗ 0.803 0.554∗∗ 0.561∗∗ 0.561

(0.295) (0.325) (.) (0.243) (0.256) (.)
Language LANGij 0.410∗∗∗ 0.424∗∗∗ 0.424 0.388∗∗ 0.395∗∗ 0.395

(0.154) (0.158) (.) (0.160) (0.164) (.)
Colony CLNYij 0.679∗∗∗ 0.654∗∗∗ 0.654 0.915∗∗∗ 0.865∗∗∗ 0.865

(0.233) (0.236) (.) (0.279) (0.274) (.)
Trade agreement RTAijt − 0.260 − 0.301∗ − 0.301 − 

0.0120
− 0.0412 − 0.0412

(0.162) (0.164) (.) (0.138) (0.139) (.)
Reciprocal RECIPijt 0.0174 0.0174 0.109 0.109

(0.103) (.) (0.0970) (.)
Transitive triple TRANijt − 

0.0655∗∗∗
− 0.0655 − 

0.0793∗∗∗
− 0.0793

(0.0241) (.) (0.0245) (.)
Cyclical triple CYLCijt 0.0200 0.0200 0.0977∗∗∗ 0.0977

(0.0195) (.) (0.0187) (.)
Importer in-degree IIDijt 0.108∗∗∗ 0.106∗∗∗

(0.00898) (0.0102)
Importer out-degree IODjt − 0.00654 − 

0.0485∗∗∗

(0.00541) (0.00411)
Exporter out-degree EODijt 0.116∗∗∗ 0.120∗∗∗

(0.00569) (0.00477)
Exporter in-degree EIDit 0.0217∗∗ − 

0.0348∗∗∗

(0.00939) (0.00950)
Exporter GDP ln(GDPit) 0.0278 0.0389

(0.0584) (0.0505)
Importer GDP ln(GDPjt) 0.0811 0.156∗∗∗

(0.0588) (0.0520)
Exp. GDP per 

capita
ln(GDPPCit) 0.0323 0.160∗∗∗

(0.0399) (0.0417)
Imp. GDP per 

capita
ln(GDPPCjt) 0.142∗∗∗ 0.0650

(0.0419) (0.0441)
Exporter remote-

ness
ln(REMTit) 0.646∗∗∗ 0.836∗∗∗
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5  Conclusion

The role of network dependencies in international trade is an important part of 
understanding the determinants of bilateral trade. Prior research has consistently 
indicated that the trade between two countries is influenced by a wide variety of 
relationships that these countries share not only with each other but with all other 
countries. While most traditional trade research has overlooked network dependen-
cies, recent advances in empirical trade and network analysis are beginning to allow 
for the inclusion of these significant trade determinants. This paper describes two 
such methods for doing so using gravity and ERGM techniques.

By viewing international trade as a network formation problem that is depend-
ent on underlying characteristics of the network, statistical inference is possible. 
The series of gravity and ERGM estimations described in this paper provide strong 
evidence that complex network patterns influence trade. In particular, they indi-
cate that reciprocity, common third-party trading partners, and the set of countries 
with which each partner trades are significant determinants of bilateral trade. These 
findings are consistent with past research and provide additional support for sev-
eral recent theoretical models that incorporate network dependencies. Further, both 
approaches described within offer differing advantages in terms of which types of 
networks patterns they capture and can accurately replicate. These methods could be 

This table presents the results from a series of probit models estimating the relationship between the 
presence of trade ( Tij ) between two countries and a collection of covariates. The models are based on two 
cross-sections of data corresponding to the years 1995 and 2006. Each cross-section represents the pres-
ence of trade trade between the top 50 trading countries and goods from HS chapter 36. The specifica-
tions in columns (1), (2), (4), and (5) included exporter (i) and importer (j) fixed effects. In all cases, the 
fixed effect estimates are omitted for brevity. Standard errors are clustered by country-pair and reported 
in parentheses. Estimates that were constrained are presented with “(.)” in place of standard errors. ∗ 
p < 0.1 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

Table 9  (continued)

1995 2006

Covariate Label (1) (2) (3) (4) (5) (6)

(0.0872) (0.0805)
Importer remote-

ness
ln(REMTjt) 0.630∗∗∗ 0.763∗∗∗

(0.0894) (0.0820)
Constant 12.46∗∗∗ 15.75∗∗∗

(1.642) (1.466)
Dependent variable Tij Tij Tij Tij Tij Tij

Fixed effects j, i j, i None j, i j, i None
Obs. 2254 2254 2450 2254 2254 2162
AIC 1729.7 1726.1 1904.0 1837.5 1809.5 1778.2
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Table 10  Flex model estimates of network influences on the extensive margin of trade

Covariate Label (1) (2) (3) (4)

Distance ln(DISTij) − 1.164∗∗∗ − 1.114∗∗∗ − 1.120∗∗∗ − 0.971∗∗∗

(0.0225) (0.0200) (0.0197) (0.0190)
Contiguity CNTGij 0.657∗∗∗ 0.656∗∗∗ 0.646∗∗∗ 0.568∗∗∗

(0.0708) (0.0645) (0.0645) (0.0680)
Language LANGij 0.601∗∗∗ 0.590∗∗∗ 0.588∗∗∗ 0.476∗∗∗

(0.0325) (0.0305) (0.0306) (0.0279)
Colony CLNYij 1.029∗∗∗ 1.098∗∗∗ 1.091∗∗∗ 0.843∗∗∗

(0.0638) (0.0629) (0.0630) (0.0593)
Trade agreement RTAijt 0.228∗∗∗ 0.206∗∗∗ 0.177∗∗∗ 0.109∗∗∗

(0.0366) (0.0336) (0.0300) (0.0298)
Reciprocal RECIPijt 1.638∗∗∗ 1.628∗∗∗ 1.544∗∗∗

(0.0638) (0.0620) (0.0620)
Transitive triple TRANijt − 0.00580∗∗∗ − 0.00227∗∗ − 

0.0111∗∗∗

(0.00123) (0.00109) (0.00134)
Cyclical triple CYLCijt 0.0287∗∗∗ 0.0248∗∗∗ 0.0185∗∗∗

(0.00119) (0.00106) (0.00120)
Importer in-degree IIDijt 0.0122∗∗∗ 0.0176∗∗∗

(0.000941) (0.00123)
Importer out-degree IODjt − 0.0176∗∗∗ − 

0.0116∗∗∗

(0.000806) (0.00105)
Exporter out-degree EODijt 0.00811∗∗∗ 0.0278∗∗∗

(0.000828) (0.00102)
Exporter in-degree EIDit − 0.0121∗∗∗ − 

0.0118∗∗∗

(0.000759) (0.00105)
Exporter GDP ln(GDPit) 0.556∗∗∗

(0.0105)
Importer GDP ln(GDPjt) 0.258∗∗∗

(0.00830)
Exp. GDP per capita ln(GDPPCit) 0.0135

(0.0101)
Imp. GDP per capita ln(GDPPCjt) 0.133∗∗∗

(0.00798)
Exporter remoteness ln(REMTit) 0.105∗∗∗

(0.0218)
Importer remoteness ln(REMTjt) 0.716∗∗∗

(0.0225)
Constant 3.120∗∗∗ − 0.638∗∗∗ 1.406∗∗∗ − 3.825∗∗∗

(0.290) (0.299) (0.252) (0.0893)
Omega 2.476∗∗∗ 2.665∗∗∗ 2.658∗∗∗ 1.557∗∗∗
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useful for modeling the extensive margin of trade, such as in counterfactual gravity 
applications in which there is an interest in predicting zero trade flows.

As evidenced by this paper, complex network patterns have an important influ-
ence on trade. The methods described here provide a framework through which to 
continue studying these dependencies. While structural gravity models with MRTs 
are relatively effective at capturing many of these dependencies, the inclusion and 
identification of other types of network dependencies represents an important ave-
nue for future research, particularly in cases where the absence of trade is impor-
tant. This research will provide valuable insight into how traders select their partners 
amid a complicated network of existing relationships. ERGMs, in particular, offer a 
useful and flexible means by which to study these relationships.

Appendix A

This appendix section contains several supplementary tables referenced in the main 
text. These tables include a table of extensive margin models estimated using a lin-
ear probability model instead of the main probit model from Sect. 2.2 (Table 7), a 
table depicting the average number of edges produced by each of the three models 
described in Sect. 4 (Table 8), and a table of probit model estimates based on the 
subsample of 50 countries and explosives contained in HS chapter 36 that were used 
for the probit network simulations described in Sect. 4 (Table 9).

This table presents the results from a series of Flex models estimating the relationship between the the 
number of different product categories traded ( Cij ) between two countries and a collection of covariates. 
The specifications in columns (1) and (2) included exporter-year (it) and importer-year (jt) fixed effects. 
The specifications in column (3) included exporter (i), importer (j), and year (t) fixed effects. The speci-
fication in columns (4) included no fixed effects and instead include related proxies in their place. In all 
cases, the fixed effect estimates are omitted for brevity. Standard errors are clustered by country-pair and 
reported in parentheses. ∗ p < 0.1 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01.

Table 10  (continued)

Covariate Label (1) (2) (3) (4)

(0.0936) (0.0900) (0.0907) (0.0893)
Dependent variable Cijt Cijt Cijt Cijt

Fixed effects it, jt it, jt i, j, t None
Observations 511704 511704 511704 357918
AIC 74264.6 73909.7 65114.2 62936.9
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Table 11  Probit model estimates for cross-sections of trade in cork, coffee, wool, and cars

Cork (HS 45) Coffee (HS 0901) Wool (HS 51) Cars (HS 8703)

1995 1995 2006 2006

(1) (2) (3) (4) (5) (6) (7) (8)

Distance − 0.916∗∗∗ − 0.978∗∗∗ − 0.783∗∗∗ − 0.778∗∗∗ − 1.145∗∗∗ − 1.173∗∗∗ − 0.829∗∗∗ − 0.971∗∗∗

(0.100) (0.112) (0.0911) (0.102) (0.103) (0.144) (0.0984) (0.132)
Contiguity 0.390 0.390 0.846∗∗∗ 0.924∗∗∗ 0.444 0.478 0.348 0.467

(0.268) (0.277) (0.266) (0.291) (0.277) (0.307) (0.447) (0.602)
Language 0.467∗∗∗ 0.468∗∗∗ 0.500∗∗∗ 0.513∗∗∗ 0.165 0.196 0.341∗∗ 0.357∗

(0.155) (0.157) (0.154) (0.162) (0.208) (0.231) (0.171) (0.187)
Colony 0.433 0.418 0.441∗ 0.370 0.466 0.360 0.164 0.157

(0.271) (0.266) (0.261) (0.268) (0.314) (0.307) (0.347) (0.338)
Trade agree-

ment
− 

0.425∗∗
− 0.485∗∗ − 

0.756∗∗∗
− 

0.828∗∗∗
0.285∗ 0.308∗∗ 0.291∗ 0.343∗∗

(0.199) (0.209) (0.185) (0.200) (0.149) (0.153) (0.153) (0.161)
Reciprocal − 0.0323 0.536∗∗∗ 0.450∗∗∗ 0.365∗∗∗

(0.119) (0.107) (0.110) (0.132)
Transitive 

triple
− 0.0697∗∗ − 

0.0858∗∗∗
− 

0.123∗∗∗
− 0.272∗∗∗

(0.0334) (0.0243) (0.0353) (0.0351)
Cyclical 

triple
0.0186 − 

0.00165
0.0443∗∗ 0.0680∗∗

(0.0253) (0.0133) (0.0199) (0.0281)
Importer in-

degree
0.0875∗∗∗ 0.121∗∗∗ 0.177∗∗∗ 0.254∗∗∗

(0.0137) (0.00664) (0.00988) (0.0105)
Importer 

out-degree
0.00695 − 

0.0105∗∗∗
− 

0.0234∗∗∗
− 

0.0532∗∗∗

(0.00500) (0.00360) (0.00616) (0.00515)
Exporter 

out-degree
0.103∗∗∗ 0.126∗∗∗ 0.178∗∗∗ 0.296∗∗∗

(0.00537) (0.00401) (0.00694) (0.00617)
Exporter in-

degree
− 0.00971 − 

0.0199∗∗∗
− 0.0157∗ − 

0.0523∗∗∗

(0.0130) (0.00647) (0.00913) (0.00980)
Exporter 

GDP
0.136∗∗∗ 0.0585 0.0899 0.112∗

(0.0515) (0.0449) (0.0596) (0.0621)
Importer 

GDP
0.0333 0.0262 0.0155 0.117∗

(0.0509) (0.0425) (0.0550) (0.0627)
Exp. GDP 

per capita
0.0827∗∗ 0.112∗∗∗ 0.0887∗ − 0.0118

(0.0353) (0.0371) (0.0523) (0.0470)
Imp. GDP 

per capita
0.142∗∗∗ 0.133∗∗∗ 0.0499 0.0609
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Appendix B Flex models of the extensive margin

This appendix section describes and presents the analysis that utilizes the Flex 
model of Santos Silva et al. (2014) to estimate the effects of networks on the exten-
sive margin of trade. Unlike the extensive margin models presented in the main text, 
which view the extensive margin as binary, the Flex models presented here con-
sider an alternative interpretation of the extensive margin. The alternative dependant 
variable used for the Flex models is the count of different product categories traded 
between partners where a product category is defined as a six-digit HS code. The 
models were estimated using the same data that was used for the probit and lin-
ear probability models discussed in Sect. 2.2. Four specifications were considered, 
which follow those from columns (1), (2), (3), and (5) from the probit estimates in 
Table 4.24

This table presents the probit model estimates derived for 4 sectors and years. Columns (1), (3), (5), 
and (7) contain the estimates generated from the “standard probit model”, which included importer and 
exporter fixed effects that are not reported. Columns (2), (4), (6), and (8) depict the estimates derived 
from two models, which were combined here for brevity. As in Sect. 2.2, the coefficients and standard 
errors for the Distance through Cyclical triple terms were estimated using a model with importer and 
exporter fixed effects. The remaining terms were estimated in an alternative model in which the previ-
ous terms were constrained to their previous estimate values and no fixed effects were included. Robust 
standard errors are reported in parentheses. ∗ p < 0.1 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

Table 11  (continued)

Cork (HS 45) Coffee (HS 0901) Wool (HS 51) Cars (HS 8703)

1995 1995 2006 2006

(1) (2) (3) (4) (5) (6) (7) (8)

(0.0392) (0.0378) (0.0466) (0.0464)
Exporter 

remoteness
0.437∗∗∗ 0.401∗∗∗ 0.891∗∗∗ 0.580∗∗∗

(0.0871) (0.0818) (0.102) (0.0985)
Importer 

remoteness
0.618∗∗∗ 0.187∗∗∗ 0.795∗∗∗ 0.404∗∗∗

(0.0812) (0.0725) (0.0951) (0.101)
Constant 10.25∗∗∗ 4.594∗∗∗ 15.57∗∗∗ 4.452∗∗∗

(1.489) (1.292) (1.605) (1.693)
Observations 2205 2450 2352 2450 2205 2162 1862 2162
AIC 1487.0 1626.9 1743.7 1897.7 1528.6 1429.8 1468.5 1464.9

24 The constrained specifications were forgone because the Flex estimation routine of Santos Silva et al. 
(2014) in Stata did not allow for constrained coefficients.
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The results of the Flex estimation, which are presented in Table 10, are largely 
consistent with those of the main probit models and the related literature. The esti-
mates of the typical gravity variables for distance, contiguity, language, colonial 
ties, and trade agreements are similar in both sign and magnitude to those estimated 
by Santos Silva et al. (2014). Distance is significantly negative while the other grav-
ity terms are significantly positive in each specification. Similarly, these estimates 
all are also consistent in sign with the main probit estimates in Table 4 except for 
contiguity, which is not significant in the probit models.

The Flex estimates for the network terms are also consistent with the probit model 
results. Reciprocal trade is positive, implying that mutual trade tends to increase the 
number of products traded. The transitive triple term is negative while the cycli-
cal triple term is positive, as before. The degree terms show the same pattern of 
importer or exporter “specialization” in which the importer in-degree and exporter 

Table 12  ERGM model estimates for cork, coffee, wool, and cars

This table presents the results of a series of exponential random graph model (ERGM) estimations for 
the world trade networks of four product groups in either 1995 and 2006. Standard errors are reported in 
parentheses. ∗ p < 0.1 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

Product Cork (HS 45) Coffee (HS 0901) Wool (HS 51) Cars (HS 8703)
Year 1995 1995 2006 2006

(1) (2) (3) (4)

Edges − 3.351∗∗∗ − 2.817∗∗∗ − 0.839∗∗∗ 0.643∗∗∗

(0.093) (0.002) (0.0005) (0.0006)
Reciprocal − 0.633∗∗∗ − 0.218∗∗∗ 1.430∗∗∗ 0.385∗∗∗

(0.064) (0.001) (0.0004) (0.0005)
GDP 1.885×10−7 ∗∗∗ 2.214×10−7 ∗∗∗

(3.075×10−8) (3.360×10−8)
Distance − 7.857×10−5 ∗∗∗ − 5.479×10−5 ∗∗∗ − 1.012×10−4 ∗∗∗ − 1.108×10−4 

∗∗∗

(1.069×10−5) (4.996×10−6) (7.003×10−6) (5.919×10−6)
Language 0.790*** 0.982*** 0.330*** 0.380***

(0.053) (0.002) (0.0007) (0.0008)
Contiguity 1.475*** 1.547*** 0.971*** 1.087***

(0.216) (0.004) (0.002) (0.002)
Trade agreement 0.144*** 0.199*** 0.992*** 0.555***

(0.053) (0.002) (0.0005) (0.0006)
Multilateral resistance 3.222×103 *** 1.069×103 *** 1.898×103 *** 6.213×103 ***

(2.982×102) (3.374×100) (5.392×10−2) (5.725×10−8)
Shared partners 0.279*** 0.131***

(0.015) (0.0003)
Shared partners decay 2.344*** 2.948***

0.060 (0.003)
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out-degree are positive while importer out-degree and exporter in-degree are neg-
ative. This suggests that the tendency to either import or export widely—but not 
both—holds in terms of the number of products traded as well as overall. Finally, 
the specific fixed effect specification used has only a modest impact on the magni-
tude of the estimates.

Ultimately, the Flex model provides additional support for the findings presented 
in the main text. The inferred influences of network patterns are robust to both the 
alternative definition of the extensive margin and the Flex model.

Table 13  Probit and ERGM comparisons for the trade networks of cork, coffee, wool, and cars

This table presents a comparison of three models in terms of their ability to replicate five categories of 
network patterns: the number of edges and the distributions of shared partners, in-degrees, out-degrees, 
and geodesic distances. The reported values reflect the integrated squared errors of the networks simu-
lated by each model relative the patterns present in the actual trade networks of each of the products and 
years.

Product Cork (HS 45) Coffee (HS 0901)

Year 1995 1995

Density 31% 39%

Model Standard 
probit

Network 
probit

ERGM Standard 
probit

Network 
probit

ERGM

(1) (2) (3) (4) (5) (6)

Edges 19.36 44.22 712.89 1.59 65.77 66.26
Shared part-

ners
1367.88 2592.25 1865.94 1147.61 4203.02 1763.13

In-degrees 25.29 42.29 53.10 41.27 52.13 49.43
Out-degrees 40.25 74.82 69.32 42.61 60.05 72.80
Geodesic 

distances
8078.67 147238.54 40076.60 1739.22 44945.88 13985.12

Product Wool (HS 51) Cars (HS 8703)

Year 2006 2006

Density 61% 76%

Model Standard 
probit

Network 
probit

ERGM Standard 
probit

Network 
probit

ERGM

(7) (8) (9) (10) (11) (12)

Edges 20520.56 14940.17 45.16 341441.55 38208.52 2.56
Shared part-

ners
10206.04 4310.85 12285.89 120475.02 10020.27 15589.48

In-degrees 49.68 46.47 54.40 163.46 41.34 53.59
Out-degrees 34.09 47.36 58.63 176.85 85.00 120.10
Geodesic 

distances
47187.96 29125.57 17972.07 691442.81 46770.32 5.12
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Appendix C Additional network estimations and comparisons

This section presents the results of the robustness exercises using four additional 
networks. The networks were chosen to reflect a variety of different types of prod-
ucts as well as a range of different network densities. Similar to the sector-level 
analysis in the main text, the networks presented here are based on trade between 
the top 50 countries by trade value. The first network reflects trade in cork prod-
ucts (HS chapter 45) in 1995, which is a network that is about 31 percent dense. 
The second reflects trade in coffee (HS heading 0901) in 1995, which is about 39 
percent dense. The third network reflects trade in wool (HS chapter 51) in 2006, 
which is about 61 percent dense. The fourth network reflects trade in cars and 
other transport vehicles (HS heading 8703) in 2006, which is about 76 percent 
dense.

For each of the four networks, several analytical steps were undertaken. First, 
a PPML model was estimated in order to supply fixed effect estimates to use as 

Table 14  PPML estimates of 
network influences using the 
partial sample cross sections

This table presents the results from PPML estimations of the cross 
section data reflecting the top 50 countries, and trade in explosives 
(HS chapter  36), and the years 1995 and 2006, respectively. Both 
regressions included exporter and importer fixed effects. Robust 
standard errors are reported in parentheses. ∗ p < 0.1 , ∗∗ p < 0.05 , 
∗∗∗ p < 0.01

1995 2006
Covariate (1) (2)

Distance − 0.337** − 0.353***
(0.155) (0.123)

Contiguity 0.995*** 1.086***
(0.164) (0.178)

Language 0.124 0.131
(0.169) (0.185)

Colony 0.305 − 0.145
(0.234) (0.206)

Trade agreement 0.875*** 0.657***
(0.257) (0.226)

Reciprocal 0.340 0.107
(0.225) (0.245)

Cyclical triple − 0.0498** − 0.0571**
(0.0217) (0.0227)

Transitive triple 0.0204 0.0920***
(0.0287) (0.0178)

Dependent variable xijt xijt

Observations 2303 2352
AIC 1112596.2 2438481.6
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multilateral resistance proxies in the ERGM model. Second, an ERGM model was 
estimated. Third, standard and network probit models were estimated using the same 
single-year cross section as the ERGM model. Finally, the standard probit, network 
probit, and ERGM models were compared as in Sect. 4.

The probit model estimates, which are presented in Table 11, are largely consist-
ent with the estimates for the full sample.  There is heterogeneity in the estimate val-
ues, which is to be expected across sectors and years, but the signs of each estimate 
for the network terms match those presented as part of the main analysis in Table 4 
when significant.

The ERGM model estimates, which are presented in Table 12, also offer a simi-
lar picture as the main findings. It should be noted that several of these models were 
not convergent when all of the attributes used in the main analysis of explosives 

Table 15  Estimates of network 
influences on gravity fixed 
effects using partial sample 
cross sections

This table reports the results from a series of specifications estimat-
ing the impacts of network patterns on the estimated exporter ( �̂�kt ) 
and importer ( ̂𝜈kt ) fixed effects from the gravity model presented 
in Table  14 Results are based on a partial sample of the top 50 
countries,trade in explosives (HS chapter  36), and the years 1995 
and 2006, respectively. All estimates were obtained using an OLS 
estimator. Heteroscedasticity-robust standard errors are reported in 
parentheses. ∗ p < 0.1 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

1995 2006

Covariate (1) (2) (3) (4)

GDP 4.549 38.72* 62.52** 54.49**
(32.91) (19.76) (25.45) (20.68)

GDP per capita − 14.00 13.64 − 13.24 18.82
(24.58) (15.19) (21.43) (13.98)

GATT/WTO − 185.8* − 30.81 − 36.19 − 40.06
(95.78) (61.92) (44.10) (57.56)

Remoteness 146.3* 117.7 38.48 78.92
(83.01) (72.59) (33.42) (49.71)

Exporter out-degree 10.23** 0.454
(4.357) (2.045)

Exporter in-degree 3.817 1.657
(6.435) (3.901)

Importer in-degree 3.387 2.907
(4.389) (3.963)

Importer out-degree 4.259 0.702
(2.754) (0.974)

Constant 1306.8* 403.4 − 274.0 − 117.2
(774.3) (555.9) (309.2) (248.2)

Dependent variable �̂�kt �̂�kt �̂�kt �̂�kt

Observations 50 50 47 47
Adjusted R 2 0.368 0.413 0.365 0.428



173

1 3

Modeling complex network patterns in international trade  

(HS chapter 36) were included, requiring that some terms be dropped. In particu-
lar, GDP and/or the shared partner distribution were omitted from several of the 
models.25 Despite these limitations, the omissions do provide an opportunity to 
examine the performance of the ERGMs under different specifications. The ERGM 
estimates for the four products are mostly consistent with the estimates presented 
in the main text as well as with expectations from the gravity literature. However, 
the four models do present some interesting heterogeneity. For example, the ERGM 
models find that trade in wool and cars tends to be reciprocal but that trade in cork 
and coffee is not. This result is not fully consistent with the probit estimates, which 
found a positive relationship for coffee and a negative but insignificant result for 
cork.

The comparisons of the probit and ERGM models for each product are presented 
in Table 13. The results support the main conclusion that ERGM models can out-
perform the probit models at capturing and replicating certain patterns. However, 
they also highlight some of its nuances. As can be seen from the results, it is not 
necessarily the case that the three models always present the same advantages and 
disadvantages. For example, the ERGM model tends to do well at replicating the 
number of edges and geodesic distances for wool and cars. However, for cork and 
coffee, the standard probit produces a better fit for those patterns. In a similar vein, 
the ERGM is only the second best model for reproducing patterns of shared part-
ners and is outperformed by either the standard or network probit model in each of 
these cases.

In general, the strengths and weaknesses of each model are fairly mixed across 
the four products. The standard probit produces the best fit in all five categories for 
cork and coffee while the relative performance of the network probit and ERGM 
models alternate. For those two products, ERGMs appear to have a small advantage 
over the network probit as they better fit three of the five categories. For cars and 
wool, this trend is largely reversed; the network probit and ERGM models tend to 
offer the best fit for most patterns, although this again depends on the specific prod-
uct and pattern.

These additional comparisons highlight several insights. First, they demonstrate 
that the strengths and weaknesses of each approach depend on the network they 
are being used to model. It does not appear to be the case that one approach out-
performs the others in inherent, systematic ways. Thus, practitioners ought to con-
sider evaluating different approaches when undertaking this kind of analysis. Sec-
ond, these four networks suggest there may be some connection between model 
performance and network density. The standard probit model performed best on 
the least dense networks (cork and coffee) and worst on the most dense network 
(cars). On the other hand, the two network-intensive approaches performed bet-
ter with denser networks. The sample size of networks considered here is far too 

25 As discussed in the main text, the shared partner distribution is computationally difficult to fit in gen-
eral. In other cases, the model struggled with over-fitting, which was solved by dropping the GDP term. 
The choice to drop GDP was based on the fact that there is overlap between the GDP term and the multi-
lateral resistance term, which both reflect economic size at least in part.
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(a) (b) (c)

Fig. 4  Goodness of fit: Edge-wise shared partner proportions for the observed network (solid line), (a) 
standard probit, (b) network probit, and (c) ERGM models in 2006

(a) (b) (c)

Fig. 5  Goodness of fit: In-degree proportions for the observed network (solid line), (a) standard probit, 
(b) network probit, and (c) ERGM models in 1995

(a) (b) (c)

Fig. 3  Goodness of fit: Edge-wise shared partner proportions for the observed network (solid line), (a) 
standard probit, (b) network probit, and (c) ERGM models in 1995
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(a) (b) (c)

Fig. 7  Goodness of fit: Out-degree proportions for the observed network (solid line), (a) standard probit, 
(b) network probit, and (c) ERGM models in 1995

(a) (b) (c)

Fig. 8  Goodness of fit: Out-degree proportions for the observed network (solid line), (a) standard probit, 
(b) network probit, and (c) ERGM models in 2006

(a) (c)(b)

Fig. 6  Goodness of fit: In-degree proportions for the observed network (solid line), (a) standard probit, 
(b) network probit, and (c) ERGM models in 2006
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small to draw rigorous conclusions but it is a pattern that warrants additional study 
in the future.

Appendix D PPML estimates with cross sections

This section of the appendix presents an application of the two-stage gravity esti-
mation described in Sect. 2.1 of the main text to the partial sample of explosives 
trade (HS chapter 36) among the top 50 trading countries for the years 1995 and 
2006. Table 14 presents the first stage PPML estimates for each of the two years. In 
general, the standard gravity covariates either exhibit the typical signs or are insig-
nificant. Curiously, the network terms exhibit different outcomes than in the full 
sample. For the intensive margins of these specific trade networks, reciprocity is a 
positive but insignificant determinant. Cyclical and transitive trade, when signifi-
cant, have switched signs relative to the full sample estimates. However, in doing 
so, the estimates are more consistent with those found for the extensive margin in 
Table 4.

The second stage estimates based on the partial sample PPML estimates are pre-
sented in Table 15. Notably, due to the reduced country coverage of the partial sam-
ple, there are only 50 fixed effect estimates to analyze (47 in 2006 due to a lack of 
trade between certain countries).  Few of the estimates are significant. GDP is typi-
cally positive as expected and GATT/WTO membership is negative, as it was in the 
main analysis. Of the network terms, only exporter out-degree in 1995 is a signifi-
cant factor, implying that there was a tendency for major exporters to export broadly 
in that year Figs. 1, 2, 3, 4, 5, 6, 7, 8.

Appendix E Goodness of fit plots

The following figures (figures 3, 4, 5, 6, 7, 8, 9 and 10) present the full distribution 
of network patterns from each model’s simulated networks. In each subfigure, the 
distribution of the observed network is displayed as a solid black line while the char-
acteristics of the simulated networks are plotted as standard box plots.
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