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Abstract
Electre Tri is a set of methods designed to sort alternatives evaluated on several
criteria into ordered categories. In thesemethods, alternatives are assigned to categories
by comparing themwith reference profiles that represent either the boundary or central
elements of the category. The originalElectreTri-Bmethod uses one limiting profile
for separating a category from the category below. A more recent method, Electre
Tri-nB, allows one to use several limiting profiles for the same purpose.We investigate
the properties of Electre Tri-nB using a conjoint measurement framework. When
the number of limiting profiles used to define each category is not restricted, Electre
Tri-nB is easy to characterize axiomatically and is found to be equivalent to several
other methods proposed in the literature. We extend this result in various directions.
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1 Introduction

Electre Tri1 is a family of methods for sorting alternatives evaluated on several
criteria into ordered categories. The principle of these methods is that they assign
an alternative to a category by comparing it with profiles specifying levels on each
criterion. Comparisons are made by using an outranking relation which is typical of
the Electre methods. In its original version, ETri-B (Yu 1992; Roy and Bouyssou
1993), each profile represents the limit between a category and the category below.
Therefore, they are called limiting profiles. In contrast, in ETri-C (Almeida-Dias et al.
2010), each category is represented by a typical profile, therefore called central profile.

For an introduction to the Electre methods, we refer the reader to Belton and
Stewart (2001)[Ch. 8]. Overviews of thesemethods can be found in Roy and Bouyssou
(1993)[Ch. 5 & 6], Figueira et al. (2010, 2013, 2016).

Recently, Fernández et al. (2017) proposed a method called Electre Tri-nB. It is
an extension of ETri-B, and, thus, uses limiting profiles. Whereas ETri-B uses one
limiting profile per category, ETri-nB allows one to use several limiting profiles for
each category.

ETri-nB deserves close attention for at least two reasons. First, as explained in
Bouyssou and Marchant (2015), ETrican be considered as a real success story within
the Electre family of methods. A closely related model, the NonCompensatory Sort-
ing (NCS) model, has received a fairly complete axiomatic analysis in Bouyssou and
Marchant (2007a, b). ETrihas been applied to a large variety of real world problems
(see the references in Almeida-Dias et al. 2010, Sect. 6, as well as Bisdorff et al. 2015,
Ch. 6, 10, 12, 13, 15, 16). Many techniques have been proposed for the elicitation of
the parameters of this method (see the references in Bouyssou and Marchant 2015,
Sect. 1).

Second, the extension presented with ETri-nB is most welcome. Since outranking
relations are not necessarily complete, one may easily argue that it is natural to try to
characterize a category using several limiting profiles, instead of just one. Moreover,
compared to ETri-B, ETri-nB gives more flexibility to the decision-maker to define
categories using limiting profiles, as observed by Fernández et al. (2017)[Remark 3,
p. 217] 2.

In this paper,we analyzeETri-nB froma theoretical point of view.Our aim is to give
a complete characterization of this method without any supplementary hypotheses.
This is, in a sense, in contrastwithBouyssou andMarchant (2007a, b)who characterize
a model close to ETri-B, which is not exactly ETri-B (it differs from it, in particular,
by considering “quasi-criteria” instead of the more general “pseudo-criteria” used in
ETri-B, see Roy and Bouyssou,1993, pp. 55–56, for definitions). As far as we know,
this is the first time that an axiomatic foundation is provided for a complete outranking
method (encompassing the construction of the outranking relation and the exploitation
phase). The usefulness of such axiomatic analyses has been discussed elsewhere and
will not be repeated here (Bouyssou and Pirlot 2015; Dekel and Lipman 2010; Gilboa

1 We often abbreviate Electre Tri as ETri in what follows.
2 Let us also mention that Fernández et al. (2017) is the last paper on Electre methods published by
Bernard Roy, the founding father of Electre methods, before he passed away at the end of 2017.
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A theoretical look at ELECTRE TRI-nB 75

et al. 2019). Our main finding is that, if the number of profiles used to delimit each
category is not restricted, the axiomatic analysis of ETri-nB is easy and rests on a
condition, linearity, that is familiar in the analysis of sorting models (Goldstein 1991;
Bouyssou and Marchant 2007a, b, 2010; Greco et al. 2004; Słowiński et al. 2002;
Greco et al. 2001b). Our simple result shows the equivalence between ETri-nB and
many other sorting models proposed in the literature. It could also allow one to use
elicitation or learning techniques developed for these other models for the application
of ETri-nB. This is useful since Fernández et al. (2017) did not propose any elicitation
technique (an elicitation techniquewas suggested afterwards in Fernández et al. 2019).

The rest of this text is organized as follows. In the next section, we recall the defini-
tions of ETri-B and ETri-nB. We motivate the theoretical investigation that follows
by analyzing an example of an ETri-nB model. Section 3 introduces our notation and
framework. Section 4 presents our main results about the pseudo-conjunctive version
of ETri-nB. Section 5 presents various extensions of these results. A final section
discusses our findings. An appendix, containing supplementary material to this paper,
will allow us to keep the text of manageable length. Its content will be detailed when
needed.

2 ETRI-nB: definitions and examples

For the ease of future reference, we first recall the definitions of ETri-B and ETri-nB.
For keeping it simple, we limit ourselves to sorting alternatives into two categories,
say the “acceptable” and the “unacceptable”. For a more detailed description, we
refer the reader to Yu (1992); Roy and Bouyssou (1993); Mousseau et al. (2000);
Fernández et al. (2017). We refer to Bouyssou and Marchant (2015) for an analysis
of the importance of the various Electre Tri methods within the set of all Electre
methods.

In the second subsection, we informally analyze an example of an ETri-nB model
in order to motivate the theoretical investigation conducted in the rest of the paper.

2.1 ETRI-B and ETRI-nB

All Electre Trimethods are based on the definition of an outranking relation. There
are several ways of defining such a relation.

2.1.1 The outranking relations in ELECTRE III and in ELECTRE I

A crisp outranking relation S (with asymmetric part P) comparing pairs of alternatives
as in Electre III (see Roy and Bouyssou 1993, pp. 284–289) is built by cutting a
valued relation σ at a certain level λ. The value associated to each pair in the relation
σ is called the outranking credibility index. It implements (see formula (1) below)
the principle of outranking, i.e., an alternative x outranks an alternative y if x is
at least as good as y on a sufficiently important set of criteria (concordance) and
x is unacceptably worse than y on no criterion (non-discordance). Let x, y be two
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76 D. Bouyssou et al.

Fig. 1 Shapes of the single criterion concordance index ci (gi (x), gi (y)) (gray) and the discordance index
di (gi (x), gi (y)) (black dashed) inElectre III. The two indices are a function of the difference gi (x)−gi (y)
and the three nonnegative thresholds: vti ≥ pti ≥ qti ≥ 0.

alternatives respectively represented by their evaluations (g1(x), . . . gi (x), . . . gn(x)),
(g1(y), . . . , gi (y), . . . , gn(y)) w.r.t. n criteria. For all i = 1, . . . , n, gi is a real valued
function defined on the set of alternatives.

The concordance index c(x, y) = ∑n
i=1 wi ci (gi (x), gi (y)), where wi ≥ 0 is the

importance weight of criterion i (we assume w.l.o.g. that weights sum up to 1) and
ci (gi (x), gi (y)) is a function represented in Fig. 1. Its definition involves the deter-
mination of qti (resp. pti ), the indifference (resp. preference) threshold. These two
thresholds are nonnegative and such that pti ≥ qti .

Thediscordance indexdi (gi (x), gi (y)), also represented inFig. 1, uses an additional
parameter vti , the veto threshold3 (that is such that vti ≥ pti , so that we have vti
≥ pti ≥ qti ≥ 0).

The outranking credibility index σ(x, y) is computed as follows:

σ(x, y) = c(x, y)
∏

i :di (gi (x),gi (y))>c(x,y)

1 − di (gi (x), gi (y))

1 − c(x, y)
. (1)

Alternative x outranks alternative y, i.e., xSy, if σ(x, y) ≥ λ, with .5 ≤ λ ≤ 1.
In order that x outranks y, c(x, y) has to be greater than or equal to λ. This index

is “locally compensatory” in the sense that, for each i , there is an interval (namely,
[−pti ,−qti ]) for the differences gi (x) − gi (y) on which the single criterion con-
cordance index increases linearly and these indices are aggregated using a weighted
sum. Discordance also is gradual in a certain zone (namely [−vti ,−pti ]); it comes
into play only when the discordance index di (gi (x), gi (y)) is greater than the overall
concordance index c(x, y).

A simpler, more ordinal, version of the construction of an outranking relation stands
in the spirit of Electre I. It is also more amenable to theoretical investigation: see the
characterization of outranking relations (Bouyssou and Pirlot 2016) and the analysis of
the noncompensatory sortingmodel (Bouyssou andMarchant 2007a, b). It differs from

3 For the sake of simplicity, the thresholds qti , pti and vti are taken as constant. Nothing in the sequel
depends on this option. They could be considered as variable provided appropriate conditions are enforced,
actually ensuring that the correspondingweakpreference, preference andveto relations formanhomogenous
chain of semiorders (see Roy and Bouyssou 1993, p. 56 and pp. 140–141 for details).

123



A theoretical look at ELECTRE TRI-nB 77

Fig. 2 Shapes of the single criterion concordance index ci (gi (x), gi (y)) (gray) and the discordance index
di (gi (x), gi (y)) (black dashed) in the style of Electre I. The two indices are a function of the difference
gi (x) − gi (y) and the three nonnegative thresholds: vti ≥ pti ≥ qti ≥ 0 Filled (resp. empty) circles
indicate included (resp. excluded) values

the above mainly by the shapes of the single criterion concordance and discordance
indices (see Fig. 2).

The preference and indifference thresholds are confounded,which implies that there
is no linear “compensatory” part in ci (gi (x), gi (y)); discordance only occurs in an all-
or-nothing manner. The overall concordance index c(x, y)
= ∑n

i=1 wi ci (gi (x), gi (y)), as above. In this construction, x outranks y, i.e., xSy, if
σ(x, y) ≥ λ, with

σ(x, y) = c(x, y)
n∏

i=1

(1 − di (gi (x), gi (y))), (2)

i.e., xSy if c(x, y) ≥ λ and di (gi (x), gi (y)) = 0, for all i . Note that

c(x, y) =
∑

i :gi (x)≥gi (y)−qti

wi .

We thus have c(x, y) ≥ λ if the sum of the weights of the criteria on which x is
indifferent or strictly preferred to y is at least equal to λ. Subsets of criteria of which
the sum of the weights is at least λ will be called winning coalitions (of criteria).

Notice that both theElectre III outranking relation defined bymeans of (1) and the
Electre Ioutranking relation definedbymeans of (2) respect thedominance relation4

≥. This is easily seen by observing that both formulae (1) and (2) are nondecreasing in
gi (x) and nonincreasing in gi (y), for all i .We note this fact in the following proposition
for further reference.

Proposition 1 Let S denote an outranking relation of Electre III or Electre I type.
The relation S respects the dominance relation ≥, i.e., for all alternatives x, y, z, w,

[xSy, z ≥ x and y ≥ w] ⇒ zSw.

4 The (weak) dominance relation ≥ is a reflexive and transitive relation on the set of alternatives, that is
defined as follows: x ≥ y if gi (x) ≥i gi (y), for all i . This is the relation denoted�F by Roy and Bouyssou
(1993, p. 61), F referring to a family of criteria.
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2.1.2 ETRI-B

The sorting of an alternative x into category A (acceptable) or U (unacceptable) is
based upon the comparison of x with a limiting profile p using the relation S.

In the pessimistic version of ETri-B, now known, following Almeida-Dias et al.
(2010), as the pseudo-conjunctive version (ETri-B-pc), we have, for all x ∈ X ,

x ∈ A ⇔ x S p.

In the optimistic version of ElectreTri, nowknownas the pseudo-disjunctive version
(ETri-B-pd), we have, for all x ∈ X ,

x ∈ A ⇔ Not[p P x],

where P is the asymmetric part of S. Consequently, we have x ∈ U ⇐⇒ p P x .

2.1.3 ETRI-nB

We now have a set of k limiting profiles P = {p1, p2, . . . , pk}. This set of limiting
profiles must be such that, for all p, q ∈ P , we have Not[p P q].

In the pseudo-conjunctive version of ETri-nB (ETri-nB-pc, for short), we have
that

x ∈ A ⇔
{
x S p for some p ∈ P, and

Not[q P x] for all q ∈ P,

and x ∈ U , otherwise.
In the pseudo-disjunctive version of ETri-nB (ETri-nB-pd, for short), we have

that

x ∈ U ⇔
{
p P x for some p ∈ P, and

Not[x P q] for all q ∈ P,

and x ∈ A, otherwise.
ETri-B-pc and ETri-B-pd are particular cases of ETri-nB-pc and ETri-nB-pd,

respectively. In this section, we consider only ETri-nB-pc and omit the suffix “pc”.
We shall only turn back, briefly, to ETri-nB-pd in Sect. 5.6. Following Fernández
et al. (2017), unless otherwise mentioned, we use the Electre III outranking relation
S defined by means of (1). The version of ETri-nB using the Electre I outranking
relation S defined via (2) will be referred to as ETri-nB-I.

Remark 1 Using Proposition 1, it is easy to see that ETri-nB and ETri-nB-I respect
the dominance relation ≥, i.e., are monotone w.r.t. this relation. In particular, if y
dominates the acceptable alternative x , then y is acceptable. Symmetrically, if x is
unacceptable and dominates y, then y is unacceptable.
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A theoretical look at ELECTRE TRI-nB 79

Table 1 Variants of ETri-nB and ETri-B

(a) ETri-nB with veto (e) ETri-B with veto

(b) ETri-nB without veto (f) ETri-B without veto

(c) ETri-nB-I with veto (g) ETri-B-I with veto

(d) ETri-nB-I without veto (h) ETri-B-I without veto.

2.1.4 The family of ELECTRE TRImethods

To ease the reading, we summarize the different variants of the ETrimethods consid-
ered in the sequel as well as their interrelationships.

The variants of ETri-nB appear in Table 1 on the left. Their version using only one
limiting profile, i.e., the different variants of ETri-B, appear on the right of the same
table.

Model (a) contains model (b), which contains model (d). Model (c) (resp. (d))
differs from model (a) (resp. (b)) in that it uses the outranking relation in Electre I
instead of Electre III.

The relationships between the ETri-B models are the same as between the homol-
ogous ETri-nB models. The NonCompensatory Sorting (NCS) model analyzed by
Bouyssou and Marchant (2007a, b) generalizes (h), while the NCS model with veto
generalizes (g). In both cases, the generalization lies in that the winning coalitions
of criteria are not necessarily determined by means of additive weights. Model (h) is
called the Majority Rule sorting model (MR-Sort) in the literature (Leroy et al. 2011;
Sobrie et al. 2019).

Note that another type of ETrimethods has been proposed, namely ETri-C
(Almeida-Dias et al. 2010) and ETri-nC (Almeida-Dias et al. 2012). These are based
on a different logic (using central profiles instead of limiting profiles) as analyzed in
Bouyssou and Marchant (2015). We shall not consider them in this paper for lack of
place.

2.2 An example of an ETRI-nBmodel

Consider alternatives evaluated on three criteria. Each criterion value belongs to the
[0, 10] interval. In practice, such evaluations have a limited precision. Let us assume
that evaluations are integers or half-integers.

Assume that the alternatives are partitioned into two classes A and U by an ETri-
nB model with 2 limiting profiles. Let these profiles be p1 = (8, 7, 5) and p2

= (5, 6, 8). The indifference, preference and veto thresholds are, respectively, qti = 1,
pti = 2 and vti = 4, the same for all criteria i = 1, 2, 3. All criteria have the same
weight wi = 1

3 and the cutting threshold λ = .6. It is readily verified that p1Sp2 and
p2Sp1 so that none of the profiles strictly outranks the other.

123



80 D. Bouyssou et al.

2.2.1 Minimally acceptable alternatives

Let us apply the above model. The set of possible evaluations for criterion i is Xi

= {0, .5, 1, 1.5, . . . , 9.5, 10}, for i = 1, 2, 3, and the set of all possible alternatives
is X = ∏3

i=1 Xi . Each alternative is thus represented by an evaluation vector: for
any x ∈ X , x = (x1, x2, x3), with xi = gi (x), i = 1, 2, 3. Since each alternative is
identified with its evaluation vector, the dominance relation ≥ on X is antisymmetric.
Therefore, it is a partial order.

Since ETri-nB is monotone w.r.t. the dominance relation ≥, which is a partial
order on X , and since there are finitely many alternatives, the set A of acceptable
alternatives has a finite number of minimal elements A∗ that we shall call minimally
acceptable alternatives (see Sect. 4.2 for further justification). The set A is the set of
alternatives that dominate at least one alternative in A∗. It contains A∗. Decreasing
the performance of a minimally acceptable alternative by any amount on any criterion
produces an unacceptable alternative.

Let us determine the set A∗. We first focus on p1. Given the granularity of the
evaluations, for satisfying c(x, p1) ≥ .6, the index ci (xi , p1i ), which takes only the
values 0, .5 and 1,

– must be 1 for two criteria i ∈ {1, 2, 3}; it can be 0 for the third one,
– or must be 1 for one criterion and take the value .5 on the other two.

Consider the alternatives of the form x = (7, 6, x3). For them, c(x, p1) ≥ 2
3 > .6.

We have d3(x3, p13) = .75 if x3 = 1.5 and d3(x3, p13) = .5 if x3 = 2. Therefore
σ(7, 6, 1.5) = 2

3 × 1/4
1/3 = .5 < .6 and σ(7, 6, 2) = 2

3 > .6 since d3(2, p13) = .5

< c(x, p1). Therefore, (7, 6, 2) is minimal in A and, by a similar reasoning, we have
that (7, 4, 4) and (5, 6, 4) are also minimal.

Consider now the second type of minimal alternatives. For example, for
x = (7, 5.5, 3.5), we have σ(x, p1) = c(x, p1) = 1× 1/3+ 1/2× 1/3+ 1/2× 1/3
= 2/3 > 0.6. Clearly, none of the performances of x can be decreased by .5 without
resulting in an unacceptable alternative. Therefore, (7, 5.5, 3.5) is minimal and, by a
similar reasoning, we see that (6.5, 6, 3.5) and (6.5, 5.5, 4) are minimal too.

Applying the same analysis to the second profile p2, yields the complete description
of the set A∗ of minimally acceptable elements displayed in Table 2 (the first (resp.
second) row corresponds to profile p1 (resp. p2)).

None of these 12 alternatives dominates another. The number of elements in A∗ is
thus 12.

Remark 2 Let us briefly discuss the consequences of using a similar ETri-nB-I model,
using the Electre I outranking relation, instead of the more classical version above.
We keep the same two limiting profiles p1, p2 and the same parameters except for

Table 2 List of minimally acceptable alternatives in case evaluations are integers or half-integers

(7, 6, 2) (7, 4, 4) (5, 6, 4) (7, 5.5, 3.5) (6.5, 6, 3.5) (6.5, 5.5, 4)

(4, 5, 5) (4, 3, 7) (2, 5, 7) (4, 4.5, 6.5) (3.5, 5, 6.5) (3.5, 4.5, 7).

123



A theoretical look at ELECTRE TRI-nB 81

qti and pti that we both set equal to 1 and vti that we set to 3. It is easy to see
that there are three minimally acceptable alternatives w.r.t. p1 which are (7, 6, 2),
(7, 4, 4) and (5, 6, 4). The minimally acceptable alternatives w.r.t. p2 are (4, 5, 5),
(4, 3, 7) and (2, 5, 7). The number of minimally acceptable alternatives is half the
one in Table 2. The minimally acceptable alternatives in this simplified model are
identical to the first three ones in each row of Table 2. The last three ones in each
row are not “represented” in the simplified model. They correspond to alternatives for
which the distinction between thresholds pti and qti plays an important role.

2.2.2 Observations

We emphasize the following observations supported by the above example.

1. From the analysis of the above example, it results that an alternative is assigned
to A by the ETri-nB model iff it is equal or dominates one of the twelve
alternatives listed in Table 2. Therefore, this model is equivalent to another
ETri-nB model with different parameters. The latter has the 12 alternatives
P ′ = {p′1, . . . , p′ j , . . . , p′12} listed in Table 2 as limiting profiles. For all
i = 1, 2, 3, w′

i = 1/3, pt ′i = qt ′i = 0 and vt ′i is a large number, e.g., vt ′i = 10. We

set λ′ = 1. With this model, c′(x, p′ j ) ≥ λ′ = 1 iff xi ≥ p′ j
i for all i . There is no

veto effect since di (xi , p′ j
i ) ≤ c′(x, p′ j ) whenever the condition c′(x, p′ j ) ≥ λ′

is fulfilled and whatever the value of vt ′i . We call such a model an unanimous
ETri-nB model in the sequel.

2. While the scale Xi of each criterion i = 1, 2, 3 has 21 levels (all integers and
half integers between 0 and 10), only 6 of them are distinguished by appearing as
distinct values of the i th coordinate in the 12 minimally acceptable alternatives
listed in Table 2. The ETri-nBmodel distinguishes only the 7 classes of equivalent
evaluations that are delimited by these 6 values. For instance, on the scale of
criterion i = 1, the 6 values that make a difference are 7, 6.5, 5, 3, 2.5, 1. They are
the different values taken by the first coordinate of the alternatives in Table 2. This
means that the model’s assignments toA or U induce a weak order �1 on X1 that
is coarser than the natural order on the set of integers and half-integers in [0, 1].
This weak order �1 (with its asymmetric part denoted 
1 and its symmetric part
∼1) on X1 is as follows:

[10 ∼1 9.5 ∼1 9 ∼1 8.5 ∼1 8 ∼1 7.5 ∼1 7] 
1 6.5 
1 [6 ∼1 5.5 ∼1 5]

1 [4.5 ∼1 4 ∼1 3.5 ∼1 3] 
1 2.5 
1 [2 ∼1 .5 ∼1 1] 
1 [0.5 ∼1 0].

This implies, for example, the following. If the evaluation of x on the first criterion
is 6, decreasing it to 5 does not change the assignment of the alternative. Such a
weak order with 7 equivalence classes is defined on each criterion by the model.

3. In the process of aiding a decision maker (DM) to make a decision by eliciting
her preference in a question-and-answer session, ETri-nB may be a useful tool
because the principle of concordance/non-discordance at the root of the method
is intuitively appealing. The perspective is different when the parameters of the
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method are not elicited through actual interactionwith aDMbut have to be learned
on the basis of an (often limited) number of assignment examples. The minimal
number of examples that allows us to determine a sortingmodel is important when-
ever learning themodel is the issue. Assume that an oracle tells you that ETri-nB is
the model used by the DM for sorting the alternatives into two categoriesA and U .
The oracle gives you the values of all the model’s parameters including the number
and the definition of limiting profiles. What is the minimal number of assignment
questions you have to ask the DM just to verify that the oracle is not cheating
on you? The most efficient questioning strategy is asking the decision maker to
assign all minimally acceptable alternatives (that can be determined according to
the model indicated by the oracle). If the DM assigns them all to A, then it is still
necessary to ask her to assign all maximally unacceptable alternatives. If the DM
assigns them all to U , then the oracle’s model is the right one. So, in particular,
the number of minimally acceptable alternatives (i.e., the limiting profiles of the
unanimous ETri-nB equivalent model) is important in a learning context. From
this point of view, ETri-nB appears as rather complex since the set of minimally
acceptable alternatives it induces tends to be large. In the above examplewith 3 cri-
teria, 2 limiting profiles and criteria scales composed of integers and half-integers,
this number is 12. It grows rapidly, for instance, with the criteria scales precision.
If we apply the same model to the case the criteria scales are rational numbers
with one decimal digit ranging in [0,10] (i.e., 101 levels on each criterion scale
instead of 21), the number of minimally acceptable alternatives grows up to 192
(see Supplementary material, Appendix C). Therefore, in a learning perspective,
the question of approximating an ETri-nB model by a simpler one, i.e., a model
determining relatively few minimally acceptable alternatives is important.

2.3 Goal of the paper

In Sects. 3 and 4, we analyze, in a conjoint measurement framework ( Krantz et al.
1971, Ch. 6 and 7), an assignment model, Model (E), that is closely related to the
ETri-nB-I method presented above. Just as ETri-nB generalizes ETri-B, Model (E)

generalizes the noncompensatory sorting model studied by Bouyssou and Marchant
(2007a, b) to the case in which several limiting profiles are used to sort the alternatives.

We place ourselves in a conjoint measurement framework because it is the usual
one in decision theory and it has been used in previous works analyzing the Electre
methods. Analyzing sorting methods in this framework means that any alternative in
a Cartesian product can be sorted into categories and that an a priori linear ordering of
each criterion scale is not postulated. A weak order on each criterion scale, if it exists,
will be revealed by the partition. Working in such a framework does not restrict the
generality of the study. Indeed, in case each criterion scale is linearly ordered and a
partition respects the dominance relation determined by these orders, then the partition
does reveal a weak order on each scale, possibly coarser than the a priori linear orders,
but compatible with them. This was illustrated in item 2 of Sect. 2.2.2.

Our main finding is that, if the number of limiting profiles is not bounded above,
the axiomatic analysis of Model (E) is easy and rests on a condition, linearity, that is
familiar in the analysis of sorting models (Goldstein 1991; Bouyssou and Marchant

123



A theoretical look at ELECTRE TRI-nB 83

2007a, b, 2010; Greco et al. 2004; Słowiński et al. 2002; Greco et al. 2001b). Our
simple result shows the equivalence between Model (E) and several other sorting
models, in particular, the unanimous model introduced above in the example.

We prove, in Sect. 5.2, that the ETri-nB model, which uses the Electre III out-
ranking relation, is equivalent to the ETri-nB-I model and to the decomposable model
(D1) (that will be defined below, in Sect. 3.2). By “equivalent”, we mean that, for all
particular ETri-nB model, there is an ETri-nB-I model that determines the same par-
tition. The parameters of these equivalent models are possibly different. In particular,
we emphasize that the sets of limiting profiles used in equivalent models usually differ,
also in cardinality. Our theoretical analysis gives insight into the issue of learning such
models on the basis of assignment examples (see Sect. 6.2).

3 Notation and framework

Although the analyses presented in this paper can easily be extended to cover the case
of several ordered categories, we will mostly limit ourselves to the study of the case
of two ordered categories. This will allow us to keep things simple, while giving us a
sufficiently rich framework to present our main points.

Similarly, we suppose throughout that the set of objects to be sorted is finite. This is
hardly a limitation with applications of sorting methods in mind. The extension to the
general case is not difficult but calls for developments that would obscure our main
messages5.

3.1 The setting

Let n ≥ 2 be an integer and X = X1 × X2 × · · · × Xn be a finite set of objects6.
Elements x, y, z, . . . of X will be interpreted as alternatives evaluated on a set N =
{1, 2, . . . , n} of attributes7. Any element x ∈ X is thus an n-dimensional vector
x = (x1, . . . , xi , . . . , xn), with xi ∈ Xi , for all i ∈ N . For all x, y ∈ X and i ∈ N , we
denote by (xi , y−i ) the element w ∈ X such that wi = xi and, for all j �= i , w j = y j .
In other words, w = (xi , y−i ) is obtained by replacing the i th component of y, i.e.,
yi , by xi .

Our primitives consist in a twofold partition 〈A,U〉 of the set X . This means that
the setsA and U are nonempty and disjoint and that their union is the entire set X . Our
central aim is to study various models allowing to represent the information contained
in 〈A,U〉. We interpret the partition 〈A,U〉 as the result of a sorting method applied
to the alternatives in X . Although the ordering of the categories is not part of our

5 In fact our framework allows us to deal with some infinite sets of objects: all that is really required is that
the set of equivalence classes of each set Xi under the equivalence ∼i is finite, see below.
6 Note that, in contrast with Sect. 2, the sets Xi are not necessarily sets of real numbers. They also need
not be the range of a function gi evaluating the alternatives w.r.t. criterion i . The set Xi can be any finite
set, not necessarily ordered a priori.
7 We use a standard vocabulary for binary relations. For the convenience of the reader, all terms that are
used in the main text are defined in Appendix A, given as supplementary material. See also, e.g., Aleskerov
et al. (2007), Doignon et al. (1988), Pirlot and Vincke (1992), Roubens and Vincke (1985).
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primitives, it is useful to interpret the set A as containing Acceptable objects, while
U contains Unacceptable ones.

We say that an attribute i ∈ N is influential for 〈A,U〉 if there are xi , yi ∈ Xi

and a−i ∈ X−i such that (xi , a−i ) ∈ A and (yi , a−i ) ∈ U . We say that an attribute is
degenerate if it is not influential. Note that the fact that 〈A,U〉 is a partition implies that
there is at least one influential attribute in N . A degenerate attribute has no influence
whatsoever on the sorting of the alternatives and may be suppressed from N . Hence,
we suppose henceforth that all attributes are influential for 〈A,U〉.

A twofold partition 〈A,U〉 induces on each i ∈ N a binary relation defined letting,
for all i ∈ N and all xi , yi ∈ Xi ,

xi ∼i yi if
[∀a−i ∈ X−i , (yi , a−i ) ∈ A ⇐⇒ (xi , a−i ) ∈ A]

. (3)

This relation is always reflexive, symmetric and transitive, i.e., is an equivalence. We
omit the simple proof of the following (see Bouyssou and Marchant 2007a, Lemma 1,
p. 220).

Lemma 1 For all x, y ∈ X and all i ∈ N,

1. [y ∈ A and xi ∼i yi ] ⇒ (xi , y−i ) ∈ A,
2. [x j ∼ j y j , for all j ∈ N ] ⇒ [x ∈ A ⇔ y ∈ A].
This lemma will be used to justify the convention made later in Sect. 4.1.

3.2 A general measurement framework

Goldstein (1991) suggested the use of conjoint measurement techniques for the anal-
ysis of twofold and threefold partitions of a set of multi-attributed alternatives. His
analysis was rediscovered and developed in Greco et al. (2001b) and Słowiński et al.
(2002). We briefly recall here the main points of the analysis in the above papers for
the case of twofold partitions. We follow Bouyssou and Marchant (2007a).

Let 〈A,U〉 be a partition of X . Consider a measurement model, henceforth the
Decomposable model, in which, for all x ∈ X ,

x ∈ A ⇔ F(u1(x1), u2(x2), . . . , un(xn)) > 0, (D1)

whereui is a real-valued functionon Xi and F is a real-valued functionon
∏n

i=1 ui (Xi )

that is nondecreasing in each argument8. The special case of Model (D1) in which
F is supposed to be increasing in each argument, is called Model (D2). Model (D2)
contains as a particular case the additive model for sorting in which, for all x ∈ X ,

x ∈ A ⇔
n∑

i=1

ui (xi ) > 0, (Add)

8 In Model (D1), notice that we could have chosen to replace the strict inequality by a nonstrict one. The
two versions of the model are equivalent, as shown in Bouyssou and Marchant (2007a)[Rem. 8, p. 222].
The same is true for Model (D2).
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that is at the heart of the UTADIS technique (Jacquet-Lagrèze 1995) and its variants
(Zopounidis and Doumpos 2000a, b; Greco et al. 2010). It is easy to check 9 that there
are twofold partitions that can be obtained in Model (D2) but that cannot be obtained
in Model (Add) (see Supplementary material, Appendix E).

In order to analyzeModel (D1), we define on each Xi the binary relation�i letting,
for all xi , yi ∈ Xi ,

xi �i yi if [for all a−i ∈ X−i , (yi , a−i ) ∈ A ⇒ (xi , a−i ) ∈ A]. (4)

It is not difficult to see that, by construction, �i is reflexive and transitive. We denote
by 
i (resp. ∼i ) the asymmetric (resp. symmetric) part of �i (hence, the relation ∼i

coincides with the one defined by (3)).
We say that the partition 〈A,U〉 is linear on attribute i ∈ N (condition i-linear) if,

for all xi , yi ∈ Xi and all a−i , b−i ∈ X−i ,

(xi , a−i ) ∈ A
and

(yi , b−i ) ∈ A

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(yi , a−i ) ∈ A,

or
(xi , b−i ) ∈ A.

(i-linear)

The partition is said to be linear if it is i-linear, for all i ∈ N . This condition
was first proposed in Goldstein (1991), under the name “context-independence”, and
generalized in Greco et al. (2001b) and Słowiński et al. (2002) (these authors call
it “cancellation property”). The adaptation of this condition to the study of binary
relations, adaptation first suggested by Goldstein (1991), is central in the analysis of
the nontransitive decomposablemodels presented in Bouyssou and Pirlot (1999, 2002,
2004).

The following lemma takes note of the consequences of condition i-linear on the
relation �i and shows that linearity is necessary for Model (D1). Its proof can be
found in Bouyssou and Marchant (2007a, Lemma 5, p. 221).

Lemma 2 1. Condition i-linear holds iff �i is complete,
2. If a partition 〈A,U〉 has a representation in Model (D1) then it is linear.

The following proposition is due to Goldstein (1991, Theorem 2) and Greco et al.
(2001b, Theorem 2.1, Part 2).

Proposition 2 Let 〈A,U〉 be a twofold partition of a set X. Then:

(i) there is a representation of 〈A,U〉 in Model (D1) iff it is linear ,
(ii) if 〈A,U〉 has a representation in Model (D1), it has a representation in which,

for all i ∈ N, ui is a numerical representation of �i ,
(iii) moreover, Models (D1) and (D2) are equivalent.

Proof See, e.g., Bouyssou and Marchant (2007a, Proposition 6, p. 222). ��
9 When X is finite, it is clear that the variant of Model (Add) in which the strict inequality is replaced by
a nonstrict one is equivalent to Model (Add).
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3.3 Partitions respecting a dominance relation

Footnote 6 has emphasized that it is not necessarily the case that Xi is a subset of
the reals and the range of a function gi evaluating the alternatives w.r.t. criterion i ,
for all i ∈ N . In the case a partition respects the dominance relation determined by
pre-existing linear orderings of the criteria scales (see Remark 1, for a definition), we
note the following result.

Proposition 3 Let X = ∏n
i=1 Xi , where the finite set Xi is endowedwith a linear order

≥i , for all i . Let 〈A,U〉 be a twofold partition of X which respects the dominance
relation ≥ determined by the linear orders ≥i . Then 〈A,U〉 is linear and the weak
order �i induced by the partition is compatible with the linear order ≥i , for all i , i.e.,
for all xi , yi ∈ Xi , xi ≥i yi entails xi �i yi .

Proof If xi ≥i yi , condition (4) is fulfilled, since the partition respects dominance,
and therefore xi �i yi . Since ≥i is complete, so is �i , for all i . Therefore 〈A,U〉 is
linear (Lemma 2.1). ��

The fact that, in general,�i does not distinguish (i.e., considers as equivalent) some
pairs that are strictly ordered by ≥i is illustrated in Sect. 2.2.2, item 2.

We noticed in Remark 1, that ETri-nB-pc and ETri-nB-I-pc respect the dominance
relation. Therefore, we have the following corollary of Proposition 3.

Corollary 1 The twofold partitions determined by ETri-nB-pc and ETri-nB-I-pc are
linear.

3.4 Interpretations of the decomposable model (D1)

The framework offered by the decomposable model (D1) is quite flexible. It contains
many other sorting models as particular cases. We already observed that it contains
Model (Add) as a particular case. Bouyssou and Marchant (2007a) have reviewed
various possible interpretations ofModel (D1). They have shown that both the pseudo-
conjunctive and the pseudo-disjunctive variants of ETri-B-I (see Table 1) enter into
this framework. In particular, they have characterized,within the decomposablemodel,
the NCS model, which is a generalization (without additive weights) of ETri-B-I
(pseudo-conjunctive).

Greco et al. (2001b, Theorem2.1, Parts 3 and4) (see alsoSlowinski et al., 2002, The-
orem 2.1) have proposed two equivalent reformulations of the decomposable model
(D1). The first one uses “at least” decision rules. The second one uses a binary relation
to compare alternatives to a profile. We refer to Bouyssou and Marchant (2007a) and
to the original papers for details.
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4 Main results

4.1 Definitions

The following definition synthesizes the main features of ETri-nB-I-pc, the version
of ETri-nB-pc using the Electre I outranking relation (see Sect. 2.1). The main
differences w.r.t. ETri-nB-I-pc are that: (i) we do not suppose that the real-valued
functions gi are given beforehand and (ii) we do not use additive weights combined
with a threshold to determine thewinning coalitions.Actually, themodel defined below
is a multi-profile version of the noncompensatory sorting model with veto analyzed
in Bouyssou and Marchant (2007a), exactly in the same way as ETri-nB is a multi-
profile version of ETri-B. For notational simplicity, we shall refer to it as Model (E)

(“E”, for Electre Tri) in the sequel.

Definition 1 We say that a partition 〈A,U〉 has a representation in Model (E) if:

– for all i ∈ N , there is a semiorder Si on Xi (with asymmetric part Pi and symmetric
part Ii ),

– for all i ∈ N , there is a strict semiorder Vi on Xi that is included in Pi and is the
asymmetric part of a semiorder Ui ,

– (Si ,Ui ) is a homogeneous nested chain of semiorders and Wi = Swo
i ∩ Uwo

i is a
weak order that is compatible with both Si and Ui ,

– there is a set of subsets of attributes F ⊆ 2N such that, for all I , J ∈ 2N , [I ∈ F
and I ⊆ J ] ⇒ J ∈ F ,

– there is a binary relation S on X (with symmetric part I and asymmetric part P)
defined by

x S y ⇐⇒ [S(x, y) ∈ F and V (y, x) = ∅] ,

– there is a set P = {p1, . . . , pk} ⊆ X of k limiting profiles, such that for all
p, q ∈ P , Not[p P q],
such that

x ∈ A ⇐⇒
{
x S p for some p ∈ P and

Not[q P x] for all q ∈ P,
(E)

where

S(x, y) = {i ∈ N : xi Si yi },

and

V (x, y) = {i ∈ N : xi Vi yi }.

We then say that 〈(Si , Vi )i∈N ,F ,P〉 is a representation of 〈A,U〉 in Model (E).
Model (Ec) is the particular case of Model (E), in which there is a representation that
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Table 3 Model (E) and its variants

(E) 〈(Si , Vi )i∈N ,F ,P〉 General model

(Ec) 〈(Si , ∅)i∈N ,F ,P〉 Based on concordance

(Eu) 〈(Si , ∅)i∈N ,F = {N },P〉 Based on unanimity

shows no discordance effects, i.e., in which all relations Vi are empty. Model (Eu)

is the particular case of Model (E), in which there is a representation that requires
unanimity, i.e., such that F = {N }.

Table 3 summarizes the models defined above. It should be clear that (E) is
closely related to ETri-nB-I-pc (see Remark 3 below). It does not use criteria but
uses attributes, as is traditional in conjoint measurement. Moreover, it does not use an
additive weighting scheme combined with a threshold to determine winning coalitions
but uses instead a general family F of subsets of attributes that is compatible with
inclusion (see also Bouyssou andMarchant 2007a). Note that, when the set of limiting
profiles P is restricted to be a singleton, Model (E) is exactly the noncompensatory
sorting model (NCS) studied by Bouyssou and Marchant (2007a).

Remark 3 Any partition determined by an ETri-nB-I-pc model has a representation
in Model (E). We illustrate this fact using the example of the ETri-nB-I-pcmodel
described in Remark 2. Note that this way of constructing a representation in Model
(E) is applicable to any ETri-nB-I-pc model.

For all i = 1, 2, 3, Xi is the set of integers and half-integers between 0 and 10.
The semiorder Si on Xi is defined using the threshold pti = qti = 1, i.e., for all
xi , yi ∈ Xi , xi Si yi iff xi ≥ yi − 1. We have xi Si yi iff ci (xi , yi ) = 1. Similarly, the
strict semiorder Vi is defined using the threshold vti = 3 by xi Vi yi iff xi > yi + 3.
We have xi Vi yi iff di (yi , xi ) = 1. The subsets of attributes in F are all sets of two
or three attributes since c(x, y) ≥ .6 if and only if, for at least two criteria, xi Si yi
and, therefore, |S(x, y)| ≥ 2. The pair (x, y) belongs to the outranking relation S
iff |S(x, y)| = |{i : xi Si yi }| ≥ 2 and V (y, x) = {i : yi Vi xi } = ∅, i.e., it is never
the case that yi ≥ xi + 3.5. With these definitions of Si , Vi and F , the acceptable
alternatives in the example are exactly these which satisfy (E).

It is easy to see that the model in the example is equivalent to a model based on
unanimity, i.e., a model (Eu), using as limiting profiles the three first alternatives in
each row of Table 2 and the natural order ≥ as the relation Si on Xi .

Remark 4 It is clear that Model (Eu) is a particular case of Model (Ec): if unanimity
is required to have x S y, the veto relations Vi play no role and can always be taken
to be empty.

The following lemma takes note of elementary consequences of the fact that (Si ,Ui )

is a homogeneous nested chain of semiorders (we remind the reader that the necessary
definitions are recalled in Appendix A, as supplementary material).
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Lemma 3 Let 〈A,U〉 be a twofold partition of X. If 〈A,U〉 is representable in (E)

then, for all a = (ai , a−i ), b = (bi , b−i ) ∈ X, all i ∈ N and all ci ∈ Xi ,

a S b and bi Wi ci ⇒ a S (ci , b−i ), (5a)

a P b and bi Wi ci ⇒ a P (ci , b−i ), (5b)

a S b and ci Wi ai ⇒ (ci , a−i ) S b, (5c)

a P b and ci Wi ai ⇒ (ci , a−i ) P b, (5d)

where Wi denotes a weak order that is compatible with the homogeneous nested chain
of semiorders (Si ,Ui ).

Proof Let a′ = (ci , a−i ) and b′ = (ci , b−i ). Let us show that (5a) holds. Suppose
that a S b, so that S(a, b) ∈ F and V (b, a) = ∅. Because bi Wi ci , we know
that S(a, b′) ⊇ S(a, b). Hence, we have S(a, b′) ∈ F . Similarly, we know that
V (b, a) = ∅, so that Not[bi Vi ai ]. It is therefore impossible that ci Vi ai since
bi Wi ci would imply bi Vi ai , a contradiction. Hence, V (b′, a) = ∅ and we have
a S b′.

Let us show that (5b) holds. Because a P b implies a S b, we know from (5a) that
a S b′. Suppose now that b′ S a so that S(b′, a) ∈ F and V (a, b′) = ∅. Because
bi Wi ci , ci Si ai implies bi Si ai , so that S(b, a) ⊇ S(b′, a), implying S(b, a) ∈ F .
Similarly, we know that V (a, b′) = ∅, so that Not[ai Vi ci ]. It is therefore impossible
that ai Vi bi , since bi Wi ci would imply ai Vi ci , a contradiction. Hence, we must
have V (a, b) = ∅, so that we have b S a, a contradiction.

The proof of (5c) and (5d) is similar. ��
The next lemma shows that Model (E) implies linearity.

Lemma 4 Let 〈A,U〉 be a twofold partition of X = ∏n
i=1 Xi . If 〈A,U〉 has a repre-

sentation in Model (E) then it is linear.

Proof Suppose that we have (xi , a−i ) ∈ A, (yi , b−i ) ∈ A. Defining the relations Wi

as in Lemma 3, we have either xi Wi yi or yi Wi xi . Suppose that xi Wi yi . Because
(yi , b−i ) ∈ A, we know that (yi , b−i ) S p, for some p ∈ P , andNot[q P (yi , b−i )] for
all q ∈ P , Lemma 3 implies that (xi , b−i ) S p and Not[q P (xi , b−i )] for all q ∈ P .
Hence, (xi , b−i ) ∈ A. The case yi Wi xi is similar: we start with (xi , a−i ) ∈ A to
conclude that (yi , a−i ) ∈ A. Hence, linearity holds. ��

In view of Lemma 4, we therefore know from Lemma 2 that in Model (E) there is,
on each attribute i ∈ N , a weak order �i on Xi that is compatible with the partition
〈A,U〉.
Convention For the analysis of 〈A,U〉 on X = ∏n

i=1 Xi , it is not useful to keep in
Xi elements that are equivalent w.r.t. the equivalence relation ∼i . Indeed, if xi ∼i yi
then (xi , a−i ) ∈ A iff (yi , a−i ) ∈ A (see Lemma 1).

In order to simplify the analysis, it is not restrictive to suppose that we work with
Xi/∼i (i.e., the set of equivalence classes in Xi for the equivalence ∼i ) instead
of Xi and, thus, on

∏n
i=1[Xi/∼i ] instead of

∏n
i=1 Xi . This amounts to supposing
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that the equivalence ∼i becomes the identity relation. We systematically make this
hypothesis below. This is w.l.o.g. since the properties of a partition on

∏n
i=1[Xi/∼i ]

can immediately be extended to a partition on
∏n

i=1 Xi (see Lemma 1) and is done for
convenience only. In order to simplify notation, we suppose below that we are dealing
with partitions on

∏n
i=1 Xi forwhich all relations∼i are trivial.Our convention implies

that each relation �i is antisymmetric, so that the sets Xi are linearly ordered by �i .

Let us define the relation � on X letting, for all x, y ∈ X ,

x � y ⇐⇒ xi �i yi , for all i ∈ N .

It is clear that the relation � plays the role of a dominance relation in our conjoint
measurement framework. It is a partial order on X , being reflexive, antisymmetric, and
transitive. This partial order is obtained as a “direct product of chains” (the relations
�i on each Xi ) as defined in Caspard et al. (2012, p. 119).

Before we turn to our main results, it will be useful to take note of a few elementary
observations about maximal and minimal elements in partially ordered sets (posets),
referring to Davey and Priestley (2002), for more details.

4.2 Minimal andmaximal elements in posets

Let T be a binary relation on a set Z . An element x ∈ B ⊆ Z is maximal (resp.
minimal) in B for T if there is no y ∈ B such that y T α x (resp. x T α y), where T α

denotes the asymmetric part of T . The set of all maximal (resp. minimal) elements in
B ⊆ Z for T is denoted by Max(T , B) (resp. Min(T , B)).

For the record, the following proposition recalls somewell-known facts about max-
imal and minimal elements of partial orders on finite sets ( Davey and Priestley 2002,
p. 16). We sketch its proof in Appendix B for completeness.

Proposition 4 Let T be a partial order (i.e., a reflexive, antisymmetric and transitive
relation) on a nonempty set Z. Let B be a finite nonempty subset of Z. Then the set
of maximal elements, Max(T , B), and the set of minimal elements, Min(T , B), in
B for T are both nonempty. For all x, y ∈ Max(T , B) (resp. Min(T , B)) we have
Not[x T α y]. Moreover, for all x ∈ B, there is y ∈ Max(T , B) and z ∈ Min(T , B)

such that y T x and x T z.

We will apply the above proposition to the proper nonempty subset A of the finite
set X = ∏n

i=1 Xi , partially ordered by �.

4.3 A characterization of model (E)

We know that � is a partial order on X = ∏n
i=1 Xi . Because 〈A,U〉 is a twofold

partition of X , we know that A �= ∅. Because we have supposed X to be finite, so is
A. Hence, we can apply Proposition 4 to conclude that the set A∗ = Min(�,A) is
nonempty.

We are now fully equipped to present our mainresult.
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Theorem 1 Let X = ∏n
i=1 Xi be a finite set and 〈A,U〉be a twofold partition of X. The

partition 〈A,U〉 has a representation in Model (E) iff it is linear. This representation
can always be taken to be 〈(�i , Vi = ∅)i∈N ,F = {N },P = A∗〉.
Proof We know from Lemma 4 that Model (E) implies linearity. Let us prove the
converse implication. Take, for each i ∈ N , Si = �i and Vi = ∅. Take F = {N }.
Hence, we have S = �. Take P = A∗. Using Proposition 4, we know that A∗ is
nonempty and that, for all p, q ∈ A∗, we have Not[p 
 q]. Hence, taking P = A∗
leads to an admissible set of profiles in Model (E).

If x ∈ A, we use Proposition 4 to conclude that there is y ∈ A∗ such that x � y,
so that we have x � p, for some p ∈ P . Suppose now that, for some q ∈ P , we have
q 
 x . Using the fact that � is a partial order, we obtain q 
 p, contradicting the fact
that p, q ∈ A∗, in view of Proposition 4. Suppose now that x ∈ U . Supposing that
x � p, for some p ∈ P = A∗, would lead to x ∈ A, a contradiction. This completes
the proof. ��
Remark 5 In the representation in Model (E) built in Theorem 1, the relation S is a
partial order. When this is so, the condition stating that Not[q P x] for all q ∈ P and
all x ∈ A, is automatically verified. Indeed, suppose that, for some q ∈ P and some
x ∈ A, we have q P x . Because x ∈ A, there is p ∈ P such that x S p. Transitivity
leads to q P p, violating the condition on the set of profiles.

Remark 6 Under our convention that�i is antisymmetric, for all i ∈ N , it is clear that,
if we are only interested in representations with F = {N }, the set P must be taken
equal to A∗. Hence, the representation built above is unique, under our convention
about antisymmetry and the constraint that F = {N }. Without the constraint that
F = {N }, uniqueness does not obtain any more, as shown, e.g., by Example 1 below.
Since this is not important for our purposes, we do not investigate this point further in
this text.

4.4 Example

We illustrate the construction of the representation in Theorem 1 with the example
below.

Example 1 Let X = ∏3
i=1 Xi with X1 = X2 = X3 = {39, 37, 34, 30, 25}. Hence, X

contains 53 = 125 objects.
Define the twofold partition 〈A,U〉 letting:

(x1, x2, x3) ∈ A ⇐⇒ x1 + x2 + x3 ≥ 106.

In this twofold partition, the setA contains 32 objects, whileU contains the remain-
ing 93 objects.

It is easy to check that all attributes are influential for this partition and that, on
each attribute i ∈ N , we have 39 
i 37 
i 34 
i 30 
i 25. For instance, for attribute
1, we have:
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(39, 37, 30) ∈ A (37, 37, 30) /∈ A,

(37, 39, 30) ∈ A (34, 39, 30) /∈ A,

(34, 39, 34) ∈ A (30, 39, 34) /∈ A,

(30, 39, 37) ∈ A (25, 39, 37) /∈ A.

This twofold partition has an obvious representation in Model (Add). Hence it is
linear and also has a representation in Model (E). Considering the representation
built in Theorem 1 with Si = �i , Vi = ∅, P = A∗ and F = {N }, we obtain10 a
representation that uses the following 12 profiles:

(37, 37, 34) (39, 34, 34) (39, 37, 30) (37, 30, 39)

(37, 34, 37) (34, 39, 34) (39, 30, 37) (30, 39, 37)

(34, 37, 37) (34, 34, 39) (37, 39, 30) (30, 37, 39).

(6)

It is clear that these twelve profiles are pairwise incomparable w.r.t. S = �.
For instance, the object (39, 30, 39) belongs toA, because 39+ 30+ 39 = 108 ≥

106. This object outranks (meaning here, dominates) the two profiles (39, 30, 37) and
(37, 30, 39), but no other.

Notice that this twofold partition is also determined by an ETri-nB-pc model with
a single limiting profile p1 = (39, 39, 39), thresholds qti = 0, pti = 9, vti = 14, for
i = 1, 2, 3 and λ = 16/27.

5 Remarks and extensions

5.1 Positioningmodel (E)w.r.t. other sortingmodels

Theorem 1 gives a simple characterization of Model (E). It makes no restriction on
the size of the set of profiles P , except that it is finite.

The proof of Theorem 1 builds a representation of any partition 〈A,U〉 satisfying
linearity in a special case of Model (E), Model (Eu). This shows that Models (Eu)

and (E) are equivalent. Because, (Eu) is a particular case of Model (Ec), this also
shows that Models (E), (Eu) and (Ec) are equivalent.

In view of Proposition 2, Model (E) is equivalent to Model (D1) and, hence, to
Model (D2). However, Model (Add) is not equivalent to Model (E). An example of
a linear partition that is not representable in Model (Add) is given in Appendix E, as
supplementary material. Note also that a characterization of Model (Add) in case X is
a finite set is known but requires a countably infinite scheme of axioms (see Bouyssou
and Marchant 2008, Appendix B, and especially, Remark 31, p. 32).

Because Model (D2) contains Model (Add) as a particular case, the same is true
for Model (E).

We summarize our observations in the following.

Proposition 5 1. Models (E), (Ec), and (Eu) are equivalent.

10 We omit details and the reader is invited to check this example using, e.g., his/her favorite spreadsheet
software.
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2. Models (E), (D1), and (D2) are equivalent.
3. Model (Add) is a particular case of Model (E) but not vice versa.

The above proposition allows us to position rather precisely Model (E) within the
family of all sorting models.

Remark 7 As observed in Sect. 4.1, when the set P of limiting profiles is restricted to
a singleton, Model (E) is the noncompensatory sorting model. The twofold partitions
〈A,U〉 that can be represented in this model have been characterized as being linear
and 3v-graded (see Bouyssou and Marchant 2007a). The latter property implies that
the weak order �i induced by the partition on Xi , for all i , distinguishes at most three
equivalence classes of evaluations on criterion i . In case there is no veto effect,�i dis-
tinguishes at most two equivalence classes on Xi (2-graded). This result characterizes
the twofold partitions representable in the noncompensatory sorting model within the
set of linear twofold partitions. In other words, it characterizes the particular case of
Model (E) with one limiting profile within the general Model (E).

5.2 Model (E) versus ETRI-nB-pc

In order to position Model (E) w.r.t. ETri-nB-pc, we assume that, for all i , Xi is
the range of a real-valued function gi evaluating the alternatives w.r.t. criterion i . We
know that Model (E) is equivalent to Model (Eu). These models are characterized
by linearity. But all partitions obtained with the original method ETri-nB-pc satisfy
linearity (by Corollary 1). Therefore, ETri-nB-pc is a particular case of Model (E).

Conversely, Model (Eu) is a particular case of ETri-nB-pc that is obtained taking
the cutting level λ to be 1 and, on all criteria, the preference and indifference thresholds
to be equal. Since unanimity is required, veto thresholds play no role. Since Model
(Eu) is equivalent to Model (E), Model (E) is a particular case of ETri-nB-pc.

The same can be said of ETri-nB-I-pc, since this model also satisfies linearity (by
Corollary 1) and contains the unanimous model (Eu). This is also true of the versions
without veto of ETri-nB-pc and ETri-nB-I-pc. Therefore, (E) and all four models in
the left part of Table 1 are equivalent models.

We take note of this in the next proposition.

Proposition 6 Models (E),ETri-nB-pc (with or without veto) and ETri-nB-I-pc (with
or without veto) are equivalent models11.

The relationship of (E) with ETri-nB-I-pc is however tighter than with ETri-nB-
pc. Indeed, as shown in Remark 3, any ETri-nB-I-pc model has a straightforward
representation in Model (E) that does not make use of the unanimous model.

11 We emphasize that, by equivalent models, we mean that any partition that has a representation in one of
the three models, also has a representation in the two other models, using an appropriate set of parameters.
In particular, not only the limiting profiles used in these models are generally different but also the numbers
of limiting profiles differ.

123



94 D. Bouyssou et al.

5.3 Unanimous representations

The reader may be perplexed by the fact that the proof of Theorem 1 builds a repre-
sentation in Model (E) in which F = {N }. This is indeed a very particular form of
representation. Notice that there are linear partitions of which the sole representation
in Model (E) is a unanimous one, i.e., with F = {N }. The curious reader will find
such an example in Appendix D, as supplementary material. Hence, representations
with F = {N } are sometimes quite useful and even, may be the only possible ones.
We show below that obtaining such a representation from a representation based on
concordance, i.e., in Model (Ec), is easy.

Any representation in Model (E) can be transformed into a representation with
F = {N }. This is a direct consequence of Theorem 1. When the representation is
without discordance, we show below that the process of buildingA and then deriving
A∗ can be avoided.

Suppose we know a representation 〈(Si , ∅)i∈N ,F ,P〉 of the partition 〈A,U 〉 in
(E) (in fact, in (Ec)) and that F �= {N }.

We want to find a representation such thatF = {N }. Theorem 1 ensures that such a
representation exists. It can be built quite efficiently, independently of the construction
used in Theorem 1.

Let F∗ = Min(⊇,F), the set of minimal elements in F w.r.t. inclusion. For each
i ∈ N , let x0i be the unique element in Xi that is minimal for the linear order �i .
Define x0 accordingly. Moreover, let:

P ′ = {(x0−I , pI ), for all p ∈ P and I ∈ F∗}.

It is clear that 〈(Si , ∅)i∈N , {N },P ′〉 is a representation of the partition 〈A,U 〉 in (E).

5.4 Variable set of winning coalitionsF

A rather natural generalization of Model (E), called (Ẽ), is as follows. Instead of
considering a single family of winning coalitions F that is used to build the relation S
and compare each alternative in X to all profiles in P , we could use a family F p that
would be specific to each profile p ∈ P , with a relation S p that now depends on the
profile.

The analysis of Model (Ẽ) is easy. It is simple to check that Model (Ẽ) implies
linearity. Indeed, for each relation S p, Lemma 3 holds and, hence, linearity cannot be
violated. This shows that Model (Ẽ) is a particular case of Model (E) and, hence, is
equivalent to it.

5.5 More than two categories

Our analysis of Model (E) can easily be extended to cover the case of an arbitrary
number of categories. Because this would require the introduction of a rather cumber-
some framework, without adding much to the analysis of two categories, we do not
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formalize this point. We briefly indicate how this can be done, leaving the details to
the interested readers.

Linearity has been generalized to cope with more than two categories. This is done
in Słowiński et al. (2002) and Bouyssou and Marchant (2007b). The intuition behind
this generalization is simple. It guarantees that there is a weak order on each attribute
that is compatible with the ordered partition.

When X is finite, this condition is necessary and sufficient to characterize the
obvious generalization of Model (D1) that uses more than one threshold, instead
of the single threshold 0 (see, e.g., Bouyssou and Marchant 2007b, Prop. 7, p. 250).
Moreover, it is easy to check that this condition is satisfied by the natural generalization
of Model (E) that uses more than two categories (this involves working with of a set
of profiles P for each of the induced twofold partitions).

Now, the technique used in the proof of Theorem 1 easily allows one to define a
family of profiles for each of the induced twofold partitions. It just remains to check
that these families of profiles satisfy the constraints put forward in Fernández et al.
(2017, Condition 1, p. 216). This is immediate.

5.6 Pseudo-disjunctive ETRI-nB

Up to this point, we have investigated the properties of Model (E) which is closely
linked to ETri-nB-pc and some of its variants. We now briefly examine ETri-nB-pd
(defined in Sect. 2.1.3).

Let us first observe, as in Remark 1, that ETri-nB-pd and ETri-nB-I-pd respect
the dominance relation. Therefore, by Proposition 3, we have that these models satisfy
linearity. Hence all partitions determined either by ETri-nB-pd or by ETri-nB-I-pd
have a representation in Model (E).

Whether or not these models are equivalent to Model (E) is still unclear. The
interested reader may refer to Bouyssou et al. (2020, Section 5), for a theoretical look
at ETri-nB-pd. This reference contains examples showing that the study of this model
is more complex than that of the pseudo-conjunctive version. These examples suggest
that ETri-nB-pd might be strictly included in Model (E), but this question remains
open.

The extra complexity involved in studying the pseudo-disjunctive model was
already pointed out by Bouyssou and Marchant (2015) in the case of ETri-B-pd.
Their analysis concludes that this is mainly due to the fact that ETri-B-pc and ETri-
B-pd are not dual of each other (see Bouyssou et al. 2020, Section 5.3, for more
detail).

6 Discussion

6.1 Summary

Using classical tools from conjoint measurement, we have proposed a new interpreta-
tion of the decomposable model (D1) introduced by Goldstein, i.e., of linear twofold
partitions of a finite product set X = ∏n

i=1 Xi . Any such partition can be represented
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in Model (E) using an appropriate set of limiting profiles. It can also always be rep-
resented in Model (Eu), the unanimous model, using as limiting profiles the set of
minimally acceptable elements in X . Some linear twofold partitions have a unique
representation in Model (E). It is then a unanimous one. Some other linear twofold
partitions have several representations in model (E), one of which is unanimous.

In case Xi is a finite subset endowed with a linear ordering≥i (e.g., Xi is the range
of the real-valued evaluation function gi w.r.t. criterion i) and the partition 〈A,U〉
of X = ∏n

i=1 Xi respects dominance, then it is linear w.r.t. the weak order �i on
Xi that is compatible with the linear order ≥i on Xi . Any such twofold partition is
representable in Model ETri-nB-pc using an appropriate set of limiting profiles and
other model parameters (thresholds, additive criteria weights). It can also be repre-
sented in model ETri-nB-I-pc (again with appropriate, possibly different, limiting
profiles and parameters). Of course, it can also be represented in Models (D1) or in
Model (E) (possibly using a set of winning coalitionsF that cannot be represented by
additive weights and a threshold). Since all these models contain as a particular case
the unanimous model (Eu), it may happen that the sole representation of the twofold
partition in these models is the unanimous one. In some cases, but not always, there
exists a more synthetic representation with fewer limiting profiles and a nontrivial set
of winning coalitions.

Note that any sorting model producing partitions respecting dominance and able
to determine any partition generated by the unanimous model is equivalent to Model
(D1). Not all sorting models respecting dominance however are able to determine any
partition produced by the unanimous model. For example, the additive model (Add)
is strictly included in Model (D1).

Somewhat surprisingly, while Bernard Roy had always championed outranking
approaches as an alternative to the classical additive value function model, it turns
out that the last Electre method that he published before he passed away, Electre
Tri-nB, contains the additive value function model for sorting as a particular case.We
think that this unexpected conclusion is a plea for the development of axiomatic studies
in the field of decision with multiple attributes, as already advocated in Bouyssou et al.
(1993), more than 25 years ago.

6.2 Perspectives for elicitation and learning

As a preliminary remark, let us observe the following.We have established that Elec-
tre Tri sorting models with multiple limiting profiles have the same expressive power
be they based on Electre I (ETri-nB-I) or Electre III (ETri-nB) outranking rela-
tions. This does not imply that one should systematically opt for the simpler model
based on Electre I (ETri-nB-I) in an elicitation or a learning process. In such a
process, the crisp preference thresholds in Electre I may not fit with the decision
maker’s insights, while she may be receptive to the more gradual preference model in
Electre III. Similarly, learning a model based on Electre III may be at an advan-
tage even though the model has more parameters and assignment examples are scarce.
The more “continuous” character of the preferences in Electre III may allow for
different optimization techniques (especially with the variant of Electre III proposed
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by Mousseau and Dias, 2004). In any case, since assignment examples or other pref-
erence information are typically scarce in MCDA, model indeterminacy is generally
an issue. Therefore, attention should be paid to not using exceedingly general models.
In particular, the number of limiting profiles considered should be kept to a minimum
(using a model based on Electre I or on Electre III).

In the rest of this section, we focus on situations in which a model of assignment
respecting dominance has to be learned solely on the basis of assignment examples.
We thus assume that either we do not have the opportunity to interact with a decision
maker or, if such a possibility exists, we decided to only ask her questions in terms of
assignments to the classes of the partition. In such a perspective, the intuitive content of
the underlying models plays no role, while mastering the complexity of these models
is important as observed in Sect. 2.2.2, item 3.

ETri-nB-pc is equivalent to Model (E), which is equivalent to the decomposable
model (D1) and thus to the model based on “at least” decision rules (see Sect. 3.4).
Techniques have been proposed to learn a decision rule model (see Greco et al. 1999,
2001a, c; Słowiński et al. 2002; Greco et al. 2016, and, for a recent application of these
techniques, Abastante et al. 2014). A large scale recent application to the detection of
frauds in car loans applications is described in Błaszczyński et al. (2021). The dataset
involves 26187 loans among which 405 were fraudulently obtained. The dominance-
based rough set approach (DRSA) is applied. It determines “at least” decision rules,
which approximately reproduce the partition in fraudulent and non-fraudulent loans.
The approach outperforms two classical machine learning techniques (random forest
and support vector machine). Methods such as DRSA can directly be used to learn
an ETri-nB-pc model since a limiting profile can immediately be deduced from any
“at least” decision rule d. Indeed, the latter specifies minimal levels to be attained
on a subset Nd ⊆ N of criteria in order to be assigned to category A. A minimally
acceptable element associated to such a rule is the n-tuple whose components corre-
sponding to the criteria in Nd are set to the minimal levels specified in the rule. The
components corresponding to any criterion i /∈ Nd are set to the minimal element in
Xi (w.r.t. the linear order ≥i ). An alternative satisfies rule d iff it is at least as good as
the minimally acceptable element associated to the rule. This correspondence between
rules and minimally acceptable elements provides a description of the partition in the
unanimous model Eu .

Because Model (D1) is quite general and the learning sets of assignment examples
usually of limited size, using these techniques is not entirely straightforward and, e.g.,
may lead, in the decision rule model, to a large number of rules. Moreover, these
techniques, when used for learning an ETri-nB-pc model, produce indeed an ETri-
nB-pc model but under the form of a unanimous model, i.e., in terms of a set of
minimally acceptable alternatives, not under a more compact form, even when there
is one.

Having at hand alternative descriptions of Model (D1) may offer an opportunity to
control the complexity of the learned models. It is therefore important to investigate
particular cases of Model (E), in which the cardinality of the set of profiles P is
restricted. Unfortunately, the problem seems to be difficult. This is the subject of a
companion paper that deals with these more technical issues (Bouyssou et al. 2021a).
This companion paper only analyzes the particular case of two profiles coupled with
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unanimity. Even in this apparently simple case, the problem is not easy. Hence, our
analysis also leaves open the study of the gain of expressiveness brought by increasing
the size of the set of profiles. Going from a single profile, the case studied in Bouyssou
and Marchant (2007a), to an arbitrarily large number of profiles, the case implicitly
studied in Sect. 4, leads to a huge gain in expressiveness. Is this gain already present
when going from a single profile to a small number of profiles? This question is clearly
important as a guide to learning the parameters of ETri-nB. Our analysis of the case
of two profiles coupled with unanimity shows that it is unlikely that a purely axiomatic
investigation will allow us to obtain clear answers to this question. Hence, this is also
a plea to combine axiomatic work with other types of work, e.g., based on computer
simulations.

Instead of constraining the number of limiting profiles in the unanimous model, an
alternative approach would consist of exploring ETri-nB-pc or ETri-nB-I-pc with
restricted number of limiting profiles12. Models ETri-nB-I-pc and (E) with one
limiting profile are well-known. Model (E) with one limiting profile is the noncom-
pensatory sorting (NCS) model characterized by Bouyssou and Marchant (2007a).
The particular case in which the winning coalitions can be represented by additive
weights and a majority threshold corresponds to model ETri-nB-I-pc with one limit-
ing profile. In the absence of veto, this model is known as MR-Sort (Leroy et al. 2011;
Sobrie et al. 2019)

Several methods have been proposed for learning Model (E) with one limiting
profile (Belahcène et al. 2018) or its particular case Model ETri-nB-I-pc with one
limiting profile (Leroy et al. 2011; Sobrie et al. 2017, 2019). These methods rely on
various techniques such as mixed integer programming (MIP), Boolean satisfiability
algorithms (SAT, MaxSAT) or metaheuristics. The size of sets of assignment exam-
ples that exact methods (such as MIP, SAT or MaxSAT) can deal with is limited. In
contrast, the metaheuristic designed by Sobrie et al. (2013, 2019) or that by Olteanu
and Meyer (2014) competes with state-of-the-art machine learning algorithms on real
datasets (Tehrani et al. 2012b, a). The size of these datasets, which are benchmarks
commonly used inmachine learning, ranges from 120 to 1728 alternatives, the number
of attributes, from 3 to 8 and the number of categories, from 2 to 9.

Characterizing Model (E) with a fixed small number (e.g., 2 or 3) of limiting pro-
files seems very difficult. The only thing that can easily be provided is an upper bound
on the number of equivalence classes of the relations�i induced by the corresponding
twofold partition on the scale Xi of each criterion (see Observation 2 in Sect. 2.2.2, for
an illustration) and correlatively, an upper bound on themaximal number of minimally
acceptable alternatives (see footnote 14). Extending the approaches referred to above
for learning models with more than one limiting profile has not been done yet and does

12 With such models, even with one limiting profile, the number of minimally acceptable alternatives (i.e.,
the number of limiting profiles in the equivalent unanimous model) can be large. In the simplest case of
ETri-nB-I-pc with one limiting profile and no veto, a minimally acceptable alternative takes the values of
the limiting profile minus the indifference threshold qti on a minimal winning coalition of criteria and the
minimal value in Xi on all other criteria. If the model is such that a coalition is winning whenever it contains
at least n/2 criteria (this is obtained by setting all criteria weights to 1/n and the cutting level λ to 1/2),
then the number of minimal winning coalitions is maximal and is equal to the Sperner number

( n
�n/2�

)
(see,

e.g., Caspard et al. 2012, pp. 116-118). Therefore, for such a model, the maximal number of minimally
acceptable alternatives is equal to this number.
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not seem straightforward either. In case a formulation for learning such models when
the number of limiting profiles is limited to 2 or 3 would prove operational, then an
incremental learning approach could be envisaged. Start with fitting Model (E) with
one limiting profile to the data. If assignment accuracy is not satisfactory, proceed
with fitting a model with two profiles, etc.

Turning to the learning of an ETri-nB-pc model (using an Electre III outranking
relation), observe first that the case with one limiting profile corresponds to the classi-
cal Electre Tri-pcmodel. Much effort has been devoted to develop learningmethods
for this model (e.g., Mousseau and Słowiński 1998; Ngo The and Mousseau 2002;
Doumpos et al. 2009). The genetic algorithm proposed by Doumpos et al. (2009) has
been tested on a real dataset (in the banking sector) involving 100 alternatives eval-
uated on 7 criteria and assigned to 3 categories. It has also been tested on artificial
datasets, involving up to 1000 alternatives in the learning set, assigned to categories
using randomly generated ETri models. No exact methods have been developed to
date to learn ETri-nB-pc. The genetic algorithm proposed by Fernández et al. (2019)
for learning ETri-nB-pc has shown good performance on a real case study involving
81 assignment examples (R & D projects) evaluated on 4 criteria assigned to 8 cate-
gories. It has also been tested on artificial datasets assigned to categories by randomly
generated ETri-nB-pc (using 5 limiting profiles in each category boundary).

In conclusion, the general approach, based on the decision rule model and tech-
niques, without restrictions on the generality of Model (D1), is available but does
not allow to easily control the simplicity of the learned model (see Greco et al. 2000;
Dembczyński et al. 2003). Current methods, such as the genetic algorithm proposed by
Fernández et al. (2019) are usable. Unfortunately, the scalability of these algorithms is
difficult to assess since they have not been tested on common benchmark datasets13.

Alternative approaches remain to be developed. Ideally, they should fulfill the fol-
lowing three requirements.

1. Focus on a well-defined, preferably characterized, family of assignment models
forming a proper subset of all assignment models (D1) respecting the linearity
property or the dominance relation.

2. The models in this family should have a compact description, i.e., there should
be a synthetic, interpretable, manner of describing the set of minimally acceptable
alternatives.

3. Learning these models should be computationally tractable, i.e., there should be
an algorithm able to fit, in reasonable computing time, a model in the family to
a set of assignment examples involving several hundreds up to a few thousands
assignments.

Model (E) and ETri-nB-pc with a restricted number of limiting profiles fulfill
the first requirement and the second but not the third (except perhaps for Model (E)

with one limiting profile). The additive model (Add) is a candidate that checks all
three boxes. It is closely related with the UTADIS technique and its variants (as
already mentioned in Sect. 3.2). However, its interpretation is quite at a distance from

13 Incidentally, we came across the recent paper by Silva et al. (2021) in which the decision rule approach
(DRSA) is applied to the rating of sovereign risk; the results are then compared with those obtained using
an additive model and MR-Sort. Unfortunately, the dataset involved is a small one (36 countries).
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that of Electre based models, which rely on the idea of one or several limiting
profiles and outranking relations. These are interpreted as expressing requirements
on each criterion that an alternative should ideally fulfill in order to be acceptable. A
challenging research issue is thus to define a family ofmodelswithin the decomposable
model (D1) that are in the spirit of the Electre methods and fulfills the above three
requirements.

6.3 Future research and work in progress

Theorem 1 is a simple result that establishes the equivalence of the decomposable
model (D1) with ETri-nB-pc and relatedmodels in the spirit of Electre Tri. Besides
issues related to learning, this result leaves open a number of interesting problems that
we intend to deal with in later studies. Among them, let us mention the following sets
of questions.

Algorithmic questions. Is it easy to test whether a partition 〈A,U〉 satisfies linearity?
Are there efficient algorithms to find a linear partition close to a partition that is
not linear? Is it easy to test whether it is possible to build a linear partition on the
basis of partial information about A and U? Similar questions arise, when there is a
supplementary constraint on the size of the set of profiles.

Combinatorial questions. Given a set X = ∏n
i=1 Xi , can we devise (easy to evalu-

ate) formulae for the maximal number of objects inA∗ (this is related to the size of the
largest antichain14 in a direct product of chains, see Sander, 1993, for the case of the
direct product of chains of the same length)? What is the number of twofold partitions
of X = ∏n

i=1 Xi that can be represented in Model (E) this is related to the famous
problem of Dedekind numbers, see Kahn (2002), Kisielewicz (1988), Ersek Uyanık
et al. (2017)

Questions linked to the number of profiles. Given a learning set of assignment
examples that is compatible with Model (D1), what is the minimal number of limiting
profiles of a unanimous model (or of a Model (E) or of an ETri-nB-pc model) that
exactly restores the assignments?
Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10288-022-00501-9.
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14 In Bouyssou et al. (2021b), we give the proof of a result that has already appeared in the grey literature
but for which no proof was available. It states that if the chain on Xi has mi elements, the maximal size of
an antichain in X = ∏n

i=1 Xi partially ordered by � is

∑

I⊆N :mI<h−n

(
h − mI − 1

n − 1

)

(−1)|I |,

where mI = ∑
i∈I mi and

h =
⌊
n + ∑

i∈N mi

2

⌋

.

The reader will check that this number grows fast with the vector (mi )i∈N .
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