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Abstract
This paper addresses the problem of scheduling independent jobs with release dates
on identical parallel machines with a single server. The goal consists in minimizing
the maximum lateness. This is a realistic extension of the traditional parallel machine
scheduling problem with a single server, in which all jobs are assumed to be available
at the beginning of the schedule. This problem, referred to as P, S1|r j |Lmax , has
various applications in practice. To date, research on it has focused on complexity
analysis. To solve small-sized instances of the problem, we present twomixed-integer-
programming formulations, along with a valid inequality. Due to theNP-hard nature
of the problem, we propose a constructive heuristic and two metaheuristics, namely a
General Variable Neighborhood Search (GVNS) and a Greedy Randomized Adaptive
Search Procedures, both using a Variable Neighborhood Descent as an intensification
operator. In the experiments, the proposed algorithms are compared using a set of new
instances generated randomly with up to 500 jobs, in line with the related literature.
It turns out that GVNS outperforms by far the other approaches.
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1 Introduction

Parallel machine scheduling problems have been widely studied in the literature
(Mokotoff 2001). Among all these problems, the parallel machine scheduling with
a single server (PSS) has received much attention over the last 2 decades. In the PSS
problem, it is considered that the server is in charge of the setup operation of jobs.
This setup operation can be also considered as a loading and/or unloading operation
of a job on a particular machine (Bektur and Saraç 2019; Hamzadayi and Yildiz 2017;
Kim and Lee 2012). Indeed, in the classical parallel machine scheduling problem,
it is assumed that the jobs are ready to be executed without prior setup. However,
this assumption is not always satisfied in practice where industrial systems are more
flexible. For more information about scheduling with setup times, readers can refer to
Allahverdi and Soroush (2008).

The PSS problem has many industrial applications. In container terminals, Bish
(2003) showed that the multiple-crane-constrained vehicle scheduling and location
problem is similar to the PSS problem, where crane loading/unloading operations rep-
resent the setup times, crane represent the server, each container corresponds to a job,
and vehicles corresponds to machines. The objective is to minimize the maximum
turnaround time of a ship, which can represent the makespan. In the printing industry,
Huang et al. (2010) considered a set of printing machines that must be set up by a
team before printing orders on machines. The authors stated that the setup times are
sequence dependent. They considered the problem as a dedicated PSS problem. The
objective function involved the minimization of the makespan. In robotic cells and
in the semiconductor industry, it is necessary to share a single server (or robot), by
a number of machines to carry out machine setups. Then job processing is executed
automatically and independently by the individual machines (see Kim and Lee 2012).
In supply chain optimization, Torjai and Kruzslicz (2016) studied a biomass truck
scheduling problem that originated from a real-life herbaceous biomass supply chain.
The authors considered it as an identical PSS problem, for which two objective func-
tions have to be minimized: the number of machines and the idle times. The authors
stated that the identical trucks represent the identical parallel machines in charge of
delivering biomass from satellite storage locations to a central bio-refinery operating
a single unloader (the single server). They considered two assumptions regarding the
server. The unload operation of the server has a unit time length for each trip and idle
periods are not allowed for it. In the plastic injection industry, Bektur and Saraç (2019)
considered a set of plastic injection machines, which involve a team of workers who
must work together to set up (clean, prepare, etc.) orders on machines. The team is
considered as a single server. The authors considered it as an unrelated PSS problem.
The objective function involved the minimization of the total weighted tardiness. In
healthcare, Hsu et al. (2020) studied a scheduling problem of anaesthesia operations
in operating rooms. The authors considered operating rooms as machines, and opera-
tions as jobs. Each operation consists of two parts, anaesthesia operation and surgical
operation. They assumed that only a single anaesthetist is available for carrying out
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all anaesthesia operations across the available rooms. The objective is to minimize the
makespan.

In this paper, we investigate an identical PSS (IPSS) problem by taking into account
job release dates. The objective is to minimize the maximum lateness. Following the
standard α|β|γ classification scheme for scheduling problems known as the Graham
triplet (Graham et al. 1979), our problem can be denoted as P, S1|r j |Lmax , where P
represents identical parallel machines, S1 represents the single server, r j is the release
date of job j , and Lmax is the maximum lateness.

In the scheduling literature, only a limited number of works addressed the problem
P, S1|r j |Lmax . Among them, Hall et al. (2000) showed that the problem P2, S1|s j =
1|Lmax is unary NP-hard and that the earliest-due-date rule can solve optimally the
more general problemwith an arbitrary number ofmachineswith unit processing times
(P, S1|p j = 1|Lmax ) in O(n log n). Brucker et al. (2002) showed that the problem
P2, S1|r j = 1|Lmax is unaryNP-hard. However, regarding the problem P|r j |Lmax ,
without considering the single server, the studies have considered sequence-dependent
setup times. We are not aware of any recent work suggesting solution methods for the
problem P, S1|r j |Lmax .Agoal of our paper aims at bridging this gap, and to generalize
the problem P|r j |Lmax .

The problem P, S1|r j |Lmax is NP-hard since it is a generalization of the prob-
lem P2, S1|p j , r j = 1|Lmax . However, only small-sized instances can be solved
optimally, and meta/heuristics are generally required. We therefore suggest: (1) a con-
structive heuristic; (2) a Variable Neighborhood Descent (VND); (3) a metaheuristic
based on General Variable Neighborhood Search (GVNS); (4) a metaheuristic rely-
ing on Greedy Randomized Adaptive Search Procedures (GRASP). Both GVNS and
GRASP employ VND as an intensification operator. Such choices are in line with
the fact that many metaheuristics have been proposed for different variants of the
IPSS problem, namely: simulated annealing (Kim and Lee 2012; Hasani et al. 2014b;
Hamzadayi and Yildiz 2017; Bektur and Saraç 2019), genetic algorithm (Abdekho-
daee et al. 2006; Huang et al. 2010; Hamzadayi and Yildiz 2017), tabu search (Kim
and Lee 2012; Alharkan et al. 2020; Bektur and Saraç 2019), ant colony optimization
(Arnaout 2017), geometric particle swarm optimization (Alharkan et al. 2020), itera-
tive local search (Silva et al. 2019), and worm optimization algorithm (Arnaout 2021).
To the best of our knowledge, VND, GVNS and GRASP have not been adapted to
scheduling problems involving a single server. This might appear as surprising, given
the success of that kind of methods for industrial scheduling problems (Respen et al.
2016; Thevenin and Zufferey 2019). In particular, our GVNS and GRASP approaches
are based on various neighborhood structures and inherent diversification mechanisms
(namely, a construction phase for GRASP and a shaking phase for GVNS). Such fea-
tures obviously favor the escape from local optima, and thus the search space is likely
to be efficiently explored. Indeed, in line with the findings in Thevenin et al. (2017), a
strong exploration ability appears to be appropriate for scheduling problems involving
several parallel machines.

The main contributions of this paper are the following. First, we provide two
mixed-integer-programming (MIP) formulations, along with a valid inequality for
the problem P, S1|r j |Lmax . Second, we propose for the first time dedicated solution
methods, namely a constructive heuristic, a VND algorithm, and two metaheuristics
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(GVNS and GRASP). Finally, numerical results are provided for reasonable comput-
ing times (with respect to the literature and to the industrial practice), including a
comparison with an exact method using a well-known commercial solver.

The remainder of this paper is organized as follows. Section2 surveys the related
literature. In Sect. 3, after introducing the problem, we present two Mathematical
formulations along with a valid inequality. In Sect. 4, a streamline heuristic and two
metaheuristics are proposed. Numerical experiments are performed in Sect. 5. Finally,
concluding remarks are made in Sect. 6.

2 Literature review

Despite its importance in practice, the problem P, S1|r j |Lmax has not received much
attention in the recent publications. However, the literature on closely related problems
gives us some insights on how to deal with the problem P, S1|r j |Lmax . We will see
that the following ingredients have been widely employed: MIP formulations, greedy
heuristics and metaheuristics, which motivates us to propose the same ingredients (see
Sects. 3, 4) to tackle the problem P, S1|r j |Lmax .

In this section, we present a comprehensive literature review considering the PSS
(PSS) problem, with different machine environments and objective functions. To date,
most of the related works considering the PSS problem assume that all jobs are avail-
able at the beginning of the schedule (i.e., no release date is considered) and are
limited to two machines. Table 1 summarizes the useful notation. The literature is
characterized by three research streams, namely: complexity results (Sect. 2.1), the
case of two machines (Sect. 2.2), and the case of an arbitrary number of machines
(Sect. 2.3). Next, we discuss the literature related to the problem P|r j |Lmax without
a single server (Sect. 2.4). Finally, a classification of the papers related to the IPSS
(Sect. 2.5).

Table 1 Notation used throughout the paper

Notation Description Notation Description

P Identical parallel machines PD Dedicated parallel machines

R Unrelated parallel machines S1 Scheduling with a single server

r j Release dates d j Due dates

Mj Machine eligibility restrictions prmp Scheduling with preemption

STsd Sequence-dependent setup time f i xed − seq Job processing sequences are fixed

I T Total machine idle time Cmax Makespan

Lmax Maximum lateness
∑

C j Total completion time
∑

w j C j Total weighted completion time
∑

Tj Total tardiness
∑

w j T j Total weighted tardiness
∑

Uj Number of tardy jobs
∑

w jU j Weighted number of tardy jobs
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2.1 Complexity results

Kravchenko andWerner (1997) showed that the problems P, S1|p j , s j = 1|Cmax and
P2, S1|p j , s j = s|I T are unaryNP-hard. Kravchenko and Werner (1998) proposed
polynomial-time algorithms and some complexity results for the cases of one server,
as well as k servers with k < m. Later, Hall et al. (2000) extended the previous studies
and presented new complexity results and heuristics for many objective functions of
the PSS problem, namely: Cmax , Lmax ,

∑
w jC j ,

∑
C j ,

∑
w j Tj ,

∑
Tj ,

∑
w jU j ,

and
∑

Uj . For the case of parallel dedicated machines, Glass et al. (2000) addressed
the problem PD, S1||Cmax . They showed that it isNP-hard in the strong sense, even
in the case where all setup times and all processing times are equal.

2.2 Case with twomachines

Three objective functions (to be minimized) have been mainly considered, namely:
makespan (Cmax ), total machine idle time (I T ) and total completion time (

∑
C j ).

Koulamas (1996) showed that the problem P2, S1|p j , s j |I T isNP-hard in the strong
sense, and proposed a beam search algorithm to solve it. Jiang et al. (2013) considered
the problem P2, S1|prmp|Cmax . They proposed an algorithm with a tight bound of
4/3 and showed that it can generate optimal schedules for two special cases: equal
setup times and equal processing times. Abdekhodaee andWirth (2002) addressed the
problem P2, S1|p j , s j |Cmax . They proposed a MIP formulation for the regular case
and two greedy heuristics for the general case. Abdekhodaee et al. (2004) investigated
the problem P2, S1|p j = p, s j = s|Cmax with equal processing times and equal
setup times. They showed that the problem is NP-hard and proposed two heuristics.
Abdekhodaee et al. (2006) developed twogreedyheuristics, a genetic algorithmand the
Gilmore-Gomory algorithm for the general case of the problem P2, S1|p j , s j |Cmax .
Later, Gan et al. (2012) addressed the problem P2, S1|p j , s j |Cmax . They presented
two MIP formulations and two branch-and-price algorithms. Hasani et al. (2014a)
proposed a MIP formulation for the problem P2, S1|p j , s j |Cmax , based on the idea
of decomposing a schedule into a set of blocks. The results showed that the proposed
formulation outperformed all heuristics of Gan et al. (2012). Hasani et al. (2014b)
addressed the problem P2, S1|p j , s j |Cmax . They proposed two metaheuristics based
on simulated annealing (SA) and genetic algorithm (GA). The results obtained are
much better than all the previous algorithms proposed inAbdekhodaee et al. (2006) and
Gan et al. (2012). Hasani et al. (2016) investigated the problem P2, S1|p j , s j |Cmax .
They proposed two greedy heuristics to solve very large-sized instances with up
to 10,000 jobs. The results obtained are much better than the ones of all previous
algorithms presented in the literature for very large-sized instances. Arnaout (2017)
suggested a brand and bound and an ant colony optimization (ACO) for the problem
P2, S1|p j , s j |Cmax . The results obtained are much better than the ones proposed by
Hasani et al. (2014b) for large-sized instances. Benmansour et al. (2018) addressed
the problem P2, S1|p j = p, s j |Cmax with equal processing times. They showed that
the problem is equivalent to the single machine scheduling problem with time restric-
tion (STR). The STR is a new scheduling problem that was firstly studied by Braun
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et al. (2014) and Benmansour et al. (2014). Recently, Alharkan et al. (2020) proposed
two metaheuristics based on tabu search (TS) and geometric particle swarm optimiza-
tion (GPSO) algorithms for the problem P2, S1|p j , s j |Cmax . The results showed that
the proposed metaheuristics outperformed the algorithms of Hasani et al. (2014b) for
large-sized instances. Recently, Arnaout (2021) proposed a worm optimization algo-
rithm for the problem P2, S1|p j , s j |Cmax involving two identical parallel machines.

2.3 Case with an arbitrary number of machines

Three machine environments have been investigated: identical parallel machines,
dedicated parallel machines and unrelated parallel machines. In addition, only three
objective functions (to be minimized) have been considered: makespan (Cmax ), total
weighted completion time (

∑
w jC j ), and total weighted tardiness (

∑
w j Tj ).

Identical parallel machinesWang and Cheng (2001) proposed an approximation algo-
rithm for the problem P, S1|p j , s j | ∑w jC j . Kim and Lee (2012) addressed the
problem P, S1|p j , s j |Cmax , and they suggested two MIP formulations and a hybrid
heuristic algorithm. Zhang et al. (2016) proved that the SPT (shortest processing time)

rule has a worst-case ratio of 1 +
√
m−1√

m
√
m−1

for the problem P, S1|p j = p, s j | ∑C j

(m being the number of machines). Hamzadayi and Yildiz (2017) considered the
problem P, S1|STsd |Cmax with sequence-dependent setup time. They proposed a
MIP formulation and two metaheuristics based on SA and GA. Cheng et al. (2017)
considered the problems P2, S1|prmp|Cmax and P, S1|prmp|Cmax , by taking into
account job preemptions. They showed that the problems areNP-hard and presented
pseudo-polynomial-timealgorithms to solve them.Liu et al. (2019) presented abranch-
and-bound algorithm, a lower bound, and dominance properties for the exact resolution
of the problem P, S1|p j , s j | ∑w jC j . Silva et al. (2019) proposed aMIP formulation
based on arc-time-indexed variables and an iterative local-search metaheuristic for the
problem P, S1|STsd |Cmax . The results showed that theMIP formulation and the itera-
tive local search outperformed themethods presented byHamzadayi andYildiz (2017).
Elidrissi et al. (2021) proposed several MIP formulations based on different decision
variables for solving general and regular job sets of the problem P, S1|p j , s j |Cmax .
The results showed that two of the proposed formulations outperformed the formula-
tions suggested by Kim and Lee (2012). For the case of multiples servers: Xu et al.
(2021) addressed a parallel machine scheduling problem involving multiple servers.
The authors assumed that the servers are in charge of the setup and removal operations
of the jobs. In addition, they considered slack times (between the setup operation and
the removal operation), machine-server eligibility restrictions, and machine-server
availability periods. To solve the problem, the authors proposed a MIP formulation
along with some heuristics based on dispatching rules. Lee and Kim (2021) addressed
a new variant of the IPSS problem, namely a parallel machine scheduling problemwith
job splitting, sequence-dependent setup times, and limited setup servers. The objec-
tive function involves the minimization of the makespan. To solve this new problem,
the authors proposed a MIP formulation and a heuristic. Recently, Heinz et al. (2022)
studied a parallel machine scheduling problem with sequence-dependent setup times,
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multiple servers, and makespan objective. To solve this new problem, the authors
suggested a constraint programming model and constructive heuristics.

Dedicated parallel machines Huang et al. (2010) proposed a MIP formulation and
a hybrid genetic algorithm for the problem PD, S1|STsd |Cmax with sequence-
dependent setup times and dedicated parallel machines. Cheng et al. (2019) were
the first to investigate the problem PD, S1 | f i xed − seq | Cmax in which the job
processing sequences are fixed. They showed that the problem isNP-hard even if all
the jobs have the same processing duration or all the loading operations require the
same time; two heuristics were proposed for the latter case with unit setup time for
all the jobs. Recently, Cheng et al. (2021) addressed the parallel machine scheduling
problem with a single server and fixed job sequence constraint in order to minimize
the makespan. They showed that the problem becomes binary NP-hard for m = 3
machines, and suggested a pseudo-polynomial algorithm to solve the problem with
fixed m.

Unrelated parallel machines Bektur and Saraç (2019) were the first to address the
problem R, S1|Mj , STsd | ∑w j Tj . They presented a MIP formulation and two meta-
heuristics based on TS and SA by taking into consideration machine eligibility
restrictions and sequence-dependent setup times.

Uniform parallel machines Kim and Lee (2021) addressed a new variant of the IPSS
problem, namely a uniform parallel machine scheduling problem with machine eligi-
bility, job splitting, sequence-dependent setup times, and limited setup servers. The
objective function involves the minimization of the makespan. This new problem is
motivated by a real application of piston manufacturing. To solve the problem, the
authors proposed a MIP formulation and an efficient heuristic algorithm.

2.4 Studies on the problem P|rj|Lmax without a single server

In this section, we present the papers related to the parallel machine scheduling with
release dates to minimize the maximum lateness without a single server. Ovacik and
Uzsoy (1995) addressed the problem P|STsd , r j |Lmax with sequence-dependent setup
times. They proposed a family of rolling horizon procedures. The results showed that
proposed methods outperformed dispatching rules combined with local-search tech-
niques. Schutten and Leussink (1996) proposed lower bounds and a branch-and-bound
algorithm for the parallel machine scheduling problem with release dates and family
setup times to minimize the maximum lateness (P|r j , s j |Lmax ). Centeno and Arma-
cost (1997) suggested an algorithm for the problem P|r j , Mj |Lmax for the special
case where due dates are equal to release dates plus a constant. Haouari and Gharbi
(2003) proposed lower bounds for the problem P|r j |Lmax . Kim and Shin (2003) pre-
sented a restricted TS for the problem P|STsd , r j |Lmax . Lee et al. (2010) developed a
restricted SA for the problem P|STsd , r j |Lmax . Ying and Cheng (2010) suggested an
iterated greedy heuristic for the problem P|STsd , r j |Lmax . Later, Lin et al. (2011) pro-
posed an improved iterated greedy heuristic with a sinking temperature for the same
problem. The metaheurictics of Lee et al. (2010) and Ying and Cheng (2010) have not
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been compared. It can be noticed that no solution algorithm has been designed for the
problem P|r j |Lmax .

2.5 Studies on the IPSS problem

The papers considering the IPSS problem are summarized in Table 2, which also
highlight our contributions (see the last line). This table reveals that only two papers
addressed the problem P, S1|r j |Lmax . In the first one, Hall et al. (2000) showed
that the problem P, S1|p j = 1, s j |Lmax (without release dates) can be solved in
O(n log n), and that the problem P2, S1|p j , s j = 1|Lmax (with unit setup time) is
unary NP-hard. In the second one, Brucker et al. (2002) showed that the problem
P2, S1|p j = 1, r j |Lmax with unit processing time is unary NP-hard. Therefore,
no solution algorithm has been designed for the general problem P, S1|r j |Lmax . In
addition, no previous work on scheduling problems involving a single server proposed
solution methods for the case where jobs are released over time. Note that for the
problem P|r j |Lmax without considering the single server, no solution algorithm has
been suggested.

3 Problem formulation

To define the problem P, S1|r j |Lmax addressed in this paper, let M = {1, 2, . . . ,m}
be the set of m identical parallel machines that are available to process a set N =
{1, 2, . . . , n} of n independent jobs. Each job j ∈ N is to be processed by exactly
one of the machines during a given positive time p j . Before its processing, job j
must be set up on a machine by the server. The setup operation, which can be also
considered as a loading or preparation operation, has a predefined duration s j . Each job
j becomes available at its release date r j and should be completed by its due date d j .
In addition, during the setup operation, both the machine and the server are occupied,
and after setting up a job, the server becomes available for setting up the next job. The
processing operation starts immediately after the end of the setup operation.Moreover,
there is no precedence among jobs, and preemption is not allowed. The objective is to
find a feasible schedule that minimizes the maximum lateness Lmax = max j∈N L j ,
where L j = C j − d j is the lateness of job j . If L j < 0, job j is early, and if
L j > 0, it is tardy. Such an objective function Lmax is highly relevant from a practical
standpoint, as its minimization contributes to the satisfaction of the clients. In contrast,
minimizing Cmax focuses on the satisfaction of the production plant. This shift from
the manufacturer satisfaction to the client satisfaction can be observed in recent works
(Respen et al. 2017; Thevenin et al. 2017).

3.1 Network variables formulation (MIP1)

We present here a MIP formulation based on network variables for the problem
P, S1|r j |Lmax . Network variables formulation, known also as traveling-salesman-
problem variables formulation or tour-constraint formulation, was initially proposed
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by Queyranne and Schulz (1994) to model the nonpreemptive single machine schedul-
ing problem with sequence-dependent processing times to minimize the makespan.
This technique has been successfully used to model different NP-hard scheduling
problems (Baker andKeller 2010; Anderson et al. 2013). In this formulation, a dummy
job 0 is required to be the first and the last job processed on each machine, and its
release date, setup time and processing time are set to 0. Indeed, it indicates the start
and the completion of the job setup and processing operations on each machine [sim-
ilarly to the vehicle routing problem, where the jobs represent the customers and the
machines represent the vehicles being routed (Unlu and Mason 2010)].

The decision variables are defined as follows:

xi, j =
{
1 if job i immediately precedes job j on the same machine
0 otherwise

zi, j =
{
1 if job i finishes its processing before job j on the server
0 otherwise

C j : completion time of job j .

Let B be a sufficiently large positive integer, such as B ≥ ∑
j∈N (r j + s j + p j ).

The problem P, S1|r j |Lmax can be formulated as the following MI P1.

min Lmax (1)

s.t . Lmax ≥ C j − d j ∀ j ∈ N (2)
n∑

j=1

x0, j ≤ m (3)

n∑

i=1

xi,0 ≤ m (4)

n∑

j=0: j �=i

xi, j = 1 ∀i ∈ N (5)

n∑

i=0:i �= j

xi, j = 1 ∀ j ∈ N (6)

C j ≥ r j + s j + p j ∀ j ∈ N (7)

Ci + s j + p j ≤ C j + B(1 − xi, j ) ∀i, j ∈ N , i �= j (8)

Ci + s j + p j ≤ C j + pi + B(1 − zi, j ) ∀i, j ∈ N , i �= j (9)

zi, j + z j,i ≥ ∀i, j ∈ N , i �= j (10)

xi, j ∈ {0, 1} ∀i ∈ N ∪ {0},∀ j ∈ N ∪ {0} (11)

zi, j ∈ {0, 1} ∀i, j ∈ N (12)

The objective function (1) indicates that themaximum lateness has to beminimized.
Constraints (2) stipulate that the maximum lateness is greater than or equal to the
difference between C j and d j . Constraints (3) and (4) are presented in line with some
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vehicle-routing formulations, where the jobs are assigned to them available machines,
such that each machine starts and finishes its schedule with job 0. Constraints (5) and
(6) guarantee that each job is scheduled on a particular machine. Constraints (7) state
that each job j should starts after its release time. Constraints (8) indicate that no two
jobs i and j , scheduled on the same machine, can overlap in time. Constraints (9) and
(10) state that the server can set-up at most one job at a time. Constraints (11) and (12)
define variables xi, j and zi, j as binaries.

3.2 Completion-time variables formulation (MIP2)

Wepresent here aMIP formulation based on completion-time variables for the problem
P, S1|r j |Lmax . Completion-time variables, known also as natural-date variables, were
initially used by Balas (1985) for a job shop scheduling problem. This formulation has
been also used to model different NP-hard scheduling problems (see Elidrissi et al.
2018; Krim et al. 2020; Elidrissi et al. 2022).

The decision variables are defined as follows:

y j,k =
{
1 if job j is scheduled on machine k
0 otherwise

zi, j =
{
1 if job i finishes its processing before job j on the server
0 otherwise

The problem P, S1|r j |Lmax can be formulated as the following MI P2.

min Lmax (13)

s.t . Lmax ≥ C j − d j ∀ j ∈ N (14)
m∑

k=1

y j,k = 1 ∀ j ∈ N (15)

C j ≥ r j + s j + p j ∀ j ∈ N (16)

Ci + s j + p j ≤ C j + B(3 − yi,k − y j,k − zi, j ) ∀i, j ∈ N , i < j,∀k ∈ M
(17)

C j + si + pi ≤ Ci + B(2 − yi,k − y j,k + zi, j ) ∀i, j ∈ N , i < j,∀k ∈ M
(18)

Ci + s j + p j ≤ C j + pi + B(1 − zi, j ) ∀i, j ∈ N , i < j (19)

C j + si + pi ≤ Ci + p j + Bzi, j ∀i, j ∈ N , i < j (20)

y j,k ∈ {0, 1} ∀ j ∈ N ,∀k ∈ M (21)

zi, j ∈ {0, 1} ∀i, j ∈ N (22)

In this formulation, the objective function (13) indicates that the maximum lateness
has to be minimized. Constraints (14) indicate that the maximum lateness is greater
than or equal to the difference between the completion time and the due date of each
job. In order to guarantee that each job is scheduled on exactly onemachine, constraints
set (15) is added to the formulation. The completion timeC j is greater than or equal to
the sum of the release, the setup, and the processing times of the job j , and is calculated
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according to constraints (16). Constraints (17) to (20) show that a job can be processed
only if the server and the machines are available simultaneously. Constraints (17) and
(18) indicate that no two jobs, scheduled on the same machine, can overlap in time.
Constraints (19) and (20) state that the server can set-up at most one job at a time.
Finally, constraints (21) and (22) define binary variables xi,k and zi, j .

3.3 Valid inequalities

In order to reduce the time required to solve the problem by one of the proposed formu-
lations MI P1 and MI P2, the following constraint set can be added. Let L∗

max denotes
the objective-function value of an optimal solution of the problem P, S1|r j |Lmax . Let
L̂ H1
max denotes the objective-function value of the solution provided by the construc-

tive heuristic H1 for the problem P, S1|r j |Lmax . The constructive heuristic H1 is
presented in Sect. 4.2.

Proposition 1 The following constraints are valid for M I P1 and M I P2 formulations.

C j − Ci ≥ r j + s j + p j − (L̂ H1
max + di ) ∀i, j ∈ N , i �= j (23)

Proof The maximum lateness verifies the following equation:

C j − d j ≤ L∗
max ≤ L̂ H1

max ∀ j ∈ N (24)

Combining the constraints sets 24 and 7, we obtain:

r j + s j + p j ≤ C j ≤ L̂ H1
max + d j ∀ j ∈ N , (25)

and accordingly, the constraints set is valid. 
�
MI P∗

1 refers to formulation MI P1 with constraints set (23). MI P∗
2 refers to for-

mulation MI P2 with constraints set (23). A comparative study among MI P1, MI P2,
MI P∗

1 , and MI P∗
2 is performed in Sect. 5.

3.4 Illustrative example

We illustrate the previous formulation for an instance with n = 6, and m = 3. The
processing time p j , the setup time s j , the release date r j and the due date d j of the
jobs are given in Table 3. It takes 0.44 s to solve the instance using the above MI P1
formulation on IBM ILOG CPLEX 12.6. The optimal objective-function value is 6,
and the obtained schedule is given in Fig. 1.

4 Solutionmethods

In this section, we first discuss the solution representation and the objective-function
calculation of the studied problem. Next, we present a constructive heuristic H1.
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Table 3 Instance with n = 6 and
m = 3

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

p j 2 2 4 3 2 2

s j 2 3 5 6 2 2

r j 2 12 4 4 7 3

d j 7 18 20 19 12 9

Fig. 1 Optimal schedule for the considered instance with 6 jobs and 3 machines

Finally, we present two metaheuristics: GVNS and GRASP, both using VND as an
intensification operator. Note that H1 is used to generate initial solutions for GVNS.

4.1 Solution representation and objective-function calculation

A schedule of the problem P, S1|r j |Lmax can be represented as a permutation π =
{π1, . . . , πk, . . . , πn} of the job set N , where πk indicates the job which is processed
in the kth position by the server (see Hasani et al. 2014b; Elidrissi et al. 2019). Any
permutation of all jobs defines a feasible schedule, where each job will be scheduled as
soon as it is released, and only if amachine and the server are available simultaneously.
This is an indirect solution representation as it requires the scheduling of the jobs on
the machines (while taking into account the server constraint) in order to compute the
value of the maximum lateness (Lmax ) and the completion times of the jobs. Having in
mind that all jobs are independent, all permutations (n!) represent feasible solutions,
and therefore the search space is very large.

Additional notation is defined in Table 4.
In order to compute the objective function of a given sequence π of jobs, denoted

as Lmax (π), the following Proposition 2 is used.

Proposition 2 Given a sequence π of jobs, Sπk is computed as follows:

Sπk =

⎧
⎪⎪⎨

⎪⎪⎩

rπk if k = 1
max

(
rπk , Sπk−1 + sπk−1

)
if 2 ≤ k ≤ m

max

(

rπk , Sπk−1 + sπk−1, min
1≤t≤m

Et,πk

)

if m + 1 ≤ k ≤ n
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Table 4 Employed notation Terms Definition

Et,πk Incumbent completion time of machine t ∈ M
(knowing the job we want to schedule at position πk )

Sπk Start time of the setup operation of the job scheduled at
position k

Cπk Completion time of the job scheduled at position k

sπk Setup time of the job scheduled at position k

pπk Processing time of the job scheduled at position k

rπk Release date of the job scheduled at position k

dπk Due date of the job scheduled at position k

Lπk Lateness of the job scheduled at position k

Proof The first job will start immediately at its release date. Thus, Sπk = rπk if k = 1.
Second, each job in position k ∈ {2, . . . ,m} will start immediately its setup oper-

ation if it is released, and after the completion of the setup operation of the job in
position k − 1, on one of the {1, . . . ,m} available machines. This is trivial because in
such cases, at least one machine will be available for processing this job. Therefore:
Sπk = max

(
rπk , Sπk−1 + sπk−1

)
, ∀k ∈ {2, . . . ,m}.

Third, suppose that we want to schedule a job in position k ≥ m + 1. Its start time
Sπk will depend on its release date and also on the availability of the server and a
machine. The job at position k can only be scheduled if it is released, thus Sπk ≥ rπk .

Moreover, the server will be available to perform the setup operation of the job at
position k if Sπk ≥ Sπk−1 +sπk−1 . In addition, the job at position k will be scheduled on
the first availablemachine t , which corresponds to the onewith the smallest completion
time of all jobs scheduled on it. Hence, t = argmin1≤t ′≤m

(
Et ′,πk

)
.

Finally, in order to ensure that the job, the server and amachine are available at same
time, we choose the maximum of the three values: rπk , Sπk−1 + sπk−1 and min

1≤t≤m
Et,πk .


�
Therefore, the objective-function value associated with the job sequence π is com-

puted as follows:

Lmax (π) = max
1≤k≤n

(Cπk − dπk ) = max
1≤k≤n

(Sπk + pπk + sπk − dπk )

It can be noticed that Proposition 2 can be used as a dispatching rule for other
scheduling problems with a single server involving different objective functions.

4.2 Constructive heuristic (H1)

The idea of the heuristic H1 relies on the work of Lin et al. (2011) for the problem
P|STsd , r j |Lmax , considering parallel machines with job release dates, sequence-
dependent setup times and maximum lateness minimization. Indeed, in Lin et al.
(2011), the authors developed a simple heuristic in order to generate an initial solu-
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tion for an iterated greedy algorithm. Thus, we adapt this heuristic to our problem
P, S1|r j |Lmax by taking into account the single server, and sequence-independent
setup times constraints. In each step of H1, we choose a job to be scheduled taking
into account its release date, the availability of the machines and the availability of the
server.

For thefirst jobπ1 to be scheduled,we choose the job j of N with the smallest release
date r j . Ties are broken with the largest lateness (computed here as s j + p j −d j ). The
potential remaining ties are broken randomly. The job π1 will be scheduled in the first
machine of M . For the second job π2 to be scheduled, among all the non-scheduled
jobs of N that are released before the end of the setup operation of the job π1, we
choose again the job with the largest lateness (if such a job does not exist, the job with
the smallest release date is chosen). The job π2 is scheduled in the second machine
of M . This process continues the same way for the m first jobs to be scheduled, as
there is always an available machine in such a case. Next, a job in position k (k > m)
can start its setup operation if it is released and if both a machine and the server are
simultaneously available. Thus, the chosen job to be scheduled in the position k must
be released before a given time max(Tπk−1 + sπk−1 , Et,πk ), where t = arg min

h∈M(Eh,πk ).

Among all jobs that are released before that time, we choose the job with the largest
lateness, and we schedule it in the available machine.

4.3 General Variable Neighborhood Search (GVNS)

Variable Neighborhood Search (VNS) is a metaheuristic initially proposed by Mlade-
nović and Hansen (1997). It employs various neighborhood structures N1,N2, . . .

(usually ranked increasingly with respect to the modification they can bring to the
solution structure) for exploring the search space (diversification ability) and a local
search procedure for intensifying the search around promising solutions (exploitation
ability). Since 1997, VNS and its variants have been widely applied to different fields
(Hansen et al. 2008; Bierlaire et al. 2010; Perron et al. 2010; Mladenović et al. 2013;
Schneider et al. 2015; Thevenin and Zufferey 2019; Todosijević et al. 2016). At the
beginning of the search, let π be the initial solution (usually generated with a con-
structive heuristic) and let i = 1 (index of the employed neighborhood structure).
VNS repeats the following three main steps until a stopping criterion is met (e.g., a
time limit).

1. Shaking generate a neighbor solution π ′ ∈ Ni (π).
2. Local search try to improve π ′ with a local search, and let π ′′ be the resulting

solution.
3. Move or not if π ′′ is not better than π , set i = i + 1; otherwise, set i = 1 and

π = π ′′.

More generally, anytime step (2) does not lead to an improvement of the current
solution π , we use the next neighborhood structure in the next iteration, which will
perform more modifications on π (as more diversification is required to move the
search away from the local optimum π ). In contrast, anytime π ′′ improves π , the new
current solution becomesπ ′′ (aswe setπ = π ′′ in step (3)), andwe intensify the search
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in this promising zone of the search space by coming back to smaller modifications
in the shaking phase (i.e., employing again N1).

The simplest VNS variant is Reduced VNS (RVNS), which is VNS without the
local-search step. In most of the cases, it is applied to provide good initial solutions
for other VNS variants. If the shaking step is omitted, the corresponding method
is known as Variable Neighborhood Descent (VND), where a local search is per-
formed relying on multiple neighborhood structures. Furthermore, different variants
of VND are proposed in the literature, such as: sequential VND, pipe VND, cyclic
VND (Hansen et al. 2017). In General VNS (GVNS), VND is used as a local search
(Hansen et al. 2010). Following this research line, in this paper, we propose a GVNS
to solve the problem P, S1|r j |Lmax . It starts with an initial solution generated by the
heuristic H1. Next, the shaking procedure and VND are applied to try to improve the
current solution. This procedure continues until all predefined neighborhoods have
been explored.

4.3.1 Neighborhood structuresN1,N2,N3

Below, we propose three different neighborhood structures N1,N2,N3 to tackle the
problem P, S1|r j |Lmax . These neighborhood structures have been widely used in the
literature [e.g., for the two parallel machines scheduling problem with a single server
(Hasani et al. 2014b; Alharkan et al. 2020), for other scheduling problems on parallel
machines (Respen et al. 2017; Thevenin et al. 2016; Thevenin and Zufferey 2019)].

– N1(π)=Swap(π). It consists of all solutions obtained fromsolutionπ by swapping
two jobs of π .

– N2(π) = Insert(π). It consists of all solutions obtained from solution π by rein-
serting one of its job somewhere else in the sequence.

– N3(π) = 2-opt(π). It consists of all solutions obtained from solution π by revers-
ing a subsequence of π . More precisely, given two jobs πi and π j , we construct a
new sequence by first deleting the connection between πi and its successor πi+1
and the connection between π j and its successor π j+1. Next, we connect πi−1
with π j and πi with π j+1.

4.3.2 Variable Neighborhood Descent (VND)

We propose to use N1, N2 and N3 in a VND framework. The output solution will
be a local optimum with respect to all the proposed neighborhood structures. The
employed VND pseudocode is presented in Algorithm 1. Preliminary experiments
led to the following settings. Such experiments are not reported here as they concern
minor parameters with respect to the overall proposed approaches. First, the following
sequence of the neighborhood structures is the most efficient: N3,N1,N2. Second,
when generating a solution π ′ ∈ Ni in step (1), the first-improvement process (i.e., in
each iteration, stop the generation of neighbor solutions as soon as the current solution
can be improved) is better than the best-improvement process (i.e., in each iteration,
generate all the neighbor solutions and pick up the best one). Third, and in line with
Hansen et al. (2017), for step (3) of VND, we have tested three different techniques
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for changing the employed neighborhood structure. The techniques are summarized
below, and Pipe turns out to be the best technique in our context.

– Cyclic set k = k + 1. In other words, the search mechanism employs always the
next neighborhood structure of the list.

– Pipe set k = k + 1 if there is no improvement in step (2). In this case, the search
mechanism keeps the same neighborhood structure as long as it is successful.

– Sequential set k = k + 1 if there is no improvement in step (2); otherwise set
k = 1. It means that an improvement imposes the search mechanism to come back
to the first neighborhood structure of the list.

Algorithm 1: VND
Initialization: Construct a solution π with H1 (or read the input solution), and
set i = 3.
While π can be improved, do:

1. Generate a solution π ′ ∈ Ni .
2. If π ′ is better than π , set π = π ′.
3. Change the neighborhood type.

Return the local optimum π with respect to N1,N2,N3.

4.3.3 Shaking procedure and overall pseudocode

Starting from the input solutionπ , the employed shaking procedure consists of sequen-
tially generating h (diversification parameter) neighbor solutions in N3 (we have
selected N3 because it modifies the structure of the considered solution more deeply
than N1 and N2, which is in line with the role of a shaking mechanism). In other
words, h iterations are performed in N3. In each iteration, a single neighbor solution
is generated at random. The overall pseudocode of GVNS is given in Algorithm 2.
The stopping criterion is a CPU time limit T . The diversification (resp. intensification)
ability of GVNS relies on the shaking phase (resp. VND).

In line with the VNS literature, we have decided to employ increasing values of h
if step 3 of GVNS does not lead to an improvement of the current solution π . More
precisely, we start with h = hmin . Next, if there is no improvement in step 3, we
augment h by Δh (as long as h does not exceed hmax ) because more modifications
seem to be required to escape from the current local optimum (and we impose the
threshold hmax for h in order to control the search process and not make the shaking
process resemble a restart mechanism). In contrast, anytime there is an improvement
of π in step 3, we come back to smaller modifications by setting h = hmin again
(to allow the search process exploiting this new promising region of the solution
space). After preliminary experiments that are not reported here, we have decided to
set (hmin, hmax ,Δh) = (2, 10, 1).
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Algorithm 2: GVNS
Initialization: construct an initial solution π with H1.
While the computing time limit T is not reached, do:

1. Apply the shaking procedure to generate a solution π ′ from π .
2. Apply VND on π ′, and let π ′′ be the resulting solution.
3. If π ′′ is better than π , set π = π ′′.

Return the local optimum π with respect to N1,N2,N3.

4.4 Greedy randomized adaptive search procedures (GRASP) with VND

GRASP (Feo and Resende 1995) is a multi-start metaheuristic used to solve hard
optimization problems. It has been applied for different scheduling problems (Yepes-
Borrero et al. 2020; Báez et al. 2019; Armentano and de Franca Filho 2007). As
presented in Algorithm 3, it consists of two phases which are repeated in turn as long
a stopping condition is not met: (1) a greedy randomized construction phrase CP
(presented below in Algorithm 4); (2) an improvement procedure (VND in our case).
The diversification (resp. intensification) ability of GRASP relies onCP (resp. VND).

Algorithm 3: GRASP
While the computing time limit T is not reached, do:

1. Apply the construction phase CP to generate a solution π .
2. Apply VND on π .

Return the best encountered solution during the search.

CP relies on the following ingredients: a Candidate List CL; a subset RCL of
RL called Restricted Candidate List; the incremental cost Δ( j) associated with the
integration of a job j ∈ CL into π . CP generates a solution π = {π1, . . . , πn}
iteratively from scratch. All jobs of N are initially inserted in CL and the algorithm
ends when all jobs ofCL are scheduled in π . In each iteration, a new job j is randomly
selected in RCL ⊆ CL and then scheduled in π . Now, the key issue is to determine
RCL . At the beginning of the iteration r , the job sequence π contains r jobs (i.e.,
π = {π1, . . . , πr }). The incremental cost Δ( j) associated with the integration of a
job j ∈ CL into π is computed as in Eq. (26), where α is the randomness parameter.
The incremental cost is employed to decide if a job j is selected or not to be part
of RCL . More precisely, let Δmin and Δmax be the smallest and largest values of
Δ( j) (among the jobs of CL), respectively. RCL contains the jobs j of CL satisfying
Δ( j) ≤ Δmin + α(Δmax − Δmin).

Δ( j) = max(Tπr + sπr , min
1≤t≤m

Et,πk , r j ) + s j + p j − d j (26)

The amount of randomness in CP is controlled by the parameter α, which is selected
uniformly at random in interval [0, 1]. α = 1 (resp. α = 0) corresponds to the purely
random (resp. greedy) construction.
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Algorithm 4: Construction Phase CP of GRASP
Initialization: Set π = ∅, CL = N , and α to a value generated randomly in
interval [0, 1].
While CL �= ∅, do:
1. Evaluate the incremental cost Δ( j) of each job j ∈ CL .
2. Compute Δmin = min

j∈CL
Δ( j) and Δmax = max

j∈CL
Δ( j).

3. Set RCL = { j ′ ∈ CL | Δ( j ′) ≤ Δmin + α(Δmax − Δmin)}.
4. Select randomly a job j ∈ RCL and schedule it in π on the 1st available

machine at the earliest time.
5. Remove j from CL .

Return solution π .

5 Computational experiments

In this section, the performances of MI P1, MI P∗
1 , MI P2, MI P∗

2 , H1, VND,
GVNS, and GRASP are compared. The MIP formulations were solved using the con-
cert technology library of CPLEX 12.6 using default settings in C++, whereas H1,
VND, GVNS and GRASP were coded in C++. We use a personal computer Intel(R)
Core(TM) with i7-4600M 2.90 GHz CPU and 16GB of RAM, running Windows 7.
Except for the small-sized instances for which one run is sufficient, the metaheuris-
tics were executed 10 times in all experiments, and average results are provided. The
stopping conditions employed for all the methods are presented in Table 5. Up to
one hour of computing time is in line with the current practice in the job-scheduling
industry (Respen et al. 2016; Thevenin et al. 2016, 2017). Moreover, for the problem
P2, S1|p j , s j |Cmax , Gan et al. (2012) proposed a stopping time of 300

8 · n, and 3600s
for instances with n ≥ 100. In this paper, we use the same limits for the computation
times.

5.1 Benchmark instances

As far as we know, there are no publicly available benchmark instances in the literature
for the problem P, S1|r j |Lmax . Therefore,we have generated a set of instances accord-
ing to the existing literature, as proposed by Bektur and Saraç (2019). These instances
are publicly available at https://sites.google.com/view/dataforps1rjlmax/accueil.

The instances are characterized by the following features:

– The number of jobs n ∈ {8, 10, 12, 15, 20, 25, 30, 50, 75, 100, 250, 500}.
– The number of machines m ∈ {2, 3, 4}.
– The integer processing times p j are uniformly distributed in the interval [10, 100] .
– The integer setup times s j are uniformly distributed in the interval [5, 50].
– Due dates d j are uniformly generated based on the due-date tightness factor τ =
1−d̄/Cmax (whereCmax is the estimatedmakespan, and d̄ is the average due date),
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Table 5 Stopping conditions of the MIP formulations, H1, VND, GVNS and GRASP

Method Stopping condition

Small-sized
instances
n ∈ {8, 10}

Medium-sized
instances
n ∈ {12, 15,
20, 25, 30}

Large-sized
instances
n ∈ {50, 75,
100, 250, 500}

MIP formulations Until an optimal
solution is found

3600s 3600s

H1 One run (up to
0.0001s)

One run (up to
0.001s)

One run (up to
0.002s)

GVNS Same computing
time

300
8 · n s 300

8 · n s (but
3600s for
n ≥ 100)

GRASP as the time
required by MIP

VND to find an optimal
solution

and the due-date range factor R such that d j = r j + s j + p j +U ( d̄ − R d̄ , d̄ ).
In line with Bektur and Saraç (2019), we have set τ ∈ {0.65, 0.8} and R = 0.2.

– The release dates are generated with a uniform distribution: r j = U (0, d̄).

For each combination of n, m ∈ {2, 3, 4} and τ ∈ {0.65, 0.8}, an instance was
created, resulting to 6 instances (composing a group of instances) for each n. Therefore,
we have a total of 72 instances, leading to a total of 12 groups of instances. The
parameters of the test problems are given in Table 6. Due to the NP-hard nature
of the problem, and using the MIP formulations (MI P1, MI P∗

1 , MI P2 and MI P∗
2 ),

optimal solutionswere found for small-sized instances (n ∈ {8, 10}), feasible solutions
were obtained for medium-sized instances (n ∈ {12, 15, 20, 25, 30}), but no feasible
solution was found for large-sized instances (n ∈ {50, 75, 100, 250, 500}). Therefore,
H1, VND, GVNS and GRASP were designed to solve medium-sized and large-sized
instances.

5.2 Results of the exact methods

In Table 7, we compare the CPLEX performance of models MI P1, MI P∗
1 , MI P2,

andMI P∗
2 for 7 instance groups (g1, . . . , g7)with a time limit of 1h (since no feasible

solution is found for the instance groups g8 to g12). For each MIP formulation, the
following information is given: the number of instances solved to optimality within
1h, #opt; the average computing time for these optimally solved instances, CPU; the
number of instances unsolved within 1h (instances with feasible solutions), #fs; and
the average optimality gap for the instances which could not be solved within 1h, gap
(%).

The following observations can be made:
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– For the instance group g1, formulations MI P1, MI P∗
1 , MI P2, and MI P∗

2 are
able to produce an optimal solution for all instances. For the formulations MI P2
and MI P∗

2 , CPLEX is able to produce an optimal solution in less computational
time in comparison with the formulations MI P1 and MI P∗

1 .
– For the instance group g2, formulations MI P1, MI P∗

1 , MI P2, and MI P∗
2 are

able to produce an optimal solution for all instances. MI P∗
2 is able to produce an

optimal solution in less computational time than the other formulations.
– For the instance group g3,MI P1,MI P2, andMI P∗

2 are able to produce an optimal
solution for all instances. MI P∗

1 is able to produce an optimal solution for only 3
instances. Again, MI P∗

2 works faster than the other formulations.
– For the instance group g4, MI P2 and MI P∗

2 are able to find an optimal solution
for only one instance.MI P∗

2 produces, on average,much smaller gaps thanMI P2.
In addition, MI P1 and MI P∗

1 produced a feasible solution for all instances.
– For the instance groups g5 to g7 no formulation is able to find an optimal solution
for all instances. On average, formulationMI P∗

2 producesmuch smaller gaps than
the other formulations.

Overall, the results showed that MI P∗
2 outperforms, on average, the other formula-

tions on almost all instances. This highlights the positive impact of the strengthening
constraints in Eq. (23). Therefore, in the next experiments, we compare only MI P∗

2
with the other approaches.

5.3 Results of the solutionmethods

5.3.1 Comparison ofMIP∗
2 , H1, VND, GVNS and GRASP for the small-sized instances

Note first that for all tables, an empty cell means that the same value as the above
one is kept, and all the computing times are indicated in seconds. In Table 8, we
compare the performance of MI P∗

2 , H1, VND, GVNS and GRASP for small-sized
instances, where an optimal solution can be found by MI P∗

2 within 1h. Each instance
is characterized by the following information: an ID; a number n of jobs; a numberm of
machines; the due date tightness factor τ; the optimal value Lopt

max of Lmax (found with
the formulation MI P∗

2 ). Next, the obtained value of Lmax is given for H1 (but not the
computing time, as it is always below 0.0001s) and VND (but not the computing time,
as it is always below 0.01 s). Finally, the computing time to find an optimal solution is
given for the MI P∗

2 , GVNS and GRASP. The last line of the table indicates average
results.

The following observations can be made:

– GVNS andGRASP can reach an optimal solution for each instance in significantly
less computing time than the formulation MI P∗

2 .
– VND is able to find an optimal solution for four instances, namely: I1, I5, I6, I11.
– H1 is never able to find an optimal solution (its average gap to optimality is around
25%), except for instance I6.

– GVNS requires the smallest average computing time (0.31 s) to find optimal solu-
tions.
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Table 8 Results of MI P∗
2 , H1, VND, GVNS and GRASP for the small-sized instances

Instance H1 VND MI P∗
2 GVNS GRASP

ID n m τ Loptmax Lmax Time

I1 8 2 0.65 79 112 79 0.97 0.12 0.04

I2 0.80 101 151 111 0.87 0.00 0.00

I3 3 0.65 101 128 107 1.18 0.00 0.01

I4 0.80 95 144 102 0.64 0.09 0.00

I5 4 0.65 49 50 49 0.85 0.00 0.00

I6 0.80 115 115 115 0.96 0.00 0.00

I7 10 2 0.65 125 141 133 7.48 0.11 0.02

I8 0.80 185 222 201 12.30 2.91 3.91

I9 3 0.65 77 105 82 3.55 0.01 0.51

I10 0.80 122 160 134 4.11 0.08 1.37

I11 4 0.65 62 62 62 1.21 0.00 0.00

I12 0.80 112 134 113 7.80 0.39 0.01

Avg. 101.92 127 107.33 3.49 0.31 0.49

The best average results are indicated in bold face

5.3.2 Comparison ofMIP∗
2 , H1, VND, GVNS and GRASP for the medium-sized

instances

Table 9 presents the results for the medium-sized instances (the best results are indi-
cated in bold face). The instance characteristics are first indicated. For MI P∗

2 , the
following information is given: the lower bound LBMI P∗

2
, the upper boundUBMI P∗

2
,

the percentage gap to optimality GapMI P∗
2
(%), and the time requested to prove opti-

mality (if below 1h). Note that for the instances I35 to I37, no information is provided
as CPLEX is not able to return a feasible solution. Next, the found value of Lmax is
given for H1 and VND (with its associated computing time). Finally, the following
results are showed for GVNS and GRASP: the best (resp. average) objective-function
value over 10 runs denoted as L�

max (resp. Lavg
max ). The average computing times are

also provided (computed over the 10 runs, and the computing time of a run corresponds
to the time at which the best visited solution is found).

The following observations can be made:

– CPLEX (i.e., theMI P∗
2 formulation) is able to prove the optimality of the obtained

solutions for the instances I16 to I18.
– The limitations of CPLEX seem to start from n = 15, and they are obvious from
n = 30.

– GVNS and GRASP outperform significantly MI P∗
2 both in terms of quality (i.e.,

objective-function values) and speed (i.e., time requested to find competitive solu-
tions). Moreover, for the instances I16 to I18, GVNS and GRASP are also able to
find optimal solutions, but within 25s.

– The results of H1 allow to measure the benefit of GVNS, as the latter employs the
former to generate an initial solution.
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– GVNSandGRASPoutperformVNDsignificantly (except for the instances I29 and
I34). This shows the benefit of all the ingredients (e.g., diversificationmechanisms)
added to VND to derive GVNS and GRASP.

– GVNSandGRASPhave a similar performance. In addition, the difference between
Lavg
max and L�

max is very small (often below one unit).
– GVNS is able to obtain the best results for all instances but two (with n = 20).

5.3.3 Comparison of VND, GVNS and GRASP for the large-sized instances

Table 10 has the same structure as Table 9, and the best average results are indicated in
bold face. It presents the results for VND, GVNS and GRASP, which are the method
specifically designed for tackling the large-sized instances (indeed, MI P∗

2 cannot find
a feasible solution for such instances, and the role of H1 is simply to generate an initial
solution for GVNS).

The following observations can be made:

– Overall, for the provided instances, the methods can be ranked as follows: GVNS
> GRASP > VND. This ranking is very obvious for n ∈ {250, 500}.

– GVNSandGRASPhave comparable objective-functionvalues forn ∈ {50, 75, 100}.
However, for such instances, GVNS requires generally less computing time to find
its best solutions. In contrast, GVNS significantly outperforms GRASP for the
larger instances (n ∈ {250, 500}).

– GVNS has a best L�
max value for 26 instances, whereas GRASP has best values

for only 8 instances.
– For GVNS and GRASP, the difference between Lavg

max and L�
max grows with n and

m, which is likely to indicate the robustness degradation with the increase of the
instance size (i.e., with the increase of the problem complexity). This degradation
is however smaller for GVNS when compared to GRASP.

5.4 Discussion

Table 11 presents the performance of VND, GVNS and GRASP in terms of the per-
centage deviation from the best-known solutions according to the due date tightness
factor τ and the number n of jobs. In order to compute each percentage deviation,
two values of L�

max are compared: the best one over all the runs of all the methods,
and the one obtained by the considered method. Again, we can easily observe the
superiority of GVNS over GRASP (in particular for the large-sized instances), and
both methods outperforms their intensification operator VND. Furthermore, VND and
GRASP perform better with τ = 0.85 rather than with τ = 0.65 (with respect to the
deviation from the best-known solutions). This might indicate that these methods are
less efficient with tighter due dates.
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Table 11 Comparison of VND, GVNS and GRASP in terms of percentage deviation from the best-known
solutions

n τ Percentage deviation from the best solutions

VND GVNS GRASP

8 0.65 1.98 0 0

0.80 5.76 0 0

10 0.65 4.30 0 0

0.80 6.46 0 0

12 0.65 8.83 0 0

0.80 8.07 0 0

15 0.65 14.06 0 0

0.80 5.93 0 0

20 0.65 8.96 0.12 0

0.80 5.80 0.12 0.07

25 0.65 18.28 0 0.64

0.80 5.10 0 0.64

30 0.65 9.41 0 0.97

0.80 5.05 0 1.40

50 0.65 11.79 0.06 0.79

0.80 3.87 0 0.14

75 0.65 10.98 0.16 0.19

0.80 3.26 0.34 0.03

100 0.65 7.81 0.15 0.47

0.80 2.32 0 0.46

250 0.65 215.75 0 163.05

0.80 23.74 0 12.60

500 0.65 409.24 0 354.14

0.80 28.56 0 22.52

Avg. 34.39 0.04 23.25

The best average results are indicated in bold face

6 Conclusions and future works

In this work, we investigated the problem of scheduling a set of jobs that are released
over timeon an arbitrary number of identical parallelmachineswith a single server. The
objective function involved the minimization of the maximum lateness. We proposed
twomixed-integer-programming (MIP) formulations to solve optimally instanceswith
up to 12 jobs. Due to its NP-hard nature, a constructive heuristic (H1) and two
metaheuristics were designed to obtain solutions for larger instances with up to 500
jobs. The first metaheuristic is a General Variable Neighborhood Search (GVNS),
whereas the second is a Greedy Randomized Adaptive Search Procedure (GRASP).
Both algorithms use a Variable Neighborhood Descent (VND) for the intensification
phase, which involved three well-known neighborhood structures for such problems.
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In line with the good practice of the related literature, we have built 72 benchmark
instances to compare the proposed methods. For small-sized instances, GVNS and
GRASP outperformed the MIP formulations in terms of the computing time to find an
optimal solution. However, for medium and large-sized instances, the results show the
very good performance of GVNS with respect to quality (of the obtained solutions),
speed (i.e., time needed to generate efficient solutions) and some robustness indicators
(e.g., deviation percentage from the best-known results, difference between the best
and average solution values). This success can be explained by the good balance
between the inherent diversification and intensification features of GVNS, namely
the alternate and fine-tuned use of the VND operator for intensifying the search, and
the shaking phase for diversifying the search. It also outlines that the exploration
mechanism of GRASP (i.e., building another solution from scratch) might be too
strong when compared to the shaking phase of GVNS. Indeed, the latter preserves a
significant portion of the incumbent solution (a mechanism has been added to avoid
the shaking phase resemble a restart mechanism, which results in well-controlled
trajectory when exploring the solution space).

An avenue of research would be to adapt the proposed methods to other machine
environments, such as dedicated and unrelated parallel machines, taking into account
sequence-and-machine-dependent setup times. Further works could propose tight
bounds on the machine impact for the problem P, S1|r j |Lmax as done by Rustogi
and Strusevich (2013) for the parallel machine scheduling problem to minimize the
makespan and the total flow time.
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