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Abstract
ELECTRE TRI-nB is a method designed to sort alternatives evaluated on several
attributes into ordered categories. It is an extension of ELECTRE TRI-B that uses
several limiting profiles, instead of one, to delimit each category. In a previous paper
we have characterized the ordered partitions that can be obtained with ELECTRE
TRI-nB, using a simple axiom called linearity. The simplicity of this characterization
crucially rests on the possibility to use as many limiting profiles as we like to delimit a
category. This is not completely realistic and there is a need to study models in which
the number of limiting profiles delimiting each category is restricted. This note starts
the investigation of such models. We specifically study the case of models using one
or two profiles together with an outranking relation based on unanimity.

Keywords Multiple criteria analysis · Sorting models · ELECTRE TRI

Mathematics Subject Classification 91B06 · 90B50

1 Introduction

This paper is about ELECTRE TRI (often abbreviated as ETRI in what follows). The
original method called ETRI-B (Yu 1992; Roy and Bouyssou 1993) uses one limiting
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profile to delimit each category. Fernández et al. (2017) have suggested an extension
of this method, called ETRI-nB, that uses several limiting profiles to delimit each
category1.

In a previous paper (Bouyssou et al. 2021),we have given a theoretical look at ETRI-
nB.We presented a simple characterization of the partitions that can be obtained using
the pseudo-conjunctive version of ETRI-nB (ETRI-nB-pc). This characterization uses
a condition, linearity, that is familiar (Goldstein 1991; Greco et al. 2001; Słowiński
et al. 2002; Bouyssou andMarchant 2007a) in the study of sorting models and that has
a transparent interpretation. This allowed us to precisely position ETRI-nB-pc within
the larger family of sorting models for alternatives evaluated on several attributes.

A limitation of the analysis in Bouyssou et al. (2021) is that the simple character-
ization is obtained when there is no restriction on the number of profiles delimiting
each category. If practical applications of ETRI-nB are sought for, this is problematic.
Hence, it is useful to study models in which the number of profiles used to delimit
each category is constrained: such constraints will surely facilitate the elicitation of
the parameters of the model (Fernández et al. 2019). Such models with a constraint
on the number of profiles are the subject of this note. Specifically, we study, from an
axiomatic point of view, models that use one or two profiles, together with an outrank-
ing relation that is based on unanimity. The choice of this particular case is motivated
by the special status of models using an outranking relation that is based on unanimity,
as uncovered in Bouyssou et al. (2021).

The rest of this text is organized as follows. Section 2 introduces our notation and
framework. Section 3 presents some background results on ETRI-B and ETRI-nB.
Section 4 presents our main results. A final section discusses our findings.

2 Notation and framework

As in Bouyssou et al. (2021), wewill restrict our attention to the case of two categories.
This allows us to use a simple frameworkwhile not concealing any important difficulty.
For the same reasons, we suppose throughout that the set of objects to be sorted is
finite. Our setting and vocabulary is exactly as in Bouyssou et al. (2021). It is briefly
recalled below.

2.1 The setting

Let n ≥ 2 be an integer and X = X1×X2×· · ·×Xn be a finite set of objects. Elements
x, y, z, . . . of X are interpreted as alternatives evaluated on a set N = {1, 2, . . . , n}
of attributes. For x, y ∈ X , i ∈ N and J ⊆ N , we use X J , X−J , Xi , X−i , (xJ , y−J ),
and (xi , y−i ), as is usual.

Our primitives consist in a twofold partition 〈A,U〉 of the set X . We interpret the
set A as containing sAtisfactory objects, while U contains Unsatisfactory ones.

1 In the rest of this text, we write “profile” instead of “limiting profile”. All the profiles used below are
limiting profiles.
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We say that an attribute i ∈ N is influential for 〈A,U〉 if there are xi , yi ∈ Xi and
a−i ∈ X−i such that (xi , a−i ) ∈ A and (yi , a−i ) ∈ U . We say that an attribute is
degenerate if it is not influential. Suppressing, if necessary, degenerate attributes, it is
not restrictive to suppose that all attributes are influential for 〈A,U〉. We do so in what
follows 2.

Remark 1 Suppose that I is a proper nonempty subset of N and i ∈ I . It is clear that, if
i ∈ N is influential, then I is influential, i.e., there are xI , yI ∈ XI and a−I ∈ X−i such
that (xI , a−I ) ∈ A and (yI , a−I ) ∈ U . Our hypothesis concerning the influence of
each attribute i ∈ N therefore implies that all proper nonempty subsets I of attributes
are influential.

A twofold partition 〈A,U〉 induces on each i ∈ N a binary relation defined letting,
for all i ∈ N and all xi , yi ∈ Xi ,

xi∼i yi if
[∀a−i ∈ X−i , (yi , a−i ) ∈ A ⇐⇒ (xi , a−i ) ∈ A]

.

This relation is always reflexive, symmetric and transitive, i.e., is an equivalence 3. As
in Bouyssou et al. (2021), it is not restrictive to suppose that all equivalence classes
of ∼i are trivial, i.e., reduced to a single element.

2.2 Models (E), (Ec), and (Eu)

The following definition is taken from Bouyssou et al. (2021, Def. 6) to which we
refer for further discussion and comments. It considers partitions built as follows. On
each attribute i ∈ N there is a linear arrangement of the elements in Xi interpreted as
an “at least as good as” relation (the relation Si ). The elements of Xi are compared
using a threshold (hence, the idea of semiorder), so that indifference is not necessarily
transitive. There is another linear arrangement of the elements in Xi to single out
which differences between these elements are “very large” (the veto relation Vi ). This
second linear arrangement is compatible with the previous one (hence, the idea of
homogeneous family of semiorders). The model singles out a number of profiles (the
set P). In order to belong to category A, an object x ∈ X must outrank at least one
of the profiles and, moreover, no profile should be strictly preferred to x . Outranking
is defined via a classical concordance / non-discordance mechanism. An object x
outranks another object y if the set of attributes for which x is at least as good as y
is “sufficiently important” (as determined by the set F) and there si no attribute for
which y is “far better” than x .

Definition 1 We say that a partition 〈A,U〉 has a representation in Model (E) if:

– for all i ∈ N , there is a semiorder Si on Xi (with asymmetric part Pi and symmetric
part Ii ),

2 Throughout the paper, Remarks contain comments that can be skipped at first reading. Remarks may be
useful later in the paper however.
3 Our conventions concerning binary relations are standard. They are exactly as in Bouyssou et al. (2021).
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– for all i ∈ N , there is a strict semiorder Vi on Xi that is included in Pi and is the
asymmetric part of a semiorder Ui ,

– for all i ∈ N , (Si ,Ui ) is a homogeneous nested chain of semiorders and Wi =
Swo
i ∩Uwo

i is a weak order that is compatible with both Si and Ui ,
– there is a set of subsets of attributes F ⊆ 2N such that, for all I , J ∈ 2N , [I ∈ F
and I ⊆ J ] ⇒ J ∈ F ,

– there is a binary relation S on X (with symmetric part I and asymmetric part P)
defined by:

x S y ⇐⇒ [S(x, y) ∈ F and V (y, x) = ∅] ,

– there is a finite set P = {p1, . . . , pk} ⊆ X of profiles, such that for all p, q ∈ P ,
Not[p P q],

such that

x ∈ A ⇐⇒
{
x S p for some p ∈ P and

Not[q P x] for all q ∈ P,
(E)

where,
S(x, y) = {i ∈ N : xi Si yi },

and
V (x, y) = {i ∈ N : xi Vi yi }.

We then say that 〈(Si , Vi )i∈N ,F ,P〉 is a representation of 〈A,U〉 in Model (E).
Model (Ec) is the particular case of Model (E), in which there is a representation that
shows no discordance effects, i.e., in which all relations Vi are empty. Model (Eu)

is the particular case of Model (E), in which there is a representation that requires
unanimity, i.e., such that F = {N }.

We say that a partition 〈A,U〉 can be represented in Model (E≤k) (resp. (Ek)) if it
has a representation in Model (E) that uses no more than k (resp. exactly k) profiles.
We define Models (Ec

≤k), (E
c
k ), (E

u
≤k) and (Eu

k ) accordingly.

The relations between Model (E) and ETRI-nB-pc were analyzed in detail in
Bouyssou et al. (2021, Remarks 8 and 17). To keep this note short, we do not repeat
this analysis here. Basically, any partition that can be obtained with ETRI-nB-pc can
also be obtained using Model (E), and vice versa.

A long termobjectivewould be to characterizeModel (E≤k) for all “small” values of
k. Clearly,we expectmodels using a small number of profiles to be assessedmore easily
than models using a larger number of profiles. Our hope is that this characterization
would help us understand the expressiveness gain that is obtained when using 1, 2, 3,
…profiles.

We begin this investigation here by characterizing Model (Eu≤2), i.e., the particular
case of Model (E) based on unanimity and using no more than two profiles. Before
we do so, it will be useful to recall a number of background results.
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3 Background results

This section presents a few existing results that will later be helpful.

3.1 A characterization of model (E)

Following Bouyssou et al. (2021), we define on each Xi the binary relation �i letting,
for all xi , yi ∈ Xi ,

xi�i yi if
[
for all a−i ∈ X−i , (yi , a−i ) ∈ A ⇒ (xi , a−i ) ∈ A]

.

This relation is, by construction, reflexive and transitive. The symmetric part of the
relation �i clearly coincides with the relation ∼i defined above.

Definition 2 We say that the partition 〈A,U〉 is linear on attribute i ∈ N (condition
i-linear) if, for all xi , yi ∈ Xi and all a−i , b−i ∈ X−i ,

(xi , a−i ) ∈ A
and

(yi , b−i ) ∈ A

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(yi , a−i ) ∈ A,

or
(xi , b−i ) ∈ A.

(i-linear)

The partition is said to be linear if it is i-linear, for all i ∈ N .

The above condition was first proposed in Goldstein (1991) and generalized in
Greco et al. (2001) and Słowiński et al. (2002). It is easy to check that a partition
〈A,U〉 is i-linear iff the relation �i is complete.

Let us define the relation � on X letting, for all x, y ∈ X ,

x�y ⇐⇒ xi�i yi , for all i ∈ N .

Let A∗ = Min(A,�) be the set of minimal elements in A for �.
The main result in Bouyssou et al. (2021) is as follows.

Proposition 1 Let X = ∏n
i=1 Xi be a finite set and 〈A,U〉 be a twofold partition

of X. The partition 〈A,U〉 has a representation in Model (E) iff it is linear. This
representation can always be taken to be 〈(�i )i∈N ,F = {N },P = A∗〉. Hence,
Models (E), (Ec) and (Eu) are equivalent.

The logic of the proof of this result is simple. The relation� is a partial order, being
reflexive, antisymmetric and transitive. Because X is finite and A is nonempty, we
know that the setA∗ is nonempty. Our proof consists in takingP = A∗ andF = {N }.
All elements in A∗ are taken as profiles. But the cardinality of this set may be high
(Bouyssou et al. 2020). Hence, it is interesting to have a characterization of model
(E) with a limited number of profiles. This note starts with Model (Eu≤2).
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3.2 A characterization of Models (E1), (Ec1) and (E
u
1)

Models (E1), (Ec
1) and (Eu

1 ) have been studied in Bouyssou and Marchant (2007a).
Model (E1) is the noncompensatory sorting model with veto. Model (Ec

1) is the
noncompensatory sorting model. Model (Eu

1 ) is the particular case of the noncom-
pensatory sorting model in which F = {N }, called the conjunctive sorting model.

3.2.1 Model (Ec1)

Definition 3 We say that a partition is strongly 2-graded on attribute i ∈ N (condition
i-s-2-graded) if

(xi , a−i ) ∈ A
and

(yi , b−i ) ∈ A

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(xi , b−i ) ∈ A
or

(zi , a−i ) ∈ A,

(i-s-2-graded)

for all xi , yi , zi ∈ Xi and all a−i , b−i ∈ X−i .

The above condition was introduced in Bouyssou andMarchant (2007a). Bouyssou
and Marchant (2007a) have shown that condition i-s-2-graded implies i-linearity and
the fact that the relation �i has at most two equivalence classes (and, hence, two
equivalence classes, since a relation �i with a single equivalence class means that
this attribute is not influential). They also show how to factorize this condition so as
to make i-linearity appear explicitly. We will not use this factorization in the present
paper.

Bouyssou and Marchant (2007a, Th. 21, p. 230) have shown the following.

Proposition 2 A partition 〈A,U〉 has a representation in the noncompensatory sorting
model (Ec

1) iff it is strongly 2-graded on all i ∈ N.

3.2.2 Model (E1)

Definition 4 Wesay that the partition 〈A,U〉 is strongly 3-gradedwith veto on attribute
i ∈ N (condition i-s-3v-graded) if, for all xi , yi , zi ∈ Xi and all a−i , b−i , ci ∈ X−i ,

(xi , a−i ) ∈ A
and

(zi , c−i ) ∈ A
and

(yi , b−i ) ∈ A

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒
⎧
⎨

⎩

(xi , b−i ) ∈ A
or

(zi , a−i ) ∈ A
(i-s-3v-graded)

for all xi , yi , zi ∈ Xi and all a−i , b−i , ci ∈ X−i .

The above condition was introduced in Bouyssou andMarchant (2007a). Bouyssou
andMarchant (2007a) have shown that condition i-s-3v-graded implies i-linearity and
the fact that the relation �i has at most three equivalence classes. When the relation
�i has exactly three equivalence classes, the last one acts as a veto, i.e., when an
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object has an evaluation in this equivalence class, it cannot belong to A. They also
show how to factorize this condition so as to make i-linearity appear explicitly. This
factorization will not be useful here.

The following definition, taken from Bouyssou and Marchant (2007a), will be
useful.

Definition 5 Let

Zi = {xi ∈ Xi : (xi , a−i ) ∈ U , for all a−i ∈ X−i }.

Let Yi = Xi \ Zi . Consider the set Y = ∏n
i=1 Yi and letA′ = A∩Y and U ′ = U ∩Y .

Since 〈A,U〉 is a partition, we haveA �= ∅ so that Y cannot be empty. It is easy to
see that if condition i-s-3v-graded holds for 〈A,U〉 on X , then condition i-s-2-graded
holds for the partition 〈A′,U ′〉 of Y .

Bouyssou and Marchant (2007a, Th. 35, p. 237) have shown the following.

Proposition 3 A partition 〈A,U〉 has a representation in the noncompensatory sorting
model with veto (E1) iff it is strongly 3v-graded on all i ∈ N.

3.2.3 Model (Eu1 )

We say 〈A,U〉 is i-strongly∗-conjunctive (condition i-s∗-conj) if

(xi , a−i ) ∈ A
and

(yi , b−i ) ∈ A

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(xi , b−i ) ∈ A
and

(yi , a−i ) ∈ A

for all xi , yi , zi ∈ Xi and all a−i , b−i ∈ X−i .
Bouyssou andMarchant (2007a) have shown that this condition implies i-linear and

i-s-2-graded. They also show how to factorize this condition so as to make i-linearity
appear explicitly. This factorization will not be useful here.

Bouyssou and Marchant (2007a, Prop. 32, p. 235) prove the following:

Proposition 4 Apartition 〈A,U〉 has a representation in the conjunctive sortingmodel
(Eu

1 ) iff it satisfies i-s∗-conj, for all i ∈ N.

4 A characterization of model (Eu≤2)

Proposition 1 shows that, if k is taken large enough, a partition 〈A,U〉 that has a
representation inmodel (Ec)or,more generally, inmodel (E), also has a representation
in model (Eu

≤k). This seems to call for the study of Models (Eu
≤k) with small values

of k. We start here with the characterization of Model (Eu≤2).

4.1 Observations and conventions

In Model (Eu
1 ), all relations �i have at most two equivalence classes. The second

equivalence class plays the role of a veto: an alternative that has an evaluation belonging
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to the second equivalence class on any attribute cannot belong to A. In Model (Eu
1 ),

it is easy to see that it is not restrictive to take Si = �i .
In Model (Eu

2 ), all relations �i can have at most three equivalence classes: (i)
strictly below the two profiles, (ii) above the lower profile and strictly below the upper
profile (iii) above the upper profile. Moreover, when the relation �i has three distinct
equivalence classes, the last class acts as a veto: an object that is below the two profiles
on some attribute cannot belong to A. In Model (Eu

2 ), it is easy to see that it is not
restrictive to take Si = �i .

In Model (Eu
2 ), it is easy to check that, on each attribute i ∈ N , the following three

situations may happen:

1. the relation �i has exactly three distinct equivalence classes. This means that the
two profiles have distinct (i.e., not belonging to the same equivalence class of ∼i )
values on attribute i and that something is below the lower profile.

2. the relation �i has exactly two distinct equivalence classes and the last class does
not correspond to a veto. This means that the two profiles have distinct values on
attribute i but that there is nothing below the lower profile.

3. the relation �i has exactly two distinct equivalence classes and the last class
corresponds to a veto. This means that the two profiles have identical values on
attribute i .

The treatment of the third case (in view of our convention regarding ∼i , if p and
q are the two profiles, the third case corresponds to an attribute for which pi = qi )
is not difficult but it complicates things. Henceforth, we suppose that the third case
does not happen. To avoid any misunderstanding, let us call (Eu∗

2 ) the particular case
of Model (Eu

2 ) in which case 3 is excluded. Model (Eu∗
≤2) is defined accordingly as

either Model (Eu
1 ) or Model (Eu∗

2 ).
Using notation introduced in Definition 5, working with (Eu∗

2 ) instead of (Eu
2 )

implies that all attributes are influential for the partition 〈A′,U ′〉 of Y .
Remark 2 Suppose that 〈A,U〉 has a representation in Model (Eu∗

2 ) with P = {p, q}.
This defines a partition of the set of all attributes into N p = {i ∈ N : pi�i qi }, the set
of attribute for which p is above q and Nq = {i ∈ N : qi�i pi }, the set of attributes for
which q is above p. We have N p �= ∅, Nq �= ∅, N p ∩ Nq = ∅ and N p ∪ Nq = N .

Remark 3 As already mentioned, our main motivation for studying Model (Eu
2 ) is

linked to the fact that Model (Eu) is equivalent to Model (E), when the number of
profiles is not constrained. Besides this theoretical motivation, Model (Eu

2 ) may have
an interest in itself because it relates to already familiar models.

For instance, a partition that can be represented in the noncompensatory sorting
model (Model (Ec

1), using the notationof this paper) studied inBouyssou andMarchant
(2007a) can sometimes be represented in Model (Eu≤2).

In Model (Ec
1), all relations �i have two distinct equivalence classes. Define F∗ =

Min(F ,⊇) as the set of all minimal winning coalitions w.r.t. set inclusion. When
|F∗| = 2, such a model can also be represented in Model (Eu≤2). A simple example of
such a situation is the following. Take N = {1, 2, 3, 4} and, for all i ∈ N , Xi = {0, 10}.
Let x ∈ A iff xi = 10 on, at least, either the first two or the last two attributes. This
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ELECTRE TRI-nB with few limiting profiles 451

partition has a representation in Model (E1) with the profile p = (10, 10, 10, 10),
F∗ = {{1, 2}, {3, 4}}, and Si = ≥, for all i ∈ N . It can also be represented in Model
(Eu≤2), keeping the same relations Si , withF = {N } and the two profiles (10, 10, 0, 0)
and (0, 0, 10, 10).

However, it is clear there are partitions that can be represented in Model (Ec
1) but

that cannot be represented in Model (Eu≤2), see Example 3 below. This happens, in
particular, when |F∗| > 2.

Let us finally observe that there are some noncompensatory sorting models with
veto, as defined in Bouyssou andMarchant (2007a) (Model (E1), using the notation in
the present paper) that can be represented in Model (Eu≤2). A simple example of such
a situation is the following. Take N = {1, 2, 3, 4} and, for all i ∈ N , Xi = {0, 5, 10}.
Let x ∈ A iff xi ≥ 10 on either the first two or the last two attributes and, for all
i ∈ N , xi �= 0. This partition has a representation in Model (E1) with the profile
p = (10, 10, 10, 10), F∗ = {{1, 2}, {3, 4}}, Si = ≥, for all i ∈ N , and 10 Vi 0, for
all i ∈ N . It can also be represented in Model (Eu∗

≤2), keeping the same relations Si
and Vi , with F = {N } and the two profiles (10, 10, 5, 5) and (5, 5, 10, 10),

4.2 Axioms

We introduce several conditions that are simple adaptations of already encountered
conditions to the case of a nonempty subset I ⊆ N of attributes, instead of just a
single attribute i ∈ N .

4.2.1 I-linearity

Definition 6 We say that 〈A,U〉 satisfies I -linearity (condition I -linear) if

(xI , a−I ) ∈ A
and

(yI , b−I ) ∈ A

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(xI , b−I ) ∈ A
or

(yI , a−I ) ∈ A
(I -linear)

for all xI , yI ∈ XI and all a−I , b−I ∈ X−I .

This condition is familiar (e.g., Bouyssou and Marchant 2009, 2010; Vind 1991,
2003). Its interpretation is similar to that of condition i-linear. It ensures that on the
Cartesian product of the sets Xi for the attributes i belonging to I , one can define a
weak order that is compatible with the partition. The relation �I on XI is defined
letting

xI�I yI ⇔ [
(yI , a−I ) ∈ A ⇒ (xI , a−I ) ∈ A]

,

for all xI , yI ∈ XI and all a−I ∈ X−I . We use �I and ∼I as is usual.
It is clear that the relation �I is always transitive but may not be complete. We

leave to the reader the simple proof of the following lemma.

Lemma 1 A partition is I -linear iff �I is complete.
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4.2.2 I-s-3v-graded

Definition 7 We say that 〈A,U〉 is strongly 3-graded with veto on I (condition I -s-
3v-graded) if

(xI , a−I ) ∈ A
and

(yI , b−I ) ∈ A
and

(zI , c−I ) ∈ A

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒
⎧
⎨

⎩

(xI , b−I ) ∈ A
or

(zI , a−I ) ∈ A
(I -s-3v-graded)

for all xI , yI , zI ∈ XI and all a−I , b−I ∈ X−I .

The above condition is apparently new. It generalizes condition i-s-3v-graded to
subsets of attributes. The interpretation of this condition is exactly similar to that of
condition i-s-3v-graded. When I -s-3v-graded holds, the relation �I is a weak order
that can have at most three equivalence classes. When it has three equivalence classes,
the bottom class acts as a veto: an object that has on the attributes in I an evaluation
belonging to this equivalence class cannot be in A.

Remark 4 Following the analysis in Bouyssou and Marchant (2007a), it is easy to
factorize Condition I -s-3v-graded so as to make I -linear appear explicitly. This fac-
torization will not be used in the present paper.

We leave to the reader the simple proofs of the following two lemmas.

Lemma 2 Condition I -s-3v-graded implies Condition I -linear.

Lemma 3 Condition I -s-3v-graded is equivalent to saying that �I is a weak order
having at most three equivalence classes and that, moreover, if �I has exactly three
distinct equivalence classes and if xI belongs to the last equivalence class of �I then
(xI , a−I ) ∈ U , for all a−I ∈ X−I .

Let us also notice the following: when I and J partition N , their roles are symmetric
in the expression of I -s-3v-graded.

Lemma 4 Let I , J be a partition of N . The partition 〈A,U〉 satisfies Condition I -s-
3v-graded iff it satisfies Condition J -s-3v-graded.

Proof Suppose that I -s-3v-graded is violated. Hence, we have, for some xI , yI , zI ∈
XI and some aJ , bJ , cJ ∈ X J , (xI , aJ ) ∈ A, (yI , bJ ) ∈ A, (zI , cJ ) ∈ A, (xI , bJ ) ∈
U , (zI , aJ ) ∈ U . This implies cJ�J aJ�J bJ , while bJ is not a veto level. This is
equivalent to saying that J -s-3v-graded is violated, as shown in Lemma 3. ��
4.2.3 I-s-2-graded

Definition 8 We say that 〈A,U〉 is strongly 2-graded on I (condition I -s-2-graded) if

(xI , a−I ) ∈ A
and

(yI , b−I ) ∈ A

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(xI , b−I ) ∈ A
or

(zI , a−I ) ∈ A
(I -s-2-graded)
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for all xI , yI , zI ∈ XI and all a−I , b−I ∈ X−I .

The above condition is apparently new. It generalizes condition i-s-2-graded to
subsets of attributes. The interpretation of this condition is exactly similar to that of
condition i-s-2-graded. When I -s-2-graded holds, the relation �I is a weak order that
can have at most two equivalence classes.

Remark 5 Following the analysis in Bouyssou and Marchant (2007a), it is easy to
factorize Condition I -s-2-graded so as to make I -linear appear explicitly. This factor-
ization will not be used in the present paper.

We leave to the reader the simple proof of the following two lemmas.

Lemma 5 Condition I -s-2-graded implies Condition I -s-3v-graded and, hence,
I -linear.

Lemma 6 A partition 〈A,U〉 satisfies I -s-2-graded iff�I is a weak order with at most
two equivalence classes.

Remark 6 Let us notice here that Lemma 4 does not hold when I -s-3v-graded is
replaced with I -s-2-graded. It is easy to build examples such that I -s-2-graded holds
but J -s-2-graded fails while J -s-3v-graded holds.

4.2.4 I-s-conj

Definition 9 We say that 〈A,U〉 is I -strongly-conjunctive (condition I -s-conj) if

(xi , z J , a−I ) ∈ A
and

(yi , wJ , a−I ) ∈ A

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(yi , z J , a−I ) ∈ A
and

(xi , wJ , a−I ) ∈ A
(I -s-conj)

for all i ∈ I (and defining J = I \ {i}), for all xi , yi ∈ Xi , all z J , wJ ∈ X J , and all
a−I ∈ X−I .

The above condition is apparently new. It uses condition i-s∗-conj on the attributes
i ∈ I keeping everything fixed for the attributes outside I . Notice that Condition
N -s-conj is nothing but condition i-s∗-conj, for all i ∈ N , as defined above.

4.3 Main result

Theorem 1 will use conditions I -s-3v-graded, I -s-conj and J -s-conj for a given parti-
tion I , J of N . The logic of the proof will be as follows. First we show that veto effects
on I only occur if there is a veto effect on i ∈ I . Restricting our attention to the case
in which there are no veto effects, we show that the aggregation within the attributes
in I is conjunctive. The same is true for the attributes in J . Hence, it remains to study
how the aggregation of the attributes in I and J is performed. This is easily done.

Our main result is as follows.
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Theorem 1 Let X = ∏n
i=1 Xi be a finite set and 〈A,U〉 be a twofold partition of X.

The partition 〈A,U〉 has a representation in Model (Eu∗
≤2) iff there is a partition I , J

of N such that 〈A,U〉 satisfies I -s-3v-graded, I -s-conj and J -s-conj.

The proof appears below in 4.6 and 4.7, after some preparatory lemmas in 4.4 and
4.5 . The independence of our conditions is discussed in 4.8. Notice that our conditions
involve an existential statement (“there is a partition I , J of N such that”). Hence,
they may not be easy to test. This is discussed below in 4.9.

4.4 Lemmas with I-s-3v-graded and I-s-conj

In all lemmas in 4.4 and 4.5 , I is a proper nonempty subset of N . The common
premise of all lemmas in 4.4 is that Conditions I -s-3v-graded and I -s-conj hold.

Lemma 7 If i ∈ I , the partition is i-linear.

Proof Take J = I \ {i}. Suppose that (xi , aJ , a−I ) ∈ A, (yi , bJ , b−I ) ∈ A,
(yi , aJ , a−I ) ∈ U , (xi , bJ , b−I ) ∈ U , violating i-linearity. Since I -s-3v-graded
implies I -linear, we have either (xi , aJ )�I (yi , bJ ) or (yi , bJ )�I (xi , aJ ).

In the first case, (yi , bJ , b−I ) ∈ A implies (xi , aJ , b−I ) ∈ A. We now apply I -s-
conj to the pair (yi , bJ , b−I ) ∈ A and (xi , aJ , b−I ) ∈ A. This implies (xi , bJ , b−I ) ∈
A, a contradiction.

In the second case, (xi , aJ , a−I ) ∈ A implies (yi , bJ , a−I ) ∈ A.We now apply I -s-
conj to the pair (yi , bJ , a−I ) ∈ A and (xi , aJ , a−I ) ∈ A. This implies (yi , aJ , a−I ) ∈
A, a contradiction. ��
Lemma 8 If i ∈ I , the partition satisfies i-s-3v-graded.

Proof Take J = I \ {i}. Suppose that (xi , aJ , a−I ) ∈ A, (yi , bJ , b−I ) ∈ A,
(zi , cJ , c−I ) ∈ A, (xi , bJ , b−I ) ∈ U , and (zi , aJ , a−I ) ∈ U , violating i-s-3v-graded.
Using I -s-3v-graded, (xi , aJ , a−I ) ∈ A, (yi , bJ , b−I ) ∈ A, (zi , cJ , c−I ) ∈ A, imply
(xi , aJ , b−I ) ∈ A, or (zi , cJ , a−I ) ∈ A.

If (xi , aJ , b−I ) ∈ A, (yi , bJ , b−I ) ∈ A together with I -s-conj imply (xi , bJ , b−I )

∈ A, a contradiction. If (zi , cJ , a−I ) ∈ A, (xi , aJ , a−I ) ∈ A together with I -s-conj
imply (zi , aJ , a−I ) ∈ A, a contradiction. ��

Since I -s-3v-graded holds, we know that �I has at most three equivalence classes.
Its last equivalence class may correspond to a veto situation. Since i-s-3v-graded
holds, for all i ∈ I , the same is true for �i . Let us now show that the class of �I
corresponding to a veto is exclusively composed of all elements cI , for which we know
that, for some i ∈ I , ci corresponds to a veto.

Let TI = {xI ∈ XI : (xI , a−I ) ∈ U , for all a−I ∈ X−I }. Remember (see Defini-
tion 5) that we have Zi = {xi ∈ Xi : (xi , a−i ) ∈ U , for all a−i ∈ X−i }.
Lemma 9 xI ∈ TI ⇐⇒ xi ∈ Zi , for some i ∈ I .

Proof [⇐]. Take J = I \ {i}. It is clear that if xi ∈ Zi , then (xi , aJ ) ∈ TI , for all
aJ ∈ X J .
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[⇒]. Suppose that xI ∈ TI and, for all i ∈ I , xi /∈ Zi , i.e., (xi , aJ , a−I ) ∈ A, for
some aJ ∈ X J , a−I ∈ X−I .

Let us sketch the proof in the particular case inwhich I = {i, j, k}. By construction,
we know that (xi , α j , αk, α−I ) ∈ A, (βi , x j , βk, β−I ) ∈ A, (γi , γ j , xk, γ−I ) ∈ A,
for some βi , γi ∈ Xi , some α j , γ j ∈ X j and some αk, βk ∈ Xk .

Because (xi , α j , αk, α−I ) ∈ A and (βi , x j , βk, β−I ) ∈ A, using I -linear,we obtain
either (xi , α j , αk, β−I ) ∈ A or (βi , x j , βk, α−I ) ∈ A.

1. Suppose first that (xi , α j , αk, β−I ) ∈ A. Using I -s-conj and (βi , x j , βk, β−I ) ∈
A, we obtain (xi , x j , αk, β−I ) ∈ A. Using (xi , x j , αk, β−I ) ∈ A and (γi , γ j ,

xk, γ−I ) ∈ A, I -linearity implies either (xi , x j , αk, γ−I ) ∈ A or (γi , γ j , xk,
β−I ) ∈ A.
If (xi , x j , αk, γ−I ) ∈ A, using I -s-conj and (γi , γ j , xk, γ−I ) ∈ A, we obtain
(xi , x j , xk, γ−I ) ∈ A, violating the fact that xI ∈ TI .
If (γi , γ j , xk, β−I ) ∈ A, using I -s-conj and (xi , x j , αk, β−I ) ∈ A, we obtain
(xi , x j , xk, β−I ) ∈ A, violating the fact that xI ∈ TI .

2. Suppose now that (βi , x j , βk, α−I ) ∈ A. Using I -s-conj and (xi , α j , αk, α−I ) ∈
A, we obtain (xi , x j , βk, α−I ) ∈ A. Using (xi , x j , βk, α−I ) ∈ A and (γi , γ j ,

xk, γ−I ) ∈ A, I -linearity implies either (xi , x j , βk, γ−I ) ∈ A or (γi , γ j , xk,
α−I ) ∈ A.
If (xi , x j , βk, γ−I ) ∈ A, using I -s-conj and (γi , γ j , xk, γ−I ) ∈ A, we obtain
(xi , x j , xk, γ−I ) ∈ A, violating the fact that xI ∈ TI .
If (γi , γ j , xk, α−I ) ∈ A, using I -s-conj and (xi , x j , βk, α−I ) ∈ A, we obtain
(xi , x j , xk, α−I ) ∈ A, violating the fact that xI ∈ TI .

The extension to the general case proceeds by an induction argument on the cardinal-
ity of I . It uses the above reasoning based on repeated applications of I -s-conj and
I -linear, which is implied by I -s-3v-graded. We skip the cumbersome details. ��

The following remark shows, using the above lemma, that when condition I -s-3v-
graded holds, we can define a subset of XI on which condition I -s-2-graded holds.

Remark 7 Let SI = XI \ TI . It follows from the above lemma that, using notation
introduced in Definition 5, we have:

SI =
∏

i∈I
Yi .

It is easy to check that the relation �I on SI is a weak order having at most
two indifference classes. Indeed, we know that �I can have at most three equivalence
classes and, by construction, xI ∈ SI implies that (xI , a−I ) ∈ A, for some a−I ∈ X−I ,
so that xI cannot belong to the third equivalence class, corresponding to a veto.

Our next result generalizes Lemma 8 to subsets of attributes included in I .

Lemma 10 Let J ⊆ I . Condition J -s-3v-graded holds.
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Proof Suppose that I -s-3v-graded and I -s-conj hold. Let J , K be a partition of I .
Suppose that J -s-3v-graded is violated, so that (xJ , aK , a−I ) ∈ A, (yJ , bK , b−I ) ∈
A, and (z J , cK , c−I ) ∈ A, while (xJ , bK , b−I ) ∈ U and (z J , aK , a−I ) ∈ U .

Using I -s-3v-graded, (xJ , aK , a−I ) ∈ A, (yJ , bK , b−I ) ∈ A, and (z J , cK , c−I ) ∈
A, imply (xJ , aK , b−I ) ∈ A or (z J , cK , a−I ) ∈ A.

Suppose first that (xJ , aK , b−I ) ∈ A. Using (yJ , bK , b−I ) ∈ A and (xJ , aK ,

b−I ) ∈ A, repeated uses of I -s-conj imply (xJ , bK , b−I ) ∈ A, a contradiction.
Suppose now that (z J , cK , a−I ) ∈ A. Using (xJ , aK , a−I ) ∈ A and (z J , cK ,

a−I ) ∈ A repeated uses of I -s-conj imply (z J , aK , a−I ) ∈ A, a contradiction. ��
Remark 8 The above lemma implies that, for all J ⊆ I , Condition J -linear holds.
Hence, under the hypothesis that I -s-3v-graded and I -s-conj hold, we know that for
all partition J , K of I , J -linearity and K -linearity hold, so that both �J and �K are
weak orders. It is easy to check that these three weak orders combine as expected, e.g.,

(xK , xJ )�I yI and zK�K xK ⇒ (zK , xJ )�I yI ,

(xK , xJ )∼I yI and zK∼K xK ⇒ (zK , xJ )∼I yI ,

(xK , xJ ) �I yI and zK�K xK ⇒ (zK , xJ )�I yI .

We will use such implications freely in what follows.
The proof of these implications is easy. For instance, suppose that (xK , xJ )�I yI , so

that, for all a−I ∈ X−I , (yI , a−I ) ∈ A implies (xJ , xK , a−I ) ∈ A. Since zK�K xK ,
(xK , xJ , a−I ) ∈ A implies (zK , z J , a−I ) ∈ A, so that (zK , xJ )�I yI .

4.5 Lemmas with I-s-2-graded and I-s-conj

The common premise of all lemmas in 4.5 is that Conditions I -s-2-graded and I -s-conj
hold.

Lemma 11 For all J ⊆ I ,�J is a weak order that has at most two equivalence classes,
so that J -s-2-graded holds.

Proof Suppose that I -s-2-graded and I -s-conj hold. Let J , K be a partition of I .
Suppose that xJ�J yJ and yJ�J z J .

Hence, there are aK , bK ∈ XK and a−I , b−I ∈ X−I such that (xJ , aK , a−I ) ∈ A,
(yJ , aK , a−I ) ∈ U , and (yJ , bK , b−I ) ∈ A, (z J , bK , b−I ) ∈ U .

Because I -s-2-graded holds, we know that �I has at most two equivalence classes.
Hence, we know that both (xJ , aK ) and (yJ , bK ) belong to the first equivalence class
of �I . Hence, we have (xJ , aK )∼I (yJ , bK ), so that we have (yJ , bK , a−I ) ∈ A
and (xJ , aK , b−I ) ∈ A. Repeated uses of I -s-conj allows to permute aK and bK
between the expressions (yJ , bK , a−I ) ∈ A and (xJ , aK , b−I ) ∈ A. This leads to
(yJ , aK , a−I ) ∈ A, a contradiction. ��

The next lemma is crucial. It shows how the information is aggregated with the
attributes in I .

Lemma 12 Let xI ∈ XI . Then xI belongs to the first equivalence class of �I iff xi
belongs to the first equivalence class of �i , for all i ∈ I .
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Proof Proving that if xi belongs to the first equivalence class of �i , for all i ∈ I ,
then xI belongs to the first equivalence class of �I is easy. Indeed, with i ∈ I and
J = I \ {i}, if xi�i yi then we have (xi , z J )�I (yi , z J ), for all z J ∈ X J . Let us prove
the reverse implication.

Let i ∈ I and J = I \ {i}. In the rest of this proof, we use the convention that on
each i ∈ N , we have ai�i bi . It is clear that (ai , aJ ) is a top element (i.e., an element
belonging to the first equivalence class) of �I and that (bi , bJ ) is a bottom element
(i.e., an element belonging to the second equivalence class) of �I . This follows from
the fact that �I has two equivalence classes and the monotonicity relations noted in
Remark 8.

Suppose, in contradiction with the thesis, that (ai , aJ )∼I (bi , aJ ), for some i ∈ I
and letting J = I \ {i}.

Since ai�i bi , we have (ai , xJ , x−I ) ∈ A and (bi , xJ , x−I ) ∈ U , for some xJ ∈ X J

and some x−I ∈ X−I . This implies (ai , xJ )�I (bi , xJ ).
It is impossible that xJ∼J aJ because we have supposed that (ai , aJ )∼I (bi , aJ ).

Hence, we know that xJ∼J bJ , so that (ai , bJ , x−I ) ∈ A and (bi , bJ , x−I ) ∈ U .
Because aJ�J bJ , we know that (yi , aJ , y−I ) ∈ A and (yi , bJ , y−I ) ∈ U , for some

yJ ∈ X J and some yi ∈ Xi . This implies that (yi , aJ ) is a top element of �I , so that
(yi , aJ )∼I (bi , aJ ). By hypothesis, (bi , bJ ) is a bottom element. Hence, we obtain
(bi , aJ , y−I ) ∈ A and (bi , bJ , y−I ) ∈ U .

Since we have (bi , aJ , y−I ) ∈ A and (ai , bJ , x−I ) ∈ A, I -linearity implies
(ai , bJ , y−I ) ∈ A or (bi , aJ , x−I ) ∈ A.

It is impossible to have (ai , bJ , y−I ) ∈ A since I -s-conj, together with
(bi , aJ , y−I ) ∈ A, imply (bi , bJ , y−I ) ∈ A, a contradiction.

Similarly, it is impossible to have (bi , aJ , x−I ) ∈ A, since I -s-conj, together with
(ai , bJ , x−I ) ∈ A imply (bi , bJ , x−I ) ∈ A, a contradiction. ��

Using Lemma 12, we know that if I -s-2-graded and I -s-conj hold, �I has two
equivalence classes, �i has two equivalence classes, for all i ∈ I , and that the aggre-
gation of �i into �I is conjunctive.

4.6 Proof of Theorem 1: necessity

Lemma 13 Suppose that 〈A,U〉 has a representation in Model (Eu
1 ). Let I , J be any

partition of N . Then 〈A,U〉 satisfiesConditions I -s-3v-graded, I -s-conj, and J -s-conj.
Proof By hypothesis, we know that x ∈ A ⇐⇒ [xi�i pi , for all i ∈ N ].

Suppose that (xI , a−I ) ∈ A, (yI , b−I ) ∈ A, (zI , c−I ) ∈ A, while (xI , b−I ) ∈ U
and (zI , a−I ) ∈ U . By construction, (xI , b−I ) ∈ U implies that either pi�i xi , for
some i ∈ I or p j� j b j , for some j /∈ I . This implies either (xI , a−I ) ∈ U or
(yI , b−I ) ∈ U , a contradiction. Hence, I -s-3v-graded holds.

Suppose now that (xi , z J , a−I ) ∈ A, (yi , wJ , a−I ) ∈ A, and (yi , z J , a−I ) ∈ U
(the case in which (xi , wJ , a−I ) ∈ U is dealt with similarly). Now, (xi , z J , a−I ) ∈
A, and (yi , z J , a−I ) ∈ U imply that xi�i pi , while pi�i yi . But this contradicts
(yi , wJ , a−I ) ∈ A. Hence, I -s-conj holds. A similar proof shows that J -s-conj holds.

��
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The following lemma makes use of the sets N p and Nq partitioning N that were
defined in Remark 2, at the end of Sect. 4.1.

Lemma 14 Suppose that 〈A,U〉 has a representation in Model (Eu∗
2 ). Let I , J be the

partition of N induced by the two profiles p and q, i.e., I = N p and J = Nq. Then
〈A,U〉 satisfies I -s-3v-graded, I -s-conj, and J -s-conj.

Proof Suppose that (xI , aJ ) ∈ A, (yI , bJ ) ∈ A, (zI , cJ ) ∈ A, while (xI , bJ ) ∈ U
and (zI , aJ ) ∈ U . By hypothesis, we know that xi�i qi , yi�i qi and zi�i qi , for all
i ∈ I . Similarly, we know that a j� j p j , b j� j p j and c j� j p j , for all j ∈ J .

If a j� j q j , for all j ∈ J , this would imply (zI , aJ ) ∈ A, a contradiction. Hence,
it must be true that xi� j pi , for all i ∈ I . This contradicts the fact that (xI , bJ ) ∈ U .
Hence, 〈A,U〉 satisfies I -s-3v-graded.

Let K = I \{i} and suppose that (xi , zK , aJ ) ∈ A, (yi , wK , aJ ) ∈ A, together with
either (yi , zK , aJ ) ∈ U , or (xi , wK , aJ ) ∈ U . By hypothesis, we know that xi�i qi
and yi�i qi . Moreover, zk�kqk and wk�kqk , for all k ∈ K . Similarly, we know that
a j� j p j , for all j ∈ J .

We have either (yi , zK , aJ ) ∈ U , or (xi , wK , aJ ) ∈ U . Suppose that (yi , zK , aJ ) ∈
U , the other case being similar. It is clearly impossible that a j� j q j , for all j ∈ J .
Hence, we must have: xi�i pi , yi�i pi , zk�k pk and wk�k pk , for all k ∈ K . This
implies (yi , zK , aJ ) ∈ A and (xi , wK , aJ ) ∈ A, a contradiction. Hence, 〈A,U〉
satisfies I -s-conj. A similar proof shows that J -s-conj holds. ��

4.7 Proof of Theorem 1: sufficiency

Suppose that there is a partition I , J of N such that 〈A,U〉 satisfies I -s-3v-graded,
I -s-conj and J -s-conj. Using Lemma 4, we know that J -s-3v-graded holds.

As above, define Zi = {xi ∈ Xi : (xi , a−i ) ∈ U , for all a−i ∈ X−i }, Yi = Xi \ Zi ,
TI = {xI ∈ XI : (xI , a−I ) ∈ U , for all a−I ∈ X−I } and TJ = {xJ ∈ X J :
(xJ , a−J ) ∈ U , for all a−J ∈ X−J }. SI = XI \ TI and SJ = X J \ TJ .

We know from Lemma 9 that SI = ∏
i∈I Yi and SJ = ∏

j∈J Y j . Consider the set
Y = ∏n

i=1 Yi and let A′ = A ∩ Y and U ′ = U ∩ Y .
By construction, Condition I -s-2-graded and J -s-2-graded hold for 〈A′,U ′〉. Let

us show that 〈A′,U ′〉 has a representation in Model (Eu∗
≤2), which will complete the

proof.
Using Lemma 12, we know that both �I and �J are weak orders having at most

two equivalence classes. Moreover, we know that xI belongs to the first equivalence
class of �I iff xi belongs to the first equivalence class of �i , for all i ∈ I , a similar
conclusion holding for J . Our conventions imply that all attributes are influential for
〈A′,U ′〉.

We use the convention that on each i ∈ N , we have ai�i bi .
There are two equivalence classes of elements in XI and two equivalence classes

of elements in X J . We know (see Lemma 12) that a top element (i.e., an element in the
top equivalence class) of�I (resp.�J ) consists exclusively of top elements of �i , for
all i ∈ I (resp. j ∈ J ). Hence, there are four cases to consider, using the convention
that aI (resp. bI ) is a top element of �I , a similar convention holding for J .
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1. (aI , aJ ) ∈ A′, (aI , bJ ) ∈ A′, (bI , aJ ) ∈ A′, (bI , bJ ) ∈ U ′. This is exactly
Model (Eu∗

2 ), with p (resp. q) consisting of any element in the first (resp. second)
equivalence class of �i , for i ∈ I and the second (resp. first) equivalence class of
� j , for j ∈ J .

2. (aI , aJ ) ∈ A′, (aI , bJ ) ∈ U ′, (bI , aJ ) ∈ U ′, (bI , bJ ) ∈ U ′. This is exactly Model
(Eu

1 ), with p consisting of any element in the first equivalence class of each �i .
3. (aI , aJ ) ∈ A′, (aI , bJ ) ∈ A′, (bI , aJ ) ∈ U ′, (bI , bJ ) ∈ U ′. The attributes in J

are not influential for 〈A′,U ′〉, which is impossible.
4. (aI , aJ ) ∈ A′, (aI , bJ ) ∈ U ′, (bI , aJ ) ∈ A′, (bI , bJ ) ∈ U ′. The attributes in I are

not influential for 〈A′,U ′〉, which is impossible.

This completes the proof. ��

4.8 Independence of the axioms: examples

The following examples show that the three conditions used in Theorem 1 are inde-
pendent.

Example 1 Let N = {1, 2, 3, 4} and Xi = {a, b}, for all i ∈ N . Consider the partition
given below, abusing notation in an obvious way:

aaaa ∈ A, abaa ∈ A, baaa ∈ A, bbaa ∈ A,

aaab ∈ A, abab ∈ A, baab ∈ U , bbab ∈ U ,

aaba ∈ A, abba ∈ U , baba ∈ U , bbba ∈ U ,

aabb ∈ A, abbb ∈ U , babb ∈ U , bbbb ∈ U .

It is easy to check that both {1, 2}-s-conj and {3, 4}-s-conj are satisfied. {1, 2}-s-
3v-graded (and, consequently, {3, 4}-s-3v-graded) is violated since we have, using
obvious notation, aa�12ab�12[ba∼12bb], while (b, b, a, a) ∈ A (see Lemma 3).

Notice that this example also shows that we cannot replace in our characterization
I -s-3v-graded by i-s-3v-graded, for all i ∈ I . Indeed, in the above example, i-s-3v-
graded trivially holds, for all i ∈ N (since each Xi has only 2 elements).

The next example shows that I -s-3v-graded, J -s-3v-graded and J -s-conj do not
imply I -s-conj. A similar example shows that the same conclusion holds, permuting
the role of I and J .

Example 2 Let N = {1, 2, 3, 4, 5, 6} and Xi = {a, b}, for all i ∈ N . Let I = {1, 2, 3}
and J = {4, 5, 6}. The partition 〈A,U〉 is such that x ∈ A iff x j = a, for all j ∈ J or
|{i ∈ I ; xi = a}| ≥ 2.

It is clear that J -s-3v-graded holds: either an element of X J is a top element of �J
(being a top element of � j , for all j ∈ J ) or not. The same is true for I -s-3v-graded:
either an element of XI is a top element of�I (being a top element of�i , for at least two
elements i ∈ I ) or not. Condition J -s-conj clearly holds. Condition I -s-conj is violated
since (a, a, b, b, b, b) ∈ A, (a, b, a, b, b, b) ∈ A, while (a, b, b, b, b, b) ∈ U .
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4.9 Testing the conditions

The conditions used in Theorem 1 involve an existential clause: “there is a partition
I , J of N such that 〈A,U〉 satisfies I -s-3v-graded, I -s-conj and J -s-conj”. Testing
such conditions may not be easy. The following results aim at simplifying this test.

Lemma 15 Suppose that 〈A,U〉 satisfies I -s-conj and let J = I \ {i}. Then 〈A,U〉
satisfies J -s-conj.

Proof J -s-conj applies to all pairs of alternatives that have common evaluations on
N \ J . But since J � I , having common evaluation on N \ J implies having common
evaluations on N \ I . Hence I -s-conj implies J -s-conj. ��
Lemma 16 Condition {i}-s-conj is trivial.
Proof Condition {i}-s-conj says that (xi , a−i ) ∈ A and (yi , a−i ) ∈ A imply
(xi , a−i ) ∈ A and (yi , a−i ) ∈ A. ��
Lemma 17 Suppose that 〈A,U〉 has a representation in Model (Eu∗

2 ) with the two
profiles p and q. Let I = N p and J = Nq. Let j ∈ J . Then 〈A,U〉 does not satisfy
I ∪ { j}-s-conj.
Proof In this proof, we use the convention that on each i ∈ N , we have ai�i bi�i ci .
Consider the following two alternatives: (aI , b j , bK ) and (bI , a j , aK ), with K =
J \ { j}. These two alternatives are in A. Indeed, by construction, (aI , b j , bK ) domi-
nates the profile p and (bI , a j , aK ) dominates the profile q. However, it is clear that
(bI , b j , aK ) ∈ U , since it does not dominate p and q. Hence, condition I ∪{ j}-s-conj
is violated. ��
Lemma 18 Suppose that 〈A,U〉 has a representation in Model (Eu∗

2 ) with the two
profiles p and q. Let I = N p and J = Nq. Let i ∈ I and j ∈ J . Then 〈A,U〉 does
not satisfy {i, j}-s-conj.
Proof In this proof, we use the convention that on each i ∈ N , we have ai�i bi�i ci .
Consider the following two alternatives: (aK , ai , b j , aL) and (aK , bi , a j , aL), with
K = I \ {i} and L = J \ { j}. While both alternatives are in A, it is clear that
(aK , b j , bi , aL) ∈ U , so that {i, j}-s-conj is violated. ��

Hence the test of I -s-conj could proceed as follows in a greedy-like way. Choose a
pair {i, j} of attributes such that {i, j}-s-conj holds. If such a pair does not exist,Model
(Eu∗

≤2) does not hold. If such a pair exists, try to iteratively enlarge it until this is no
longer possible. This gives rise to a maximal set I such that I -s-conj holds. If I = N ,
thenModel (Eu

1 ) applies (remember that N -s-conj implies i-s∗-conj, for all i ∈ N , see
Proposition 4). Otherwise, test if (N \ I )-s-conj holds. If yes both conditions I -s-conj
and J -s-conj are satisfied. Otherwise, Model (Eu∗

≤2) does not hold (see Lemma 14).
A similar reasoning does not apply starting with the test of I -s-3v-graded. Hence,

after having applied the above procedure, we test if I -s-3v-graded applies with the
set I that we have obtained above. If not, Model (Eu∗

≤2) does not hold. If yes, then the

conditions of Theorem 1 are satisfied and Model (Eu∗
≤2) holds.
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5 Discussion

The original version of ELECTRE TRI-B uses one profile to delimit each category. It
was characterized in a conjoint measurement framework in Bouyssou and Marchant
(2007a, b). The version of ELECTRE TRI-B that uses several profiles to delimit each
category was characterized in the same framework in Bouyssou et al. (2021), when
there is no restriction on the number of profiles that can be used. These characteriza-
tions show that there is huge gain of expressiveness when going from one profile to
many profiles. Is that gain of expressiveness obtained with only a few profiles?

This paper wishes to be a first contribution to this research question. We have
proposed, in a conjoint measurement framework, a characterization of the partitions
that can be obtained using an outranking relation based on unanimity and no more
than two profiles.

The results in this paper nevertheless suffer from two limitations. First, comparing
Theorem 1 with Propositions 1 and 4 shows that the case of at most two limiting
profiles is more complex than the case of many limiting profiles (Proposition 1) and
the case of one profile (Proposition 4).

Second4, it does not seem obvious to extend our results to cover the case of Model
(Ec≤2). As shown below, the conditions we use seem to be specific to Model (Eu∗

≤2)

(or (Eu≤2)). This is in contrast with the results in Bouyssou et al. (2021) in which
restricting the attention to outranking relations based on unanimity is innocuous. Let
us illustrate this point with the following example.

Example 3 The example has n = 4 and X1 = X2 = X3 = X4 = {0, 5, 10}. The
partition is built in Model (Ec≤2) with the following two profiles (10, 10, 5, 5) and
(5, 5, 10, 10) together with F = {{2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}, {1, 2, 3, 4}}.

It is simple to check that on all attributes, we have 10�i5�i0. For instance, we
have with i = 1,

(10, 0, 5, 10) ∈ A, (5, 0, 5, 10) ∈ U ,

(5, 0, 10, 10) ∈ A, (0, 0, 10, 10) ∈ U .

The two profiles partition the set of attributes into two subsets I = {1, 2} and
J = {3, 4}.

Observe that i-s-3v-graded does not hold since 0 is not a veto level. Indeed, we have,
e.g., (0, 5, 10, 10) ∈ A, (10, 0, 5, 10) ∈ A, (10, 5, 0, 10) ∈ A, and (10, 5, 10, 0) ∈ A.

On I = {1, 2}, the partition is not I -s-3v-graded. Indeed, we have, using obvious
notation,

(10, 10)�12[(10, 5), (5, 10)]�12(5, 5)�12[(5, 0), (0, 5)]�12(0, 0).

4 Although this case has little practical importance (see Fernández et al. 2017, p. 216, 2nd col., beginning
of Sect. 2.1 or Roy 1996, p. 235), more powerful results can be obtained when n = 2. It is easy to
devise a condition equivalent to requiring, together with i-linear, that �i has at most � ≥ 2 equivalence
classes. Imposing that each relation �i has at most � + 1 equivalence classes is necessary if 〈A,U〉 has a
representation in Model (Ec≤�

). When n = 2, this requirement is not only necessary but also sufficient to
guarantee the existence of a representation in Model (Ec≤�

). Since this case is of little importance, we leave
the easy proof of this fact to the interested reader. Simple examples show that the result does not generalize
to the case n ≥ 3.
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Indeed, we have
(10, 10, 5, 0) ∈ A, (10, 5, 5, 0) ∈ U ,

(10, 5, 5, 5) ∈ A, (5, 5, 5, 5) ∈ U ,

(5, 5, 10, 0) ∈ A, (5, 0, 10, 0) ∈ U ,

(5, 0, 10, 10) ∈ A, (0, 0, 10, 10) ∈ U .

It is simple to find similar examples for J .
Finally, it is clear that I -s-conj does not hold. We have, e.g., (10, 0, 5, 10) ∈ A and

(0, 10, 5, 10) ∈ A, while (0, 0, 5, 10) ∈ U . It is simple to find similar examples for J .
This shows that the axioms used for the characterization of Model (Eu∗

≤2) do not
hold with (Ec≤2), i.e., when we have two profiles but F �= {N }.

Hence, we do not have a complete answer to the research question that was at the
origin of our work, i.e., the study of the gain in expressiveness brought by increasing
the size of the set of profiles in ETRI-nB. We nevertheless think that this question is
important and deserves further study. Our results show that it is somewhat unlikely that
a purely axiomatic investigation will allow us to obtain clear answers to this research
question. Hence, this is also a plea to combine axiomatic work with other types of
work, e.g., based on computer simulation.
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