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Abstract
In this article, we address the m-machine no-wait flow shop scheduling problem with
sequence dependent setup times. The objective is to minimize total tardiness subject to
an upper bound on makespan. Although these constraints and performance measures
have all been extensively studied independently, they have never been considered
together in this problem before. So, thismulti-criteria approach providesmore realistic
solutions for complex scenarios. To solve the problem, we developed a new heuristic
called IGA. The proposed method repeatedly performs a process of destruction and
construction of an existing solution in order to improve it. The novelty of this method
includes a mechanism capable of adapting the destruction intensity according to the
instance size and the number of iterations, calibrating the algorithm during the search.
Computational experiments indicate that IGA outperforms the best literature method
for similar applications in overall solution quality by about 35%. Therefore, IGA is
recommended to solve the problem.
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1 Introduction

Sequencing and scheduling can be defined as allocating resources to perform tasks
over time. This type of problem is so general that it appears almost everywhere.
Unfortunately, proposing feasible solutions in real-world situations is not always easy.
In complex environments, scheduling problems often involve tasks competing for
resources along with several embedded constraints and objectives, making them very
hard to solve (Pinedo 2016; T’kindt and Billaut 2006). Furthermore, the pressure
to overcome this challenge is ever-increasing, since failing to use available resources
efficiently or respond quickly to customer demands in today’s competitivemarkets can
be the end of any business. Thismakes awell-chosen scheduling strategy play a crucial
role in present times. In this context, we study the m-machine flow shop scheduling
problem (FSP). In order to propose more realistic solutions for complex scenarios, the
problem is addressed with a multiple criteria approach. Specifically, a multi-objective
function is applied to minimize total tardiness subject to an upper bound onmakespan.
In addition, the FSP is considered with no-wait (NWT) and sequence dependent setup
times (SDST). These objectives and constraints are common in productions systems
and have never been considered together in this problem before. To solve the problem,
a new algorithm is proposed and compared with the current best methods for similar
applications.

The m-machine FSP is a system where a set of jobs have to be processed through
a series of machines in the same processing routing. Each machine processes one
job at a time. No job can overtake other jobs (first-in-first-out) and therefore only
permutation schedules are allowed. When the NWT constraint is in place, there is
no waiting time between successive operations. Therefore, no job is permitted to uti-
lize a buffer or to wait in an upstream machine. NWT may occur due to process
requirements or unavailability of waiting space. Having setup constraints means that
a machine requires some preparation before processing a particular job. This prepa-
ration may include cleaning, retooling, adjustments, inspection and rearrangement
of the workstation. When setup times are sequence-dependent, the length of these
times depends on the difficulty involved in switching from one processing config-
uration to another. SDST are common in multipurpose machines or where a single
facility produces a variety of products. In those situations, instead of absorbing the
setup times in the processing times, it is recommended to make explicit considera-
tions to address the problem (Baker and Trietsch 2019; Pinedo 2016; Emmons and
Vairaktarakis 2013).

Total tardiness and makespan are two important performance measures in the field
of scheduling. Total tardiness is the sum of all delays related to not meeting due
dates. Minimizing total tardiness implies that delays can be subjected to penalties,
but there are no benefits from completing jobs in advance. Makespan represents the
maximal completion time among all jobs in the system. Minimizing makespan is
appropriate when a complete batch of jobs needs to be dispatched as quickly as
possible. A reduced makespan is also important to have an efficient utilization of
resources, that is, to decrease equipment idle time (Baker and Trietsch 2019; Pinedo
2016). Total tardiness and makespan are addressed here as the hierarchical objective
T T | Cmax ≤ K . A hierarchical function A | B ≤ K minimizes A subject to an upper
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bound K on B. This formulation is appropriate when there is no need to optimize
objective B as long as it does not exceed the upper bound (Emmons and Vairaktarakis
2013).

The NWT-FSP is proved to be NP-hard. Since using exact methods in this case
can be impractical, heuristic methods have been developed to speed up the process
of finding reasonable solutions for this problem. Some researchers have proposed
algorithms to minimize makespan and total tardiness in NWT-FSP-SDST. The most
relevant studies include greedy algorithms (Bianco et al. 1999; Xu et al. 2012; Li et al.
2018), simulated annealing (Lee and Jung 2005; Aldowaisan and Allahverdi 2015),
hybrid genetic algorithm (Franca et al. 2006), constructive heuristics (Ara and Nagano
2011), greedy randomized adaptive search procedure and evolutionary local search
based (Zhu et al. 2013b), iterative algorithms (Zhu et al. 2013a), hybrid evolutionary
cluster search (Nagano and Araújo 2014), hybrid greedy algorithm (Zhuang et al.
2014), particle swarm optimization (Samarghandi and ElMekkawy 2014), genetic
algorithms (Samarghandi 2015a, b; Aldowaisan and Allahverdi 2015) and local search
(Miyata et al. 2019).

The literature on multi-objective optimization of NWT-FSP is relatively limited,
especially when hierarchical objectives are addressed. Allahverdi (2004) proposed
an insertion-based iterative algorithm to minimize a weighted sum of makespan and
maximum tardinesswith an upper bound onmaximum tardiness. Framinan andLeisten
(2006) proposed a heuristic based on a dominance property over the job of maximum
tardiness tominimizemakespan subject tomaximum tardiness. Tominimizemakespan
subject tomean completion time (or the equivalent total completion time), Aydilek and
Allahverdi (2012) presented several heuristics based on simulated annealing and local
searches and Nagano et al. (2020) proposed an iterated greedy. Allahverdi and Aydilek
(2013) develop an iterated local search and a genetic algorithm to minimize total
completion time subject to makespan, and Allahverdi and Aydilek (2014) proposed—
among others—a heuristic based on simulated annealing for the same problem with
separate setup times. Recently, Allahverdi et al. (2018) proposed an algorithm which
combines simulated annealing and an insertion algorithm to solve the NWT-FSP with
total tardiness subject to makespan, and Allahverdi et al. (2020) presented a similar
method for the same problem with separate setup times.

As can be noted, many applications and research have independently investigated
different variations of the no-wait flow shop scheduling problem. And since most of
them have not been compared, it is unclear which solution methodology performs
better and under what conditions [see the related surveys presented by for more infor-
mation]. However, the literature highlights themost frequently used high-performance
techniques. Based on this information, we propose a new iterated greedy algorithm
called IGA. An iterated greedy algorithm fundamentally has a construction mecha-
nism and a destruction mechanism that are repeatedly executed in an alternating order.
It is a very flexible and malleable method that can easily be combined with other tech-
niques and reach very high performance when applied to basically any combinatorial
optimization problem. The iterated greedy was initially proposed to solve the FSP by
Ruiz and Stützle (2007). After that, different extensions have been published consid-
ering additional constraints, e.g., sequence-dependent setup times (Ruiz and Stützle
2008), no-idle mixed no-idle (Pan and Ruiz 2014), no-wait (Yamada et al. 2021) and
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blocking (Tasgetiren et al. 2017). Other optimization criteria have also been addressed
apart from makespan such as total tardiness and total flowtime. The iterated greedy
has also been effective to solve multi-objective scheduling problems (Dubois-Lacoste
et al. 2011; Minella et al. 2011; Ciavotta et al. 2013). Given the wide applicability, the
flexibility, and the often high performance of iterated greedy, we decided to use this
strategy to develop IGA.

In this work, the no-wait flow shop problem to minimize total tardiness subject to
makespan is addressed for the first time with sequence-dependent setup times, which
is a more complex scenario in production systems where machine setup times depend
on the sequencing of jobs and decisions taken in previous periods. We present an
original iterated greedy algorithm. The novelty of this method includes a new mech-
anism capable of using some search-dependent properties to calibrate the algorithm
during execution. Specifically, the algorithm adjusts its destruction intensity accord-
ing to the instance size and number of iterations to improve convergence to a global
optimum. Extensive computational experiments were conducted to evaluate the pro-
posed approach against two recent methods for similar problems: algorithm AA (no
setup) by Allahverdi et al. (2018) and algorithm PA (simple setup) by Allahverdi et al.
(2020). The two literature methods are adapted to solve the problem with sequence-
dependent setup times. The results show that the proposed algorithm outperforms
the best literature method by about 35% on average under the same computational
conditions.

The remaining content is structured as follows. Section2 is dedicated to the problem
definition.The algorithms are described inSect. 3. Section4presents the computational
experiments. The final conclusions and some future directions are given in Sect. 5.

2 Problem definition

The FSP consists of a set M = {1, . . . ,m} of m work stations that process a set N =
{1, . . . , n} of n independent jobs sequentially. In addition, there are some assumptions
made on jobs and machines: all operational requirements are known; all jobs are
available to be processed from time zero; there is only one machine on each work
station (m-machine); no machine can process two or more jobs at the same time; no
job can be processed on more than one machine simultaneously; each operation must
be performed without interruption (no preempt); after an operation is completed, a job
is immediately available for the next operation; each machine must process a job only
once (no recirculation); all processing times are positive; and all jobs are processed
in the same order on all machines (permutation). The goal consists of finding the best
possible sequence that optimizes the objective function.

The problem can be addressed as follows. Let pi, j denote the processing time of
job j ∈ N on machine i ∈ M . Furthermore, let si, j represent the setup time required
on machine i for job j after job j − 1 is completed. Then, the start time of job j on
the first machine, denoted by S j , can be defined as
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Fig. 1 Two adjacent jobs on the NWT-FSP-SDST

S j = max
1<k≤m

{
S j−1 +

k∑
i=1

pi, j−1 + sk, j −
k−1∑
i=1

pi, j

}
, j = 2, . . . , n

where S1 = s1,1 and j = 0 is a dummy job with processing times and setup times
of zero length. Now, let C j denote the completion time of job j on the last machine.
Then, C j can be defined as

C j = S j +
m∑
i=1

pi, j , j = 1, . . . , n.

In addition, let T T and Cmax denote total tardiness and makespan, respectively.
Finally, let d j be the due date of job j . Total tardiness is defined as T T = ∑n

j=1 Tj ,
where Tj = max{C j −d j ; 0}. Makespan is defined asCmax = Cn . Figure1 illustrates
two adjacent jobs on the NWT-FSP-SDST.

Using the classification system α/β/γ introduced by the m-machine NWT-FSP-
SDST to minimize total tardiness subject to makespan can be written as

Fm / nwt, si, j / (TT | Cmax ≤ K) ,

where Fm and nwt represent flow shop and no-wait, respectively. Thus, the problem
consists of finding the best possible sequence so that total tardiness is minimized and
makespan does not exceed a predefined K value. In real problems, the initial solution
and K must be provided by the scheduler. For the experiments performed here, these
data are generated using the Transposition local search presented by Algorithm 1.
Starting from a random sequence, the Transposition method returns the best solution
of (n − 1) permutations produced by swapping successive pairs of adjacent jobs. The
upper bound K is defined as the makespan value of the returned sequence.
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Algorithm 1 Transposition
1: π := random sequence;
2: K := Cmax (π);
3: for i := 1 to (n - 1) do
4: Insert the i-th job of π to position i + 1;
5: if Cmax (π) < K then
6: K := Cmax (π);
7: else
8: Move the (i + 1)-th job of π back to position i ;
9: end if
10: end for
11: return K , π ;

3 Heuristic algorithms

The problem of Fm/nwt/ (TT | Cmax ≤ K) has already been addressed in the litera-
ture by Allahverdi et al. (2018, 2020). In this work, the algorithm presented in each
study is implemented to solve the problem with sequence-dependent setup times. The
two methods are briefly explained in the next subsection, followed by a complete
description of the proposed algorithm.

3.1 Literature algorithms

Allahverdi et al. (2018) proposed the algorithm AA to solve the NWT-FSP with the
objective of minimizing total tardiness subject to makespan. They adapt many existing
algorithms for this problem and prove that AA performs better than all of them. In
summary, the algorithm AA is composed by a simulating annealing (SA) algorithm
and an insertion local search. Starting from an initial sequence obtained from EDD
(Earliest Due Date) rule, the SA is performed to reduce T T using a random pairwise
exchange operator. Then, if the solution does not satisfy the constraint Cmax ≤ K , the
insertion local search tries to improve the sequence to obtain a feasible solution. The
algorithm repeats these steps until the stopping criterion is satisfied.

Allahverdi et al. (2020) studied the same problem with separate setup times. These
setups can be classified as simple because the preparation times do not depend on
production in previous periods. They propose the algorithm PA, which was shown to
outperform different existing algorithms modified for this environment. PA starts the
initial solution as the best sequence between the EDD rule and the NEH minimizing
T T . The optimization process has three phases. In the first phase, an SA algorithm
utilizes block insertion and block exchange operators to reduce T T . In the second
phase, an insertion local search is performed as an attempt to find a feasible solution
for the condition Cmax ≤ K . In the third phase, total tardiness is minimized by
inserting the job having the maximum tardiness into all other positions.

It should be noted that at the start of both, AA and PA, the optimization of total
tardiness takes place without imposing the upper bound on makespan. Only then does
a local search try to satisfy this constraint, but this timewithout accepting worse values
for total tardiness. For this reason, these algorithms tend to get stuck, as optimizing
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total tardiness and makespan are often competing objectives. In other words, both
methods may not be able to generate a feasible solution. This fact is confirmed in the
experiments carried out. To avoid fundamental changes in the algorithms, the initial
solution is returned each time AA or PA are not able to produce a feasible solution.

3.2 Iterated greedy algorithm (IGA)

The proposed method, called IGA, optimizes an initial solution through a destruction
and construction process. In the destruction phase, a set of random jobs is removed from
the incumbent solution. This simple stochastic method provides fast destruction and at
the same time reduces the chance of trapping in local optima. The construction phase
tries to reinsert the removed jobs through a process based on the NEH mechanism,
Nawaz et al. (1983) to produce a new candidate solution. Next, an acceptance criterion
updates the incumbent with the candidate if the new sequence is a better feasible
solution (or in other words, if the candidate is complete, has lowest total tardiness
and satisfies the upper bound constraint on makespan). The method is composed of
Algorithms 2 and 3.

Algorithm 2 IGA
1: Initialize: N, P, π0;
2: π := π0;
3: F := T T (π);
4: f := 1 / exp(ln(2) × (n/N )P )

5: d := f ;
6: repeat
7: π ′ := DestroyRepair(π , d);
8: F ′ := T T (π ′);
9: if F ′ < F then
10: π := π ′;
11: F = F ′;
12: end if
13: d = d × f ;
14: until Time Limit
15: return π ;

Algorithm 3 DestroyRepair
1: Initialize: π, d;
2: πd := π ;
3: D := n × d; # integer
4: πe := D random jobs removed from πd
5: while πe is not empty do
6: πd := best feasible sequence generated by inserting the last job of πe in all positions of πd
7: end while
8: if πd is feasible then
9: π := πd
10: end if
11: return π ;
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Algorithm 2 runs at the highest level. In line 1, the necessary parameters (N and P)
and the initial sequence (s0) are defined. The next two lines initialize the incumbent
variables π and F that receive copies of s0 and its total tardiness T T (s0), respectively.
In line 4, the factor f ∈ {0, 1} is calculated using N and P . A copy of f is made
to initialize the variable d in line 5. Lines 6–14 make up the main loop, which is
responsible for the optimization itself. First, Algorithm 3 is called on line 7. It takes π

and d as arguments and returns the candidate solution π ′. Then, an acceptance process
is carried out from line 8–12. In this process, the auxiliary variable F ′ is initializedwith
T T (π ′) in line 8. If in line 9 the statement F ′ < F is true, that is, T T (π ′) < T T (π),
then π and F are updated with π ′ and F ′ in lines 10 and 11, respectively. After the
acceptance process, the factor f is used to update d in line 13. If the time limit is not
reached in line 14, the main loop starts another iteration from line 6. Otherwise, the
iterations terminate and the incumbent sequence π is returned in line 15.

Algorithm 3 runs at the lowest level. It generates a candidate solution through the
destruction and construction process. In line 1, the sequence π and the coefficient d
are both initialized. In line 2, a copy of π is made to initialize the auxiliary variable
πd . The number of jobs to be removed from πd is calculated and assigned to D in line
3. In line 4, the sequence πe is initialized with D random jobs removed from πd . In
lines 5–7, a loop tries to reinsert the removed jobs, one by one, from πe to πd through
a NEH-based process where the job to be inserted is tested in all possible positions.
The best feasible solution is taken at the end of each iteration. These steps are repeated
until all jobs are reinserted or no feasible solution is produced. When the reinsertion
process can generate a feasible solution, π is updated with πd (line 9). Finally, π is
returned in line 11.

It is important to note that d is not fixed across different instance sizes or while the
algorithm is solving a problem. Instead, some search-dependent properties are used
by the algorithm to modify this value in order to find an appropriate balance between
search diversification and intensification. Diversification is explored by removing a
large number of jobs to drive the search to rather distant solutions in the construc-
tion phase. Intensification, on the other hand, is explored by removing few jobs to
focus the search on more localized regions. Some initial experiments suggested that
a diversification strategy is more effective at the beginning of the search and have the
cost of higher computation times for large problems. Considering this observation,
the algorithm was designed so that the initial value of d is inversely proportional to
the number of jobs and it decreases after each iteration. The adjustment is made at the
end of each loop by multiplying d by the constant f defined as

f = 1

exp(ln(2) × (n/P)Q)
,

where n is the number of jobs. The values P and Q are parameters that have to be
calibrated. The parameter P defines the number of jobs needed for f to reach 50%. Q
is the parameter used to attenuate the change rate of the function. Figure2 illustrates
the function with some values set for P and Q.

The IRACE software package (Lopez-Ibanez et al. 2016) is used to determine the
appropriate parameter settings. This package automatically finds the most appropriate
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Fig. 2 Examples of function f (n)

parameter values for optimization algorithms given a set of instances and parameter
ranges. A set of 120 instances was created for this purpose, composed by all combina-
tions of n ∈ {5, 10, 20, 40, 80, 160} and m ∈ {4, 8, 12, 16}, with 5 different problems
for each combination n×m. It was considered for calibration N ∈ {150, 300, 450, 600,
750, 900} and P ∈ {4−1, 3−1, 2−1, 1, 2, 3, 4}. The processing times have a uniform
distribution in the range [1, 99]. The sequence dependent setup times are at most 10%
of the maximum processing times. In order to generate due dates, a uniform distribu-
tion between L(1 − T − R/2) and L(1 − T + R/2) was used where T represents a
tardiness factor, R represents the due date range, and L denotes an approximate value
for makespan. This is a consolidate approach in literature to generate due dates (e.g.,
Aldowaisan and Allahverdi 2012; Fernandez-Viagas and Framinan 2015; Framinan
and Perez-Gonzalez 2018). The values 0.25 and 1.0 were defined for T and R, respec-
tively. The tuning was performed using a computation time limit of n×(m/2)×25ms
as stopping criterion (see Ruiz and Stützle 2008). The best parameter values obtained
are P = 300 and Q = 2.

4 Computational experiments

All algorithms were implemented in C++. The computer used was a PC with an AMD
Quad-Core Processor A12-9720P 3.60GHz and 8GBRAM running under aWindows
10 operating system. This study considers the test problems proposed byMinella et al.
(2008) andRuiz and Stützle (2008),which are extensions of the benchmarks of Taillard
(1993). The processing times have a uniform distribution in the range [1, 99]. We use
five instance sets with ratio of setup times s ∈ {0, 10, 50, 100, 125} of the maximum
processing times. Each set consists of 10 problems for each combination n × m of
{20, 50, 100} × {5, 10, 20} and 200 × {10, 20}. The first set called SDST0 is taken
fromMinella et al. (2008) and has no setup times. The remaining sets called SDST10,
SDST50, SDST100, and SDST125 are taken from Ruiz and Stützle (2008) and have
times uniformly distributed in the range [1, 9], [1, 49], [1, 99] and [1, 124], respectively.
Thus, there are 550 instances in total. In order to provide an easy and fair comparison,

123



40 F. S. de Almeida, M. S. Nagano

Fig. 3 ARPD versus jobs and machines

Fig. 4 ARPD versus setup and time

all methods were tested by using the same initial solutions (and K values) obtained
from Algorithm 1.

The stopping criterion used was the CPU time limit defined as n × (m/2) × tms.
The experiments were performed for t ∈ {10, 20, 30, 40} to analyze the algorithms
in different available computational times. The solutions were evaluated by using the
average relative percentage deviation (ARPD) defined as

ARPDh = 100

N

N∑
i=1

T T h
i − T T best

i

T T h
i

,

where ARPDh represents the performance of a heuristic h. In other words, this mea-
sure consists of the arithmetic mean of the deviations of a heuristic h from each best
known solution. Therefore, the best heuristic is the one with the lowest ARPD value.

The ARPD results over jobs and machines are presented in Table1(a). Table 1(b)
gives the results over setup and time factors. It should be noted that the ARPD values
of IGA are disproportionately higher for time factor t = 10. The reason for this is
that the time limits generated in this condition may not be sufficient for the algorithm
to complete the first iteration, especially in cases with small instances. Others minor
differences can be explained by the fact that the benchmarks used have due dates
produced by different strategies. Despite that, the performance behaviors and their
differences are very clear as can be seen in Figs. 3 and 4. As noted, the differences
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Table 1 ARPD results (a) Jobs (n) × machines (m)
Heuristic IGA AA PA
n m

20 5 3.75 55.51 48.86

10 6.76 82.07 37.66

20 19.76 106.97 75.39

50 5 1.83 47.65 34.93

10 1.88 58.04 41.17

20 1.60 77.56 45.15

100 5 1.39 43.25 35.39

10 1.38 47.37 40.31

20 1.08 55.55 42.34

200 10 6.75 22.77 19.50

20 1.24 25.71 21.24

Average 4.23 56.28 39.98

(b) Setup (s) × time (t)
Heuristic IGA AA PA
s t

0 10 39.93 85.79 61.70

20 4.87 75.48 57.11

30 2.03 72.14 48.54

40 0.85 71.28 48.36

10 10 4.65 58.63 41.67

20 1.92 58.88 35.77

30 1.09 69.62 40.70

40 1.30 61.37 52.78

50 10 9.34 51.11 40.25

20 1.56 55.93 31.90

30 0.86 55.99 32.50

40 0.75 57.02 33.41

100 10 3.33 43.51 32.19

20 1.54 42.86 40.96

30 1.20 45.01 38.86

40 0.08 45.95 26.64

125 10 3.32 39.99 31.84

20 2.08 43.95 42.17

30 1.89 44.62 29.36

40 1.72 48.18 34.05

Average 4.23 56.28 39.98
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Table 2 Multiple comparison of means—Tukey’ HSD test

Methods Mean difference (I–J) Std. error Sig. 95% confidence interval Reject

I J Lower bound Upper bound

AA IGA 52.06 1.28 0.000 49.04 55.07 True

PA 16.30 1.28 0.000 13.29 19.31 True

IGA AA − 52.06 1.28 0.000 − 55.07 − 49.04 True

PA − 35.76 1.28 0.000 − 38.77 − 32.74 True

PA AA − 16.30 1.28 0.000 − 19.31 − 13.29 True

IGA 35.75 1.28 0.000 32.74 38.77 True

FWER=0.05

Fig. 5 Multiple comparisons between all pairs (Tukey)

between the algorithms tend to decrease when the setup factor and especially the
number of jobs increase. On the other hand, in general, the errors get bigger when
the number of machines increases. Variations in the time factor do not appear to have
much effect for values above 10. In all cases, IGA has a significant advantage over
the other methods. The overall ARPD values of IGA, PA, and AA are 4.23, 39.98 and
56.28, respectively.

The Tukey’ honestly significant difference (HSD) test was conducted to analyze
the statistic difference between the methods. The null hypothesis that two algorithms
have equal performances was tested at a significance level of 5%. The results in Table2
show that all algorithms are statistically different from each other. The differences at a
confidence interval of 95% are illustrated in Fig. 5. As can be noted, IGA outperform
the second best method by about 35% and the third best by about 52%.

123



An efficient iterated greedy algorithm for a... 43

5 Conclusion

In this work, the NWT-FSP-SDST is addressed. The objective is to minimize total tar-
diness subject to the constraint that makespan does not exceed a maximum acceptable
value. An iterated greedy algorithm was proposed to solve the problem. The proposed
approach was tested against the existent algorithms AA and PA, which are designed to
solve the most similar problems found in the literature. Experiments under the same
computational conditions show that IGA, PA and AA obtained overall ARPD val-
ues of 4.23, 39.98 and 56.28, respectively. Therefore, IGA outperforms the literature
methods.

There are some issues that can be investigated in the future. First, the proposed
algorithm was compared with the best literature methods for similar problems. How-
ever, adapting other methods for different applications in future experiments could be
promising. Another option is to consider additional factors like number of machines
to determine the destruction strength of the proposed algorithm. In this work, only the
number of jobs was considered for this purpose and therefore it may be possible to get
better results with a broader approach. Additionally, the diversification/intensification
behavior of the heuristic can be further explored. For example, it can be favorable
to examine new strategies that combine greedy searching with random perturbations,
both in destruction and construction phases.
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