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Abstract
Integer knapsack problems with profit functions of the same value range are studied.
Linear time algorithms are presented for the case of convex non-decreasing profit func-
tions, and an NP-hardness proof and a fully polynomial-time approximation scheme
are provided for the case of arbitrary non-negative non-decreasing profit functions. Fast
solution procedures are also devised for the bottleneck counterparts of these problems.
Computational complexity of the case with concave profit functions remains open.

Keywords Knapsack problem · Convex optimization · Median finding ·
NP-hardness · FPTAS
Mathematics Subject Classification 90C27 · 90C39

1 Introduction

Knapsack problems appear in diverse applications as sub-tasks of more complex prob-
lems. Their solution techniques are employed as subroutines in column generation
schemes and lower bound constructions for many NP-hard combinatorial optimiza-
tion problems. Numerous results exist for knapsack problems, see monographs of
Martello and Toth (1990) and Kellerer et al. (2004).

Denote an interval of integer numbers {a, a + 1, . . . , b} as [a, b] for a < b, and
denote a variable vector (x1, . . . , xn) as x . Let integer numbers B, d j , real number C ,
and functions f j (x j ), j ∈ [1, n], be given such that d j > 0, 0 < B <

∑
j∈[1,n] d j ,
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0 < C ≤ n, f j (x j ) is non-decreasing for x j ∈ [0, d j ], f j (0) = 0, f j (d j ) = 1, and
f j (x j ) = −∞ for x j /∈ [0, d j ], j ∈ [1, n]. We study the following two knapsack
problems, which we denote as K1 and K2.

Problem K1:

max
x

∑

j∈[1,n]
f j (x j ), subject to

∑

j∈[1,n]
x j ≤ B,

x j ∈ [0, d j ], j ∈ [1, n].

Problem K2:

min
x

∑

j∈[1,n]
x j , subject to

∑

j∈[1,n]
f j (x j ) ≥ C,

x j ∈ [0, d j ], j ∈ [1, n].
The problems K1 and K2 admit several equivalent formulations, in which feasible

domains of the variables are extended from [0, d j ] to [a j , b j ], j ∈ [1, n], the common
objective function value range is extended from the interval [0, 1] of real numbers to
an arbitrary common interval of real numbers, and the direction of optimization inK1
and the inequality sign in K2 are reversed. Let numbers B+, C+, L+, U+, B−, C−,
L−, U−, a j , b j , and functions f +

j (x j ) and f −
j (x j ) be given such that a j < b j and

– f +
j (a j ) = L+, f +

j (b j ) = U+, L+ < U+, f +
j (x j ) is non-decreasing for x j ∈

[a j , b j ], f +
j (x j ) = −∞ for x j /∈ [a j , b j ], j ∈ [1, n],

– f −
j (a j ) = U−, f −

j (b j ) = L−, L− < U−, f −
j (x) is non-increasing for x j ∈

[a j , b j ], and f −
j (x j ) = +∞ for x j /∈ [a j , b j ], j ∈ [1, n].

The following knapsack problems are equivalent to K1.

Problem K1+:

max
x

∑

j∈[1,n]
f +
j (x j ), subject to

∑

j∈[1,n]
x j ≤ B+,

x j ∈ [a j , b j ], j ∈ [1, n].

Problem K1−:

min
x

∑

j∈[1,n]
f −
j (x j ), subject to

∑

j∈[1,n]
x j ≤ B−,

x j ∈ [a j , b j ], j ∈ [1, n].
The following problems are equivalent to K2.

Problem K2+:

min
x

∑

j∈[1,n]
x j , subject to

∑

j∈[1,n]
f +
j (x j ) ≥ C+,

x j ∈ [a j , b j ], j ∈ [1, n].

Problem K2−:

min
x

∑

j∈[1,n]
x j , subject to

∑

j∈[1,n]
f −
j (x j ) ≤ C−,

x j ∈ [a j , b j ], j ∈ [1, n].
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It is easy to see that for any instance of the problemK1+ (resp.,K2+), the following
instance of K1 (resp., K2) is equivalent: d j = b j − a j , f j (x j ) = f +

j (x j+a j )−L+
U+−L+ , j ∈

[1, n], B = B+ −∑
j∈[1,n] a j (resp.,C = C+−nL+

U+−L+ ). Similarly, for any instance of the
problem K1− (resp., K2−), the following instance of K1+ (resp., K2+) is equivalent:
f +
j (x j ) = − f −

j (x j ), j ∈ [1, n], B+ = B− (resp., C+ = −C−), L+ = −U−,
U+ = −L−. Furthermore, if the profit functions are convex non-decreasing in the
original instance of the problem K1 (resp., K2), then they are concave non-increasing
in the corresponding instance of the problem K1− (resp., K2−).

To facilitate the presentation, it is convenient to assume that all the functions con-
sidered in this paper are computable in a constant time. In this case, any instance of
any of the problems K1+ and K1− (resp., K2+ and K2−) can be transformed into an
equivalent instance of K1 (resp., K2) in O(n) time.

Motivation for the problem K1+ (resp., K1−) comes from the maximization of the
total success (resp., minimization of the total risk) of the projects by allocating limited
resources to them. In this situation, there are n projects, f +

j (x j ), 0 ≤ f +
j (x j ) ≤ 1,

is a convex non-decreasing success function (resp., f −
j (x j ), 0 ≤ f −

j (x j ) ≤ 1, is a
concave non-increasing risk function) for project j , which depends of the amount x j of
a discrete resource allocated to this project, x j ∈ [a j , b j ]. Equality f +

j (a j ) = L+ = 0

(resp., f −
j (a j ) = U− = 1) implies that if the resource is allocated at its lower bound,

then there is no success (resp., there is a full risk) and equality f +
j (b j ) = U+ = 1

(resp., f −
j (b j ) = L− = 0) implies that if the resource is allocated at its upper bound,

then there is a full success (resp., there is no risk).
Problems K1 and K2 belong to the class of non-linear knapsack problems, which

consist in the optimization of a non-linear function, subject to a single non-linear con-
straint. A review of these problems and their solution methods is given by Bretthauer
and Shetty (2002). More recent results can be found in D’Ambrosio and Martello
(2011), Zhang and Chen (2012) and D’Ambrosio et al. (2018). In these studies, port-
folio selection, stratified sampling, production and inventory planning, and resource
distribution are noted as applications of the non-linear knapsack problems.

Given a function f (x) of a discrete argument x ∈ [a, b] and a number A, we call
function min{x ∈ [a, b] | f (x) ≥ A} a minimum pseudo-inverse of f (x). In Sect. 2,
the case of convex profit functions is studied. We present O(n) time algorithms for
the problems K1 and K2 under the assumptions that the function f j (x j ) for any x j
in the problem K1 and its minimum pseudo-inverse min{x j ∈ [0, d j ] | f j (x j ) ≥ A}
for any A in the problem K2 are computable in a constant time for any j ∈ [1, n].
These algorithms are adaptations of the algorithms for the problems K1− and K2−
with concave non-increasing functions f −

j (x j ), j ∈ [1, n], given by Gurevsky et al.
(2022) as an illustration of their generic solution approach for a class of min-sum
controllable risk problems. The algorithms employ the median finding technique of
Blum et al. (1973), which was used for the fractional knapsack problem by Balas and
Zemel (1980).

The case of arbitrary non-negative non-decreasing profit functions is considered
in Sect. 3. Let a number ε > 0 be given. An algorithm for an optimization problem
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is called an ε-approximation algorithm, if for any instance I of this problem it finds
a feasible solution with value F0(I ) such that |F0(I ) − F∗(I )| ≤ ε|F∗(I )|, where
F∗(I ) is the optimum value for the instance I . A Fully Polynomial-Time Approxi-
mation Scheme (FPTAS) for an optimization problem is a family of ε-approximation
algorithms {Aε} each of which runs in time bounded by a polynomial of 1/ε and of the
problem input length in binary encoding. FPTASes are popular solution techniques
for knapsack type problems. Recently, Halman et al. (2018) presented an FPTAS for
a knapsack problem with parametric weights and Malaguti et al. (2019) and Kovalev
(2021) provided FPTASes for a fractional knapsack problem. In Sect. 3, we prove that
the problems K1 and K2 with non-negative non-decreasing profit functions are ordi-
nary NP-hard, and present FPTASes with the running times O(n3 log2 n + n3

ε2
) and

O(n3 log2(ndmax) + n3

ε2
), respectively, where dmax = max j∈[1,n] d j . Our FPTASes

are applications of the trimming-of-the-state-space and rounding techniques, origi-
nally described by Ibarra and Kim (1975) and Sahni (1977) for the classical knapsack
and subset sum problems. We did not manage to prove NP-hardness or develop a
polynomial-time algorithm for the case of concave profit functions. Bottleneck coun-
terparts of the problems K1 and K2 are formulated in Sect. 3.3. Simple solution
procedures are presented for them. The paper concludes with a short summary of the
results and suggestions for future research.

2 Convex profit functions

In this section, it is assumed that the profit functions f j (x j ), j ∈ [1, n], are convex
non-decreasing. In this case, O(n) time algorithms are developed for the problemsK1
and K2.

2.1 ProblemK1

Algorithm for the problem K1 is based on the following theorems.

Theorem 1 There exists an optimal solution x of the problem K1, in which there is
at most one index j∗ ∈ [1, n] such that all variables but variable x j∗ are equal to

their lower or upper bounds: x j ∈ {0, d j }, j ∈ [1, n]\{ j∗}, and x j∗ = min
{
d j∗ , B −

∑
j∈[1,n]\{ j∗} x j

}
.

Proof Follows from the convexity of the functions f j (x j ), j ∈ [1, n]. ��
Denote N j = {i | di ≤ d j , i ∈ [1, n]}, j ∈ [1, n].

Theorem 2 There exists an optimal solution x of the problem K1 and indices j0 and
j∗, j0 ∈ [1, n], j∗ ∈ [1, n], such that x j = d j for j ∈ N j0\{ j∗}, x j = 0 for

j /∈ N j0 ∪ { j∗} and x j∗ = min
{
d j∗ , B − ∑

j∈N j0\{ j∗} d j

}
.

Proof Let index j∗, mentioned in Theorem 1, be fixed. Since f j (d j ) = 1 ≥ fi (xi )
for j ∈ [1, n], i ∈ [1, n], the problem K1 reduces to selecting the maximum number
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of d j , j 
= j∗, whose sum does not exceed B. Obviously, these numbers form the set
N j0\{ j∗} for some j0 ∈ [1, n]. ��

Denote Dj = ∑
i∈N j

di , j ∈ [1, n].
Theorem 3 If the function f j (x j ) is computable in a constant time for any x j and
j ∈ [1, n], then the problem K1 can be solved in O(n) time.

Proof Assume for a while that the elements of the set [1, n] are re-numbered such that
d1 ≤ · · · ≤ dn . Define a unique index j (B) such that Dj (B) ≤ B < Dj (B)+1, j

(B) ∈
[0, n − 1], where D0 := 0. Denote by F∗ the optimal solution value of the problem
K1 and denote by F(v, u) the value of a solution x of this problem such that x j = d j

for j ∈ Nv\{u}, x j = 0 for j /∈ (Nv ∪ {u}) and xu = min
{
du, B − ∑

j∈Nv\{u} d j

}
,

that is,

F(v, u) =
∑

j∈Nv\{u}
f j (d j ) + fu(xu) = |Nv\{u}| + fu

⎛

⎝min

⎧
⎨

⎩
du , B −

∑

j∈Nv\{u}
d j

⎫
⎬

⎭

⎞

⎠ .

Note that, by the definition of the function f j (x j ), F(v, u) = −∞ if xu < 0. It follows
from Theorem 2 that F∗ = max{F(v, u) | v ∈ [1, n], u ∈ [1, n]}.

Consider three cases for the index u: 1) u ≤ j (B), 2) u = j (B)+1 and 3) u ≥ j (B)+
2. In the case 1), there are three sub-cases: 1.1) v ≤ j (B), 1.2) v = j (B) + 1, and 1.3)
v ≥ j (B) +2. In the sub-case 1.1), F(v, u) = v ≤ j (B). In the sub-case 1.2), there are
two more sub-cases: 1.2.1)

∑
j∈N j(B)+1\{u} d j ≤ B and 1.2.2)

∑
j∈N j(B)+1\{u} d j > B.

In the sub-case 1.2.1), F(v, u) = F( j (B) +1, u) = j (B) + fu(B−Dj (B)+1+du), and

in the sub-case 1.2.2), F(v, u) = F( j (B) +1, u) = −∞. In the case 2), there are three
sub-cases again: 2.1) v ≤ j (B), 2.2) v = j (B) + 1, and 2.3) v ≥ j (B) + 2. In the sub-
case 2.1), F(v, u) = F(v, j (B) + 1) = v + f j (B)+1(min{d j (B)+1, B − Dv}) ≤ j (B)

if v ≤ j (B) − 1, and F(v, u) = F( j (B), j (B) + 1) = j (B) + f j (B)+1(B − Dj (B) )

if v = j (B). In the sub-case 2.2), F(v, u) = F( j (B) + 1, j (B) + 1) = j (B) +
f j (B)+1(B − Dj (B) ), and in the sub-case 2.3), F(v, u) = −∞. In the case 3), there

are two sub-cases: 3.1) v ≤ j (B), and 3.2) v ≥ j (B) + 1. In the sub-case 3.1),
F(v, u) = v + fu(min{du, B − Dv}) ≤ j (B) if v ≤ j (B) − 1, and F(v, u) =
F( j (B), u) = j (B) + fu(B−Dj (B) ) if v = j (B). In the sub-case 3.2), F(v, u) = −∞.
We deduce that

F∗ = j (B) + max
{
max{ fu(B − Dj (B)+1 + du) | u ∈ N j (B)},

max{ fu(B − Dj (B) ) | u ∈ [1, n]\N j (B)}
}

.

If index of the j (B)-th smallest value d j is given, then the sets N j (B) , N j (B)+1
and [1, n]\N j (B) , and the values Dj (B) and Dj (B)+1 can be calculated in O(n) time.
Hence, the optimal value F∗ and the corresponding optimal vector x∗ can be found
in O(n) time as well. The index j (B) is an analogue of the split item in the continuous
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knapsack problem, which can be found in O(n) time by the algorithm Split described
in (Kellerer et al. 2004, p. 44). ��

Observe that the algorithm in the proof of Theorem 3 is an adaptation of the greedy
algorithm of Dantzig (1957) for the continuous knapsack problem in a combination
with the median finding technique. However, we do not see a way to justify this
observation other than to repeat our arguments in Theorems 1, 2 and 3.

2.2 ProblemK2

Similar toK1, an O(n) time algorithm for the problemK2 is justified by the following
theorems.

Theorem 4 There exists an optimal solution x of the problem K2, in which there is
at most one index j∗ ∈ [1, n] such that all variables but variable x j∗ are equal to

their lower or upper bounds: x j ∈ {0, d j }, j ∈ [1, n]\{ j∗}, and x j∗ = min
{
x | x ∈

[0, d j∗ ], f j∗(x) ≥ C − ∑
j∈[1,n]\{ j∗} f j (x j )

}
.

Proof Follows from the convexity of the functions f j (x j ), j ∈ [1, n]. ��
Recall that N j = {i | di ≤ d j , i ∈ [1, n]} and Dj = ∑

i∈N j
di , j ∈ [1, n].

Theorem 5 There exists an optimal solution x of the problem K2 and indices j0 and
j∗, j0 ∈ [1, n], j∗ ∈ [1, n], such that x j = d j for j ∈ N j0\{ j∗}, x j = 0 for

j /∈ (N j0 ∪ { j∗}) and x j∗ = min
{
x | x ∈ [0, d j∗ ], f j∗(x) ≥ C − |N j0\{ j∗}|

}
.

Proof Let the index j∗ mentioned in Theorem 4 be fixed. Since f j (d j ) = 1 ≥ fi (xi )
for j ∈ [1, n], i ∈ [1, n], the problem K2 reduces to selecting the minimum number,
denoted as k, of smallest d j , j 
= j∗, such that k ≥ C − 1. Obviously, these numbers
form the set N j0\{ j∗} for some j0 ∈ [1, n]. ��
Theorem 6 If the minimum pseudo-inverse min{x j ∈ [0, d j ] | f j (x j ) ≥ A} of the
function f j (x j ) is computable in a constant time for any A and j ∈ [1, n], then the
problem K2 can be solved in O(n) time.

Proof Assume for a while that d1 ≤ · · · ≤ dn . Denote by G∗ the optimal solution
value of the problemK2 and denote byG(v, u) the value of a solution x of this problem

such that x j = d j for j ∈ Nv\{u}, x j = 0 for j /∈ (Nv ∪ {u}) and xu = min
{
x | x ∈

[0, du], fu(x) ≥ C − |Nv\{u}|
}
, that is,

G(v, u) =
∑

j∈Nv\{u}
d j + xu =

∑

j∈Nv\{u}
d j + min {x | x ∈ [0, du], fu(x)

≥ C − |Nv\{u}|} .

If the system of two relations x ∈ [0, du] and fu(x) ≥ C − |Nv\{u}| has a solution
(that is, if C − |Nv\{u}| ≤ 1), then G(v, u) is well defined. If it does not have a
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solution (that is, if C − |Nv\{u}| > 1), then define G(v, u) = +∞. It follows from
Theorem 5, that G∗ = min{G(v, u) | v ∈ [1, n], u ∈ [1, n], v ≥ �C� − 1}.

Consider v ≥ �C�−1 and two cases for the index u: 1) 1 ≤ u ≤ v and 2) u ≥ v+1.
In the case 1), |Nv\{u}| = v − 1 and there are three sub-cases: 1.1) v = �C� − 1,
1.2) v = �C�, and 1.3) v ≥ �C� + 1. In the sub-case 1.1), |Nv\{u}| = �C� − 2,
C − |Nv\{u}| = C − �C� + 2 > 1, and hence, G(v, u) = +∞. In the sub-case 1.2),
C − |Nv\{u}| = C − v + 1 = C − �C� + 1 ≤ 1, and hence, for u ≤ v = �C�,

G(v, u) = G(�C�, u) = D�C� − du + min{x | x ∈ [0, du], fu(x) ≥ C − �C� + 1}.

In the sub-case 1.3), C − |Nv\{u}| = C − v + 1 ≤ C − �C� ≤ 0, and hence,

G(v, u) = Dv − du + min{x | x ∈ [0, du], fu(x) ≥ C − v + 1}
= Dv − du ≥ Dv − dv = Dv−1 ≥D�C�.

In the case 2), |Nv\{u}| = v and there are two sub-cases: 2.1) v = �C� − 1 and
2.2): v ≥ �C�. In the sub-case 2.1), |Nv\{u}| = v = �C� − 1, C − |Nv\{u}| =
C − �C� + 1 ≤ 1, and hence, for u ≥ v + 1 = �C�,

G(v, u) = G(�C� − 1, u) = D�C�−1 + min{x | x ∈ [0, du], fu(x) ≥ C − �C� + 1}.

In the sub-case 2.2), C − |Nv\{u}| = C − v ≤ C − �C� ≤ 0, and hence,

G(v, u) = Dv + min{x | x ∈ [0, du], fu(x) ≥ C − v} = Dv ≥ D�C�.

We deduce that

G∗ = min

{

D�C� − max
1≤u≤�C�{du − min{x | x ∈ [0, du], fu(x) ≥ C − �C� + 1}} ,

D�C�−1 + min�C�≤u≤n
min{x | x ∈ [0, du], fu(x) ≥ C − �C� + 1}

}

.

Similar to the index j (B) in the Proof of Theorem 3, index of the �C�-th smallest
value d j , and hence, the optimal value G∗ and the corresponding optimal solution of
the problem K2 can be found in O(n) time by an adaptation of the algorithm Split in
(Kellerer et al. 2004, p. 44). ��

Note that the minimum pseudo-inverse is computable in a constant time for many
functions. For example, for the function f (x) = x2, we have min{x ∈ [0, d] | f (x) ≥
A} = �√A�, if √

A ≤ d and the above minimum does not exist if
√
A > d. For an

arbitrary non-decreasing function f (x) which is computable in a constant time, and
x ∈ [0, d], the minimum pseudo-inverse can be calculated in O(log2 d) time by a
bisection search.
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3 Arbitrary non-negative non-decreasing profit functions

In this section, we assume that the profit functions f j (x j ), j ∈ [1, n], are arbitrary
non-negative non-decreasing and their minimum pseudo-inverse min{x j ∈ [0, d j ] |
f j (x j ) ≥ A} is computable in a constant time for any A and j ∈ [1, n]. We prove that
any of the problemsK1 andK2 is NP-hard in this case and present FPTASes forK1 and
K2. We failed to prove NP-hardness or develop a polynomial-time algorithm for the
problem K1 or K2 with concave profit functions. Note that analogues of Theorems 1
and 4 do not hold in this case.

3.1 NP-hardness proof

Let us consider the following decision version of any of the problems K1 and K2,
which we denote as KD.

Problem KD: Given positive integer numbers A, B, d j and arbitrary non-negative
non-decreasing functions f j (·), j ∈ [1, n], does there exist a vector x = (x1, . . . , xn)
such that

∑
j∈[1,n] f j (x j ) ≥ A,

∑
j∈[1,n] x j ≤ B and x j ∈ [0, d j ], j ∈ [1, n]?

We prove thatKD is NP-complete if profit functions f j (·) are arbitrary non-negative
non-decreasing andcomputable in polynomial timeof log2 d j , j ∈ [1, n]. This implies
that both K1 and K2 are NP-hard.

Theorem 7 Problem KD is NP-complete if profit functions f j (·) are arbitrary non-
negative non-decreasing and computable in polynomial time of log2 d j , j ∈ [1, n].
Proof We use a transformation from the NP-complete problem Partition (Garey
and Johnson 1979): Given positive integer numbers h j , j ∈ [1, k], and H such that∑

j∈[1,k] h j = 2H , is there a set I ⊂ [1, k] such that∑ j∈I h j = H? Assume without
loss of generality that h j ≥ 2, j ∈ [1, k].

For any instance of Partition, we construct the following instance of KD. Set
n = k, A = 2, B = H , d j = H−1, f j (x j ) = 0 for x j ∈ [0, h j −1], f j (x j ) = 2h j/H
for x j ∈ [h j , d j − 1] and f j (d j ) = 1, j ∈ [1, n]. We show that the instance of
Partition has a solution if and only if the respective instance of KD has a solution.

Assume that set I is a solution of the instance ofPartition. Define x j = h j if j ∈ I
and x j = 0 if j /∈ I , j ∈ [1, n]. Then, we have ∑

j∈[1,n] f j (x j ) = 2
∑

j∈I h j/H = 2
and

∑
j∈I x j = ∑

j∈I h j = H . Hence, vector x is a solution of the instance of KD.
Now, assume that the instance of KD has a solution, which we denote as vec-

tor x . If there is j ∈ [1, n] such that x j = d j = H − 1, then f j (x j ) = 1,∑
i∈[1, j−1]∪[ j+1,n] xi ≤ 1, xi ≤ 1, i ∈ [1, j − 1] ∪ [ j + 1, n], and, as a conse-

quence,
∑

j∈[1,n] f j (x j ) = 1, which is a contradiction. Therefore, x j ≤ d j − 1,
j ∈ [1, n]. Define set I such that j ∈ I if d j − 1 ≥ x j ≥ h j and j /∈ I if x j < h j ,
j ∈ [1, n]. Then, we have f j (x j ) = 0 for j /∈ I and f j (x j ) = f j (h j ) = 2h j/H
for j ∈ I . Taking into account the definition of the problem KD, we must have∑

j∈I h j ≤ ∑
j∈I x j ≤ ∑

j∈[1,n] x j ≤ H and
∑

j∈I 2h j/H = ∑
j∈I f j (h j ) =∑

j∈I f j (x j ) + ∑
j /∈I f j (x j ) = ∑

j∈[1,n] f j (x j ) ≥ 2. The latter chain of relations
implies

∑
j∈I h j ≥ H , which together with

∑
j∈I h j ≤ H further indicates that I is

a solution of the instance of Partition. ��
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3.2 Generic FPTASes

The main components of our FPTAS for the problems K1 are:

– formulation of a generic problem, denoted as KG1,
– formulation of a scaled and rounded problem, denoted as KG-R1,
– proof that an optimal solution ofKG-R1 is an ε-approximation solution ofKG-R1,
– dynamic programming algorithm forKG-R1, denoted asDP-R1,which constitutes
an FPTAS for KG1, and

– a procedure to improve lower and upper bounds for the optimal profit F∗, which
finds a value L such that L ≤ F∗ ≤ 4L and makes the FPTAS more efficient.

Assume that, besides f j (x j ), non-negative non-decreasing functions g j (x j ) are
given, j ∈ [1, n].

Generic problem KG1:

max
x

∑

j∈[1,n]
f j (x j ), subject to

∑

j∈[1,n]
g j (x j ) ≤ B, x j ∈ [0, d j ], j ∈ [1, n].

Let x∗ and F∗ denote an optimal solution and its optimal objective value of KG1,
respectively. Assume that numbers V and U are known such that 0 < V ≤ F∗ ≤ U .
Define δ = εV /n.

Scaled and rounded problem KG-R1:

max
x

∑

j∈[1,n]

⌈ f j (x j )

δ

⌉
, subject to

∑

j∈[1,n]
g j (x j ) ≤ B, x j ∈ R j , j ∈ [1, n],

where

R j =
{
r j (0), r j (1), . . . , r j

(⌊U

δ

⌋)}
,

r j (s) = min
{
x | x ∈ [0, d j ],

⌊ f j (x)

δ

⌋
= s

}

= min{x | x ∈ [0, d j ], f j (x) ≥ sδ}, j ∈ [1, n].

Let x (0), Q(0) and F (0) denote an optimal solution, its objective function value with
respect to the problem KG-R1 and its objective function value with respect to the
original generic problemKG1, respectively. Note that x (0) is feasible forKG1, and x∗
is feasible for KG-R1. Let us evaluate the quality of x (0) with respect to KG1.

F (0) =
∑

j∈[1,n]
f j (x

(0)
j ) = δ

∑

j∈[1,n]

f j (x
(0)
j )

δ
> δ

∑

j∈[1,n]

(⌈ f j (x
(0)
j )

δ

⌉
− 1

)

≥ [ x (0) is optimal for KG-R1]
≥ δ

∑

j∈[1,n]

(⌈ f j (x∗
j )

δ

⌉
− 1

)
≥

∑

j∈[1,n]
f j (x

∗
j ) − nδ = F∗ − nδ = F∗ − εV .
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We obtain F∗ − F (0) < εF∗. Let us evaluate Q(0) from above.

Q(0) =
∑

j∈[1,n]

⌈ f j (x (0)

δ

⌉
<

∑

j∈[1,n]

( f j (x (0))

δ
+ 1

)

≤
∑

j∈[1,n]

f j (x∗)
δ

+ n = F∗

δ
+ n ≤ U

δ
+ n

= nU

εV
+ n.

We deduce that Q(0) ≤
⌊
nU
εV

⌋
+ n := U (0).

In the algorithm DP-R1 for the problemKG-R1, partial solutions x = (x1, . . . , x j )
are constructed for j ∈ [1, n]. With each partial solution x , state ( j, Q) is associated,

where Q = ∑
h∈[1, j]

⌈
fh(xh)

δ

⌉
is the current value of the scaled and rounded profit.

Constraint function G( j, Q) is recursively calculated for each state ( j, Q), which
is the minimum value of

∑
h∈[1, j] gh(xh) over partial solutions x in the same state

( j, Q). A partial solution with value G( j, Q) dominates all other partial solutions in
the state ( j, Q) in the sense that if there is a partial solution in this state that can be
extended to an optimal solution of KG-R1, then the dominant solution can also be
extended to an optimal solution of KG-R1. Therefore, only the dominant solution can
be left for each state, and non-dominant solutions can be eliminated.

Algorithm DP-R1. The initialization is G(0, 0) = 0, and G(0, Q) = B + 1 for
( j, Q) 
= (0, 0), j ∈ [1, n], Q = 0, 1, . . . ,U (0). The recursion for j ∈ [1, n],
Q = 0, 1, . . . ,U (0), is

G( j, Q) = min
x j∈R j

{
G

(
j − 1, Q −

⌈ f j (x j )

δ

⌉)
+ g j (x j )

}
.

The optimal objective function value of the problem KG-R1 is equal to

Q(0) = max{Q | G(n, Q) ≤ B, Q = 0, 1, . . . ,U (0)},

and the corresponding optimal solution can be found by tracing back optimal solutions

of the recursive equation. The recursive equation can be solved in O(|R j |) = O
(
nU
εV

)

time for each state ( j, Q). Therefore, the running time of the algorithm DP-R1 is

O
(
n3U2

ε2V 2

)
.

Kovalev (2021) describes a procedure to improve lower and upper bounds for a
minimization problem if an approximation algorithm satisfying certain properties is
available. It is given in the Appendix for completeness. The bound improvement
procedure with algorithm DP-R1 incorporated in it runs in O(n3 log2

U
V ) time and

delivers number L such that L ≤ F∗ ≤ 4L for the problemKG1.With lower and upper

bounds V := L and U := 4L , algorithm DP-R1 runs in O
(
n3

ε2

)
time. Therefore, the

overall running time of the FPTAS forKG1 isO
(
n3 log2

U
V + n3

ε2

)
. ForKG1, the lower
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bound can be calculated as V = max j∈[1,n]{ f j (x0j )}, where x0j = min{d j ,max{x j |
g j (x j ) ≤ B}}, j ∈ [1, n]. In this case, the corresponding upper bound is U = nV ,

and the running time of the FPTAS forKG1, and hence, forK1, is O(n3 log2 n+ n3

ε2
).

Similar ideas – a generic problem KG2, a scaled and rounded problem KG-R2, a
dynamic programming algorithm for KG-R2, which constitutes an FPTAS for KG2,
and a bound improvement procedure – are used to develop an FPTAS for the mini-
mization problem K2.

Generic problem KG2:

min
x

∑

j∈[1,n]
g j (x j ), subject to

∑

j∈[1,n]
f j (x j ) ≥ C, x j ∈ [0, d j ], j ∈ [1, n].

Let x∗ now denote an optimal solution of the problem KG2, and let G∗ denote its
optimal objective function value. Assume that numbers S and T are known such that
0 < S ≤ G∗ ≤ T . Define δ = εS/n.

Scaled and rounded problem KG-R2:

min
x

∑

j∈[1,n]

⌊g j (x j )

δ

⌋
, subject to

∑

j∈[1,n]
f j (x j ) ≥ C, x j ∈ Hj , j ∈ [1, n],

where

Hj =
{
h j (0), h j (1), . . . , h j

(⌊T

δ

⌋)}
,

h j (s) = max
{
x | x ∈ [0, d j ],

⌊g j (x)

δ

⌋
= s

}

= max{x | x ∈ [0, d j ], g j (x) < (s + 1)δ}, j ∈ [1, n].

Assume that h j (s) is calculated in a constant time for any s. In the problem K2,
g j (x) = x and h j (s) = min{d j , �(s + 1)δ� − 1}. Let x (0), P(0) and G(0) denote an
optimal solution, its objective function value with respect to the problem KG-R2 and
its objective function value with respect to the problem KG2, respectively. We have

G(0) =
∑

j∈[1,n]
g j (x

(0)
j ) = δ

∑

j∈[1,n]

g j (x
(0)
j )

δ
< δ

∑

j∈[1,n]

(⌊g j (x
(0)
j )

δ

⌋
+ 1

)

≤ [x (0)is optimal for KG-R2]
≤ δ

∑

j∈[1,n]

(⌊g j (x∗
j )

δ

⌋
+ 1

)
≤

∑

j∈[1,n]
g j (x

∗
j ) + nδ = G∗ + nδ = G∗ + εS.

Thus, G(0) − G∗ < εG∗. Let us evaluate P(0) from above.

P(0) =
∑

j∈[1,n]

⌊g j (x (0))

δ

⌋
≤

∑

j∈[1,n]

⌊g j (x∗)
δ

⌋
≤

∑

j∈[1,n]

g j (x∗)
δ

= G∗

δ
≤ T

δ
= nT

εS
.
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We deduce that P(0) ≤
⌊
nT
εS

⌋
:= T (0).

In the algorithm DP-R2 for the problemKG-R2, partial solutions x = (x1, . . . , x j )
are constructed for j ∈ [1, n]. With each partial solution x , a state ( j, P) is associated,

where P = ∑
h∈[1, j]

⌊
gh(xh)

δ

⌋
is the current value of the scaled and rounded cost.

Dominance function F( j, P) is recursively calculated for each state ( j, P), which
is the maximum value of

∑
h∈[1, j] fh(xh) over partial solutions x in the same state

( j, P).
Algorithm DP-R2. The initialization is F(0, 0) = 0, and F(0, P) = −∑

j∈[1,n]⌊
g j (d j )

δ

⌋
for ( j, P) 
= (0, 0), j ∈ [1, n], P = 0, 1, . . . , T (0). The recursion for

j ∈ [1, n], P = 0, 1, . . . , T (0), is

F( j, P) = max
x j∈Hj

{
F

(
j − 1, P −

⌊g j (x j )

δ

⌋)
+ f j (x j )

}
.

The optimal objective function value of the problem KG-R2 is equal to

P(0) = min{P | F(n, P) ≥ C, P = 0, 1, . . . , T (0)},

and the corresponding optimal solution can be found by tracing back optimal solutions

of the recursive equation. The running time of the algorithm DP-R2 is O
(
n3T 2

ε2S2

)
.

Kovalyov (1995) describes a procedure to improve lower and upper bounds for a
minimization problem if an approximation algorithm satisfying certain properties is
available. The bound improvement procedure with algorithm DP-R2 incorporated in
it runs in O(n3 log2

T
S ) time and delivers number L such that L ≤ F∗ ≤ 3L for the

problem KG2. With lower and upper bounds S := L and T := 3L , algorithm DP-
R2 runs in O( n

3

ε2
) time. Therefore, the overall running time of the ε-approximation

algorithm for KG2 is O(n3 log2
T
S + n3

ε2
).

ForKG2, the lower and upper bounds can be calculated as S = gmin and T = ngmax,
where gmin = min j∈[1,n]{g j (1)} and gmax = max j∈[1,n]{g j (d j )}. In this case, the

running timeof the ε-approximation algorithm forKG2 isO
(
n3 log2

ngmax
gmin

+ n3

ε2

)
. For

K2, it becomes O(n3 log2(ndmax) + n3

ε2
), which means that this algorithm constitutes

an FPTAS for K2.

Remark 1 The problemK1 can be solved in O(nB2) time by a dynamic programming
algorithm similar to DP-R1, in which the roles of the dominance function and the
state variable are switched. Namely, value b := ∑

h∈[1, j] xh ∈ [0, B] is the state
variable and F( j, b) := ∑

h∈[1, j] fh(xh) is the dominance function to be maximized.

The problem K2 can be solved in O((
∑

j∈[1,n] d j )
2) time by the algorithm DP-R2,

in which g j (x j ) = x j , j ∈ [1, n], and δ = 1. Thus, both problems K1 and K2 are
pseudo-polynomially solvable.
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3.3 Bottleneck problems

The following bottleneck counterparts of the problems K1 and K2 can be of interest.
Let E be a given number, 0 ≤ E ≤ 1.

Problem K1B:

max
x

min
j∈[1,n] f j (x j ), subject to

∑

j∈[1,n]
x j ≤ B,

x j ∈ [0, d j ], j ∈ [1, n].

Problem K2B:

min
x

∑

j∈[1,n]
x j , subject to

min
j∈[1,n] f j (x j ) ≥ E,

x j ∈ [0, d j ], j ∈ [1, n].

Consider the problem K2B and define f (−1)
j (E) = min{x j | f j (x j ) ≥ E, x j ∈

[0, d j ]}, j ∈ [1, n]. It is obvious that the vector x∗ inwhich x∗
j = f (−1)

j (E), j ∈ [1, n],
is optimal forK2B. Therefore, this problem can be solved in O(n) time, provided that
the value f (−1)

j (E) is computable in a constant time for any j ∈ [1, n].
Consider the problem K1B. Assume that the difference between any two distinct

values f j (x j ), j = 1, . . . , n, is at least 1
δ
for a positive integer δ, and that the value

f (−1)
j (A) is computable in a constant time for any j ∈ [1, n] and A. In this case, the

problem K1B can be solved in O(n log2 δ) time by a bisection search in the interval
[0, 1] of the optimal objective function value F∗ of this problem. In each iteration
of this search, the relation

∑
j∈[1,n] f (−1)

j (A) ≤ B is verified for a trial value A,
LB ≤ A ≤ UB, starting with lower bound LB = 0 and upper bound UB = 1. If
the mentioned relation is satisfied, then F∗ ≥ A, else F∗ < A. The lower and upper
bounds LB andUB are re-set accordingly. The procedure stops whenUB− LB < 1

δ
,

in which case the vector x∗ with x∗
j = f (−1)

j (LB), j ∈ [1, n], is optimal for K1B.

4 Conclusions and suggestions for future research

The following results are obtained:

– anO(n) time algorithm for the problemK1, provided that the profit function f j (x j )
is convex non-decreasing and computable in a constant time for any x j ∈ [0, d j ]
and j ∈ [1, n],

– an O(n) time algorithm for the problem K2, provided that the profit function
f j (x j ) is convex non-decreasing and the minimum pseudo-inverse f (−1)

j (A) is
computable in a constant time for any A and j ∈ [1, n],

– an O(n log2 δ) time algorithm for the problem K1B, provided that the profit func-
tion f j (x j ) is non-negative non-decreasing and the difference between any two
distinct values f j (x j ), j ∈ [1, n], is at least 1

δ
for a positive integer δ, and that the

value f (−1)
j (A) is computable in a constant time for any A and j ∈ [1, n],
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– an O(n) time algorithm for the problem K2B, provided that the profit function
f j (x j ) is non-negative non-decreasing and the value f (−1)

j (E) is computable in a
constant time for any j ∈ [1, n],

– proof of NP-hardness of the problems K1 and K2 with arbitrary non-negative
non-decreasing profit functions, and

– FPTASes with running times O(n3 log2 n + n3

ε2
) and O(n3 log2(ndmax) + n3

ε2
) for

the problems K1 and K2, respectively, provided that the profit function f j (x j ) is

arbitrary non-negative non-decreasing and the value f (−1)
j (A) is computable in a

constant time for any A and j ∈ [1, n].

For future research, it is worth to establish computational complexity of the
problems K1 and K2 with concave non-decreasing profit functions and to study theo-
retically and practically interesting modifications of K1 and K2.
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Appendix. Bound improvement procedure

The procedure calculates numbers B and C such that B ≤ F∗ ≤ C and C ≤ 4B.
For a maximization problem with optimum value F∗, let lower and upper bounds
V ′ and U ′ be given such that 0 < V ′ ≤ F∗ ≤ U ′. Compute integer number k

satisfying 2k−1V ′ < U ′ ≤ 2kV ′. We have V ′ ≤ F∗ ≤ 2kV ′ and k = O
(
log2

U ′
V ′

)
.

For q = k, k − 1, . . . , 1, apply an approximation algorithm for the maximization
problem which finds a feasible solution with value F (q) ≥ F∗ − 2q−2V ′ if F∗ ≤
2qV ′. If F∗ > 2qV ′, then the algorithm can still find a feasible solution with value
F (q) ≥ F∗ − 2q−2V ′, but it is not guaranteed. For the problem KG1, algorithm
DP-R1 with ε = 1/2, U = 2qV ′ and V = 2q−1V ′ is such an algorithm because
it finds a solution with value F0 ≥ F∗ − εV = F∗ − 1

2V = F∗ − 2q−2V ′ if
F∗ ≤ U = 2qV ′. For the problem KG1, it runs in O(n3) time. Since F∗ ≤ 2kV ′, a
feasible solution with value F (k) ≥ F∗ − 2k−2V ′ will be found. If F (k) ≥ 2k−2V ′,
then 2k−2V ′ ≤ F (k) ≤ F∗ ≤ 2kV ′. Hence, B = F (k), C = 2kV ′, and the procedure
stops. If F (k) < 2k−2V ′, then F∗ ≤ F (k) + 2k−2V ′ < 2k−1V ′, and we can re-set
k := k − 1. Therefore, B = F (t) and C = 2t V ′, where t is the largest index such that
k ≥ t ≥ 1 and F (t) ≥ 2t−2V ′. Such an index t exists. Assume that it does not exist for
all iterations up to the iteration in which k is re-set to 1. Since this iteration is reached,
relations F (2) < 20V ′ and F∗ ≤ F (2) + 20V ′ < 2L ′ are satisfied. Furthermore,
V ′ ≤ F∗ by the definition of V ′. Hence, V ′ ≤ F∗ ≤ 2V ′, and for t = 1 we have
F (1) ≥ F∗ − 2−1V ′ ≥ 2−1L ′, as it is required by the definition of t . Note that if
t = 1, then C/B = 2. For the problem KG1, since 0 < V ≤ F∗ ≤ nV , the number
of iterations of the bound improvement procedure is at most O(log2 n) and its overall
running time is O(n3 log2 n).
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