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Abstract
Malaguti et al. introduce (Eur J Oper Res 273:874–888, 2019) the Fractional Knapsack
Problemwith Penalties, which is similar to the classical 0-1 Knapsack problem, except
that each of the n variables associated with one of the n items can take any value from
the interval [0, 1], and values other than 0 and 1 are penalized. They state that the
problem is NP-hard in the ordinary sense as a generalization of the classical 0-1
knapsack problem and develop a fully polynomial-time approximation scheme for the
case of non-negative non-decreasing profit functions. It is demonstrated that, unless
P = NP , no polynomial-time approximation algorithmwith any approximation ratio
exists for the case of polynomially defined, polynomially computable, discontinuous
and non-monotone penalty functions even if there is a single item. A fully polynomial-
time approximation scheme which is roughly n times faster than the one of Malaguti
et al. for the same case is also presented.

Keywords Knapsack problem · Computational complexity · Fully polynomial-time
approximation scheme

Mathematics Subject Classification 90–10

1 Introduction

Malaguti et al. (2019) study the following Fractional Knapsack Problemwith Penalties
(FKPP). There are items of a set N = {1, . . . , n} and a knapsack with weight capacity
W > 0. Any part of an item can be packed into the knapsack. Let variable x j , 0 ≤
x j ≤ 1, represent the part of the item j packed into the knapsack. Each item j ∈ N is
associated with a weight w j > 0, a full-size-item profit p j > 0 and a profit function
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Fj (x j ) =

⎧
⎪⎨

⎪⎩

0 if x j = 0,

p j if x j = 1,

p j x j − f j (x j ) if 0 < x j < 1,

where f j (x j ) is an arbitrary, even discontinuous, non-negative penalty function
applied when a fractional part of the item j is packed into the knapsack. Denote
x = (x1, . . . , xn). The FKPP problem is

max
x

∑

j∈N
Fj (x j ), subject to

∑

j∈N
w j x j ≤ W ,

0 ≤ x j ≤ 1, j ∈ N .

Note that, in the classical knapsack problem, relations w j ≤ W , j ∈ N , can be
assumed, because if w j > W , then item j cannot be packed into the knapsack, and
hence, it can be removed from the input. In FKPP, if w j > W , then a part of item j
can still be packed into the knapsack, and therefore, relations w j ≤ W , j ∈ N , are
restrictive. Assume that in FKPP weights w j , j ∈ N , are not bounded from above by
W .

Let ε be a number or a function of the input data of FKPP such that 0 < ε < 1. An
algorithm for a maximization problem is called an (1−ε)-approximation algorithm if
for any instance of the problem it finds a feasible solutionwith value H0 ≥ H∗−ε|H∗|,
where H∗ is the maximum value. The absolute value of H∗ is used in this defini-
tion because H∗ can be negative. A Fully Polynomial-Time Approximation Scheme
(FPTAS) for a maximization problem is a collection of (1 − ε)-approximation algo-
rithms {Aε} each of which runs in time bounded by a polynomial of 1/ε and of the
problem input length in binary encoding.

Malaguti et al. (2019) remark that FKPP is anNP-hard problem since the classical 0-
1 knapsack problem reduces to it by setting f j (x j ) = p j x j , j ∈ N . They concentrate
on a special case of FKPP, in which Fj (x j ), j ∈ N , are non-negative non-decreasing
functions. For this case, among other results, they develop an FPTAS with running
time O(n4/ε2).

Earlier publications, in which optimization problems with penalized item splitting
are studied, include Freling et al. (2003), Liu and Cheng (2004), Lodi et al. (2011),
Archetti and Speranza (2012), Malaguti et al. (2014), Casazza and Ceselli (2014),
Fung (2014) and Liu and Draper (2016).

In the next section, it is proved that, unless P = NP , no polynomial-time (1 −
ε)-approximation algorithm exists for FKPP even if n = 1 and the penalty function
f1(x1) is polynomially defined, polynomially computable, discontinuous and non-
monotone. It is shown that this statement also applies for the general FKPP with an
arbitrary number of items. Section 3 contains an O(n3 log2 n + n3/ε2) time FPTAS
for FKPP with non-negative non-decreasing profit functions.
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Approximation issues of fractional knapsack with penalties 211

2 Non-approximability

The non-approximability proof is similar to the NP-hardness proof of Cheng and
Kovalyov (2002) for an unconstrained optimization problem.

Theorem 1 Unless P = NP , no polynomial-time (1 − ε)-approximation algorithm
with any 0 < ε < 1 exists for FKPP even if n = 1 and the penalty function f1(x1) is
polynomially computable, polynomially defined, discontinuous and non-monotone.

Proof Firstly, it is shown that the decision version of FKPP in the statement of the
theorem is NP-complete by a transformation from the NP-complete problem Parti-
tion (Garey and Johnson 1979): Given positive integers a1, . . . , ak and A such that∑k

i=1 ai = 2A, is there a 0-1 vector y = (y1, . . . , yk}, y /∈ {(0, . . . , 0), (1, . . . , 1)},
such that

∑k
i=1 ai yi = A?

Given any instance of Partition, construct the following instance of FKPP. Set
n = 1, p1 = 2(2k − 1), w1 = 2 and W = 1. Let b(z) denote a binary representation
of z, z ∈ {1, 2, . . . , p1

2 }, using k bits, b(z) = (b1(z), . . . , bk(z)), bi (z) ∈ {0, 1},
i = 1, . . . , k, such that z = ∑k

i=1 2
k−i bi (z). Define

f1(x1) =
{
p1x1 − 1 + | ∑k

i=1 aibi (�p1x1�) − A| if x1 ∈ { q
p1

| q = 1, . . . , p1
2 }

p1x1 if x1 ∈ { q
p1

| q = p1
2 + 1, . . . , p1}.

Domain of the function f1(x1) is the discrete set { q
p1

| q = 1, . . . , p1}. It is easy
to see that the function p1(x1) is polynomially defined, polynomially computable,
discontinuous and non-monotone. Furthermore, the length of p1 in binary encoding
is O(k). The value �p1x1� and the binary representation b(�p1x1�) for any x1 ∈ { q

p1
|

q = 1, . . . , p1
2 } can be found in O(k) time. Using b(�p1x1�), the value f1(x1) can be

calculated in O(k) time as well. Therefore, the reduction is polynomial with respect
to the input length of the Partition instance. Clearly, f1(x1) ≥ 0 for 0 < x1 < 1, as
it is required by the definition of FKPP.

Since f1(x1) is polynomially computable and defined for x1 ∈ { q
p1

| q =
1, . . . , p1}, the variable value of q in x1 = q

p1
can be taken as a certificate to ver-

ify whether a decision version of FKPP has a solution. The length of such a certificate
is bounded by a polynomial of log p1. It is deduced that a decision version of FKPP
is in the class NP . The transformation is the following.

It is shown that an instance of Partition has a solution if and only if for the
associated instance of FKPP there exists a solution x1 ∈ { q

p1
| q = 1, . . . , p1}

such that F1(x1) ≥ 1 and w1x1 ≤ W . Observe that the definitions of the functions
f1(x1) and F1(x1) imply that the values F1(x1) are integral. Assume that the instance
of Partition has a solution y = (y1, . . . , yk), yi ∈ {0, 1}, i = 1, . . . , k. Define
z = ∑k

i=1 2
k−i yi ≥ 1 and x1 = z

p1
. Observe that 1 ≤ p1x1 = z ≤ 2k − 1 = p1

2 .
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Hence, x1 ∈ { q
p1

| q = 1, . . . , p1
2 } and w1x1 = 2x1 ≤ 1 = W . Furthermore,

F1(x1) = 1 −
∣
∣
∣

k∑

i=1

aibi (�p1x1�) − A
∣
∣
∣ = 1 −

∣
∣
∣

k∑

i=1

aibi (z) − A
∣
∣
∣

= 1 −
∣
∣
∣

k∑

i=1

ai yi − A
∣
∣
∣ = 1.

It was shown that the constructed instance of FKPP has a solution if the associated
instance of Partition has a solution. Now, assume that the instance of FKPP has a
solution x1 ∈ { q

p1
| q = 1, . . . , p1} such that F1(x1) ≥ 1 and w1x1 ≤ W . These

relations imply that x1 ∈ { q
p1

| q = 1, . . . , p1
2 }, �p1x1� ≤ p1/2 ≤ 2k − 1 and

F1(x1) = 1 − | ∑k
i=1 aibi (�p1x1�) − A| ≥ 1. The latter relation can only happen if

∑k
i=1 aibi (�p1x1�) = A. It is deduced that the 0-1 vector y such that yi = bi (�p1x1�),

i = 1, . . . , k, is a solution of the associated instance of Partition.
Thus, FKPP is NP-hard if n = 1 and the penalty function f1(x1) is polynomially

computable, polynomially defined, discontinuous and non-monotone. Assume that
0 < ε < 1 and there exists a (1 − ε)-approximation algorithm for FKPP. Let it
deliver a solution x01 with value F

0
1 for the FKPP instance associated with a Partition

instance. Since w1x01 = 2x01 ≤ W = 1, we know that x1 ∈ { q
p1

| q = 1, . . . , p1
2 }.

Together with the definitions of the functions f1(x1) and F1(x), this implies that F0
1 is

an integer satisfying F0
1 ≤ 1. Denote by F∗

1 the maximum objective function value for
the instance of FKPP. Similar to F0

1 , the number F∗
1 is an integer satisfying F∗

1 ≤ 1.
By the definition of an (1 − ε)-approximation algorithm, relations

F∗
1 − ε|F∗

1 | ≤ F0
1 ≤ F∗

1 (1)

must be satisfied.
It is shown in the above NP-completeness proof that if F∗

1 = 1, then the Partition
instance has a solution, and if F∗

1 ≤ 0, then the Partition instance has no solution.
It follows from (1), relation 0 < ε < 1 and integrality of F0

1 and F∗
1 that F0

1 = 1 if
and only if F∗

1 = 1. It is deduced that F0
1 = 1 if and only if the Partition instance

has a solution. Thus, if a polynomial-time (1− ε)-approximation algorithm for FKPP
exists, then Partition admits a polynomial-time algorithm, which is impossible,
unless P = NP . �	
Corollary 1 Unless P = NP , no polynomial-time (1 − ε)-approximation algorithm
with any 0 < ε < 1 exists for FKPP.

Proof For any instance I1 of FKPP in the proof of Theorem 1, construct an instance
I2 of the general FKPP, in whichW = 1, n = log2 p1, all the input parameters of item
1 are the same as in I1, w j = 0 and f j (x j ) = p j = 0 for 0 ≤ x j ≤ 1, j = 2, . . . , n.
The transformation of I1 into I2 is polynomial in the input length of I1. The remaining
proof is similar to the proof of Theorem 1. �	
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Approximation issues of fractional knapsack with penalties 213

3 Non-negative non-decreasing profit functions: FPTAS

Consider FKPP with non-negative non-decreasing profit functions Fj (x j ), j ∈ N .
Similar to the FPTAS of Malaguti et al. (2019), the present FPTAS is based on a
scaled and rounded re-formulation of FKPP and a dynamic programming algorithm
for the latter problem. However, the current re-formulation is different from that in
Malaguti et al. (2019), which results in a more efficient running time.

Let x∗ = (x∗
1 , . . . , x

∗
n ) be an optimal solution of FKPP and F∗ = ∑

j∈N Fj (x∗
j ).

Observe that any 0-1 vector x ( j) such that x ( j)
j = min{1, W

w j
} and x ( j)

i = 0, i 
= j ,

i ∈ N , j ∈ N , is feasible for FKPP. Hence, L ′ = max j∈N {Fj (min{1, W
w j

})} is a lower
bound for F∗. Furthermore, if Fj (min{1, W

w j
}) = 0, then, since Fj is non-negative

and non-decreasing, the contribution of item j to the objective function is zero in any
feasible solution, and this item can be removed from the input. Therefore, assume
without loss of generality that Fj (min{1, W

w j
}) > 0, j ∈ N . One more observation is

that Fj (min{1, W
w j

}) is the maximum contribution of item j to the objective function
value of any feasible solution because the functions Fj (x j ) are non-decreasing, j ∈ N .
It follows that U ′ = nL ′ is an upper bound on F∗.

From now on assume that arbitrary lower and upper bounds L and U are known
such that 0 < L ′ ≤ L ≤ F∗ ≤ U ≤ U ′. For a given ε > 0, define scaling parameter
δ = εL

n and formulate the following Scaled and Rounded FKPP (SRK) problem.

max
x

∑

j∈N

⌊ Fj (x j )

δ

⌋
, subject to

∑

j∈N
w j x j ≤ W ,

x j ∈ {r j (0), r j (1), . . . , r j (
⌊U

δ

⌋
)}, j ∈ N ,

where

r j (s) = inf
{
x | 0 ≤ x ≤ min

{
1,

W

w j

}
,
⌊ Fj (x)

δ

⌋
= s

}
=

inf
{
x | 0 ≤ x ≤ min

{
1,

W

w j

}
, sδ ≤ Fj (x) < (s + 1)δ

}
, j ∈ N .

Note that, by the definition of the infimum, the value r j (s) may not exist. Assume
that the value inf{x | Fj (x) ≥ D} can be computed in O(1) time for any D, 0 <

D ≤ U , and j ∈ N . Then, since functions Fj (x) are non-decreasing, all the existing
values r j (s) for s = 0, 1, . . . , �U

δ
�, j ∈ N , can be computed in O( nU

δ
) time. A similar

assumption is made by Malaguti et al. (2019).
Let x0, S0 and F0 denote an optimal solution of SRK, its objective function value

with respect to SRK and its objective function value with respect to the original FKPP,
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respectively. Note that x0 is feasible for FKPP. Furthermore, there exists a feasible

solution x ′ of SRK such that � Fj (x ′
j )

δ
� = � Fj (x∗

j )

δ
�, j ∈ N . Let us evaluate the quality

of x0 with respect to FKPP.

F0 =
∑

j∈N
Fj (x

0
j ) = δ

∑

j∈N

Fj (x0j )

δ
≥ δ

∑

j∈N

(⌊ Fj (x0j )

δ

⌋)
≥ δ

∑

j∈N

(⌊ Fj (x ′
j )

δ

⌋)
=

δ
∑

j∈N

(⌊ Fj (x∗
j )

δ

⌋)
> δ

∑

j∈N

( Fj (x∗
j )

δ
− 1

)
= F∗ − nδ ≥ (1 − ε)F∗.

This chain of relations proves that any optimal algorithm for SRK is an (1 − ε)-
approximation algorithm for FKPP. Let us evaluate S0 from above.

S0 =
∑

j∈N

⌊ Fj (x0j )

δ

⌋
≤

∑

j∈N

Fj (x0j )

δ
≤

∑

j∈N

Fj (x∗
j )

δ
≤ U

δ
.

Let U 0 = �U
δ
�. Since S0 is integral, S0 ∈ {0, 1, . . . ,U 0}.

A profit-based dynamic programming algorithm for SRK, denoted as DP, is now
presented. In this algorithm, partial solutions x = (x1, . . . , x j ) are constructed for
j = 1, . . . , n. With each partial solution x = (x1, . . . , x j ), a state ( j, g) is associated,

where g = ∑ j
i=1� Fi (xi )

δ
�. A total weight function Tj (g) is recursively calculated for

each state ( j, g), which is the minimum total weight of partial solutions in the same
state ( j, g). A partial solution with value Tj (g) is dominant over partial solutions
in the state ( j, g) meaning that if there is a partial solution in this state that can be
extended to an optimal solution of SRK, then the dominant solution can be extended
to an optimal solution of SRK in the same way. Therefore, only a single dominant
solution needs to be stored for each state, and the other solutions can be discarded.

The initialization of Algorithm DP is T0(0) = 0, and T0(g) = W + 1 for g 
= 0,
g = 0, 1, . . . ,U 0. The recursion for j = 1, . . . , n and g = 0, 1, . . . ,U 0, is

Tj (g) = min
x∈{r j (0),r j (1),...,r j (U0)}

{
Tj−1

(
g −

⌊ Fj (x)

δ

⌋)
+ w j x

}
.

The optimal objective function value of the problem SRK is equal to

S0 = max{g | Tn(g) ≤ W , g = 0, 1, . . . ,U 0},

and the corresponding optimal solution x0 is determined by the optimal solutions of the
recursive equation on the way to Tn(g) = S0. The recursive equation can be solved in
O(U

δ
) time for each state ( j, g). Since the state space cardinality is O(nU 0) = O( nU

δ
),

the running time of Algorithm DP is O( nU
2

δ2
) = O( n

3

ε2
(UL )2).
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Approximation issues of fractional knapsack with penalties 215

Remark 1 Algorithm DP produces a solution with profit F0 ≥ F∗ − εL and it does it
in O( n

3

ε2
(UL )2) time irrespectively of whether L , 0 < L ′ ≤ L ≤ U , is a lower bound

for F∗.

Kovalyov (1995) presents a bound improvement procedure for aminimization prob-
lem, which can be easilymodified for amaximization problem, to determine lower and
upper bounds B andC for optimumvalue F∗ such that B ≤ F∗ ≤ C and B/C = O(1),
if there exist lower and uppers bounds L ′ and U ′ satisfying 0 < L ′ ≤ F∗ ≤ U ′ and
a specific approximation algorithm. For FKPP, DP is such an algorithm. The running
time of the bound improvement procedure for the FKPP problem is O(n3 log2 n) if it
employs lower and upper bounds L ′ and U ′ = nL ′ and Algorithm DP. For complete-
ness, the bound improvement procedure after the following lemma is presented.

Lemma 1 A combination of Algorithm DP and the bound improvement procedure

is an FPTAS for FKPP with running time O(n3 log2 n + n3

ε2
), if the profit functions

Fj (x), j ∈ N, are non-negative non-decreasing and the value inf{x | Fj (x) ≥ D} is
computable in O(1) time for any D, 0 < D ≤ U, and j ∈ N.

Bound improvement procedure. The procedure calculates numbers B andC such
that B ≤ F∗ ≤ C and C ≤ 4B. For a maximization problem with the optimum value
F∗, let lower and upper bounds L ′ and U ′ be given such that 0 < L ′ ≤ F∗ ≤ U ′.
Compute integer number k satisfying 2k−1L ′ < U ′ ≤ 2k L ′. We have L ′ ≤ F∗ ≤ 2k L ′
and k = O(log2

U ′
L ′ ).

For q = k, k − 1, . . . , 1, apply an approximation algorithm for the maximization
problem which finds a feasible solution with value F (q) ≥ F∗ − 2q−2L ′ if F∗ ≤
2q L ′. If F∗ > 2q L ′, then the algorithm can still find a feasible solution with value
F (q) ≥ F∗ −2q−2L ′, but it is not guaranteed. For FKPP, Algorithm DP with ε = 1/2,
U = 2q L ′ and L = 2q−1L ′ is such an algorithm because, due to Remark 1, it finds a
solution with value F0 ≥ F∗ − εL = F∗ − 1

2 L = F∗ − 2q−2L ′ if F∗ ≤ U = 2q L ′.
For FKPP, it runs in O(n3) time. Since F∗ ≤ 2k L ′, a feasible solution with value
F (k) ≥ F∗ − 2k−2L ′ will be found. If F (k) ≥ 2k−2L ′, then 2k−2L ′ ≤ F (k) ≤ F∗ ≤
2k L ′. Hence, B = F (k), C = 2k L ′, and the procedure stops. If F (k) < 2k−2L ′, then
F∗ ≤ F (k) + 2k−2L ′ < 2k−1L ′, and we can re-set k := k − 1. Therefore, B = F (t)

and C = 2t L ′ where t is the largest index such that k ≥ t ≥ 1 and F (t) ≥ 2t−2L ′.
Such an index t exists. Assume that it does not exist for all iterations up to the iteration
in which k is re-set to 1. Since this iteration is reached, relations F (2) < 20L ′ and
F∗ ≤ F (2) + 20L ′ < 2L ′ are satisfied. Furthermore, L ′ ≤ F∗ by the definition of L ′.
Hence, L ′ ≤ F∗ ≤ 2L ′, and for t = 1 we have F (1) ≥ F∗ − 2−1L ′ ≥ 2−1L ′, as it
is required by the definition of t . Note that if t = 1, then C/B = 2. For FKPP, since
0 < L ′ ≤ F∗ ≤ nL ′, the number of iterations of the bound improvement procedure
is at most k = O(log2

U ′
L ′ ) = O(log2 n) and its overall running time is O(n3 log n).
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